
Proceedings of the 2012 Winter Simulation Conference

C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

SIMURENA − A WEB PORTAL FOR OPEN EDUCATIONAL SIMULATION

Gerd Wagner

Brandenburg University of Technology

Institute of Informatics

P. O. Box 101344

03013 Cottbus, GERMANY

ABSTRACT

In this paper, we first discuss the question why simulation is still not widely used in education today. We

identify three inhibitors and four facilitators for the use of simulation in education. In particular, we point

out that educational simulations should be created and distributed as Open Educational Resources. Se-

cond, we report on the innovative Simurena Portal (Simurena 2012), which is the first simulation portal

that satisfies all four requirements for facilitating the use of simulation in education.

1 INTRODUCTION

For a number of reasons, simulation is still not widely used in education today. The three most important

reasons are:

1. Making simulations requires a huge effort and is, therefore, expensive, especially if they contain

multimedia contents.

2. A lot of educational simulations are closed commercial software products. Average schools or

universities can often not afford to buy such products. It is also not possible to adapt these com-

mercial simulations for reuse in different educational settings.

3. Simulations that are free and open source can often not be used in an educational setting because

they have not been designed for educational use, so their installation requires too much effort and

they do not run in the web browser and on tablets.

We believe that for attaining a more widespread use of simulation in education it is essential to

1. support the creation, publication and reuse of simulation models as Open Educational Resources,

as discussed in Section 2;

2. allow turning simulations into games by adding a user interface for participatory simulation, and

by adding motivational elements, as discussed in Section 3;

3. exploit the multimedia capabilities of HTML5, and turn simulations into true web resources, as

discussed in Section 4;

4. support tablet computers and other mobile devices, since these platforms will be the most im-

portant ones in education.

In Section 5, we describe the Simurena Portal and in Section 6 the Simurena simulation language. Finally,

in Section 7 we compare Simurena with other simulation portals.

2 OPEN EDUCATION

UNESCO defines Open Educational Resources (OER) as teaching, learning or research materials that are

in the public domain or released with an intellectual property license that allows for free use, adaptation,

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 1588978-1-4673-4782-2/12/$31.00 ©2012 IEEE

http://portal.simulario.de/user/login

Wagner

and distribution (UNESCO 2012). The idea of OER dates back to the pioneering move of the Massachu-

setts Institute of Technology (MIT) in 2001 to publish its course materials on the web and allow their free

use (MIT 2012).

Figure 1: UNESCO’s OER logo.

The OER proposal has also been endorsed by the National Science Foundation (NSF), which recom-

mends in a recent report (NSF 2008) to ´adopt programs and policies to promote Open Educational Re-

sources’.

The Open Education (OE) movement aims to make educational materials as well as teaching and

learning tools, freely available via the world-wide web. This includes tools that support the creation, pub-

lication and reuse of simulation models as OER.

For supporting their world-wide reuse as OER, simulation models

 must be open source, e.g. by assigning a suitable Creative Commons license allowing derivative

works;

 should be true web resources, that is, they should be written using web standards such as the

UTF-8 character encoding, Uniform Resource Identifiers, XML and Dublin Core metadata.

While we may consider OER as ‘socialized’ digital assets, another goal of the OE movement is to de-

velop and provide ‘socialized’ open tools and systems for creating and publishing OER, including their

adaptation for reuse. So, this goal calls for establishing suitable web portals and for the formation of

online communities of OER developers. In the case of simulation models and simulations, this means that

an OE simulation platform should provide a web portal that supports the collaborative online develop-

ment of simulation models and simulations, and the formation of an online community of simulation de-

velopers.

For being broadly accessible in today’s media technology landscape, OE resources should exploit the

multimedia capabilities of HTML5 and support tablet computers and other mobile devices. This implies

that simulation models are implemented as JavaScript programs that can be directly executed in the web

browser, providing seamless integration with HTML5 and support of mobile platforms. This issue is fur-

ther discussed in Section 4.

3 PARTICIPATORY SIMULATION AND SIMULATION GAMES

For supporting the use of simulations in education, it is essential that a given simulation model can be

‘gamified’, that is, turned into a game by adding 1) a suitable user interface allowing the user to partici-

pate in the simulation, and 2) suitable motivational elements. Ordinary simulations provide limited oppor-

tunities for user interaction. Only simulation games have the potential of being immersive and supporting

active learning.

Participatory simulation is a form of multi-agent simulation (MAS) that allows the user to participate

in a simulation run by controlling (or ‘playing’) one of the agents defined in the simulation scenario. This

means that for supporting participatory simulations, a simulation technology must allow adding an agent

control user interface to a given simulation model such that the resulting participatory simulation scenar-

io has the same runs as the underlying MAS model, provided the user does not choose to participate in the

runs. A participatory simulation model can thus be viewed as a conservative extension of a MAS model

according to the following symbolic equation:

1589

http://www.unesco.org/new/en/communication-and-information/access-to-knowledge/open-educational-resources/global-oer-logo/

Wagner

participatory simulation model = MAS model + participation model + agent control UI

In summary, we obtain the following symbolic equation for defining an agent control user interface:

agent control UI = output panels + user action forms + user action event listeners

We further discuss these general simulation concepts in the following subsections. We also show how to

implement a simulation scenario for participatory simulation in Simurena in Section 5.

3.1 Example

For being able to illustrate our concepts we use the MIT Beer Game model published in (Simurena 2012),

which is version of the classical simulation game by Sterman (1992), as an example of a MAS model that

can be extended by adding a participation model and a corresponding agent control UI. This model is

about a beer supply chain consisting of four nodes: the retailer, the wholesaler, the distributor and the fac-

tory. Every intermediate node has one upstream node to order and receive beer from and one downstream

node to receive orders from and to delivery beer to.

An agent-based implementation of this conceptual model can be obtained by defining

1. an agent type for the bottom supply chain node (the end customer);

2. an agent type for intermediary supply chain nodes (the retailer, the wholesaler and the distribu-

tor);

3. an agent type for the top supply chain node (the factory);

4. and the reactive behavior of these supply chain nodes based on a set of rules.

This model can be turned into a participatory simulation model by adding a participation model and a

corresponding agent control UI that allows the user to choose one of the intermediary supply chain nodes

and control it during a simulation run.

3.2 Participation Model

A participation model for a MAS model specifies four things:

1. Which agents defined in the MAS scenario may be controlled.

2. Which types of in-world actions of the controllable agents the user may perform.

3. Whether user actions are blocking (synchronous) or non-blocking (asynchronous).

4. Which automated behaviors of the controllable agents are to be suspended.

In our Beer Game example, we would allow the user to play any of the three intermediary supply chain

nodes. The only type of in-world action the user may perform on behalf of the controlled agent would be

to order a quantity of beer. We would choose user actions to be blocking (synchronous), that is, the simu-

lator would wait for the beer order user input in each round. All behavior rules of the controlled agent

that are responsible for making beer order decisions would be suspended in favor of the corresponding

user action.

3.3 Output Panels

Output panels can be used for displaying information about the current simulation state. They are sup-

posed to provide the information needed by the user for making action decisions. This includes displaying

the current values of attributes of the controlled agent or of other in-world objects, and of global variables

as well as statistics variables.

In our Beer Game example, we could have an output panel (e.g. on the left side of the screen) display-

ing the current values of the inventory, the backorder quantity and the accumulated costs of the controlled

intermediary supply chain node.

1590

http://portal.simulario.de/public/4/

Wagner

3.4 User Action Forms

A user action form allows the user to enter values for the parameters of a user action and to perform the

action by submitting the form (by clicking, or otherwise activating, a form submission button). By associ-

ating the form with an action rule of an agent type in the form definition, form submission events are

mapped to corresponding actions of the controlled agent.

For instance, for the participatory Beer Game model we might define a user action form with one

form field for allowing the user to enter a value for the parameter quantity of the action SendOrder asso-

ciated with the form.

3.5 User Action Event Listeners

User action event listeners allow mapping user interface events of a certain type (such as mouse-click or

key-press) to in-world action events of a corresponding type (without user parameters) as defined in the

simulation model.

In our participatory example Beer Game model we do not need any user action event listener, since

the only in-world user action is the ordering of beer which is handled by the user action form described in

the previous subsection.

3.6 Simulation Games

A simulation game can be obtained from a participatory simulation model according to the following

symbolic equation:

simulation game = participatory simulation model + motivation

which suggests that a game can be developed incrementally by first defining a multi-agent simulation

model, then adding a participation model and an agent control UI, and finally adding motivational ele-

ments in the form of goals, tasks and rewards for the player.

3.7 Related Work

In (Narayanan and Kidambi 2011), it is pointed out that historically the first forms of user-interactive

simulations with visualization, called visual interactive simulations, have been developed in the 1980s

and 1990s in parallel with the rise of graphical user interface (GUI) technologies. We would like to re-

mark that it is possible to specify a user-interaction model also for a simulation without a GUI, having

just a text-based user interface.

Narayanan and Kidambi (2011) maintain that engineering an interactive simulation is different from

engineering a non-interactive simulation since the specification of interaction is concurrent with the mod-

el specification. As we will show, this is not necessarily true and is, in fact, undesirable. Rather, it is pref-

erable to take an incremental development approach where the user-interaction model (and, in fact, any

other part of the overall user interface) is specified as an incremental and separable extension component

for a given simulation model.

As can be seen from the table of contents of (Rothrock and Narayanan 2011), and from a Google

search for “interactive simulation” yielding 28.000 search results, there are many approaches to, and

many implementations of, interactive simulation in all kinds of problem domains. However, there are no

proposals for a general conceptual framework capturing the logical concepts of human computer interac-

tion and related user interface elements in simulation independently of an implementation technology..

4 USING HTML5 AND OTHER WEB STANDARDS IN SIMULATION

We briefly discuss two issues: sharing educational simulation models on the web, and running education-

al simulations as web resources.

1591

Wagner

For allowing the world-wide reuse of simulation models as OER, they must be true web resources,

that is, they must be written with the help of web standards. This implies that

 the text of the model must use the character encoding UTF-8 for allowing all kinds of internation-

al characters (e.g., in the user interface text items);

 simulation models should be expressed in XML for facilitating their internationalization, publica-

tion and reuse;

 the Dublin Core metadata standard should be used for expressing documentation elements such as

creator, creation date, etc.

The easiest way of running a computer program, and, in fact, the only one that is acceptable in education

for its ease of use, is to run the program in a web browser by invoking a web hyperlink (URL) without re-

quiring the installation of any third-party plug-in (such as Adobe Flash). This also holds for simulation

programs. It implies that the program is delivered as a JavaScript program from a web server, using all the

multimedia capabilities of HTML5 (in particular, 3D graphics rendered with WebGL).

The Simurena technology is pioneering HTML5/JavaScript-based simulation. Other simulation tech-

nologies providing simulations on the web, such as AnyLogic, Forio or NetLogo, are still based on tech-

nologies such as Java applets and Flash, which are getting obsolete in the near future, since they are not

supported by mobile web browsers.

5 THE SIMURENA PORTAL

The Simurena Portal is an ongoing project for facilitating the development and publication of simulation

models and simulations for open education. It was developed by Mircea Diaconescu, Christian Noack,

Jens Werner and Gerd Wagner in 2010 at the Brandenburg University of Technology, Germany. It con-

sists of two site views:

 The Simurena Library for the public use of simulations and games by teachers, students and oth-

ers.

 The Simurena Development Portal for simulation and game developers.

While there are already a number of efforts to provide simulations as educational resources on a web por-

tal, Simurena is the first portal that supports the development of simulations both as Open Educational

Resources and as true web resources. The Simurena portal is also pioneering simulation engineering for

Open Education by providing a simulation development portal with free developer accounts. This portal

provides development tools and facilitates the collaborative development and publication of OE simula-

tions.

5.1 The Simurena Library

The simulations and games from the Simurena Library can be run for free from the Simurena website

(see the screenshot in Fig. 2). They typically have a Creative Commons license with the permission to in-

spect, modify and reuse their source code. Developers can set up a free personal account for the Simurena

Development Portal.

1592

http://www.xjtek.com/
http://forio.com/
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CGQQFjAA&url=http%3A%2F%2Fccl.northwestern.edu%2Fnetlogo%2F&ei=zge8T4qHENHq8QP__v27Ag&usg=AFQjCNFNsdtj3lVRltIf1xavODoaP7MEhg&sig2=C-bjER3dRpptKLXbT_NAiQ
http://portal.simulario.de/public/
http://portal.simulario.de/

Wagner

Figure 2: The entry page of the Simurena Library

As can be seen in Fig. 2, the Simurena Library classifies simulation models with the help of catego-

ries such as Biology, Economics, Management, and Social Sciences. E.g., in the Management category

there are the following models:

 Single Queue: A simple model of a service desk queuing system.

 Inventory Management: A simple inventory management system with a replenishment policy

based on a reorder level.

 Drive Thru: A simple model of a drive thru as a system with three order processing units: the or-

der window, the kitchen and the pickup window, and two queues: one for the order window and

one for the pickup window.

In the Economics category there are the following models:

 The MIT Beer Game: This model describes the classical MIT Beer Game, which is a manage-

ment simulation with a beer supply chain consisting of five nodes: the end customer, the retailer,

the wholesaler, the distributor and the brewery. Every intermediate node has one upstream node

to order and receive beer from and one downstream node to receive orders from and to delivery

beer to. An order takes 7 days and a delivery takes 14 days. At the end of a week every node de-

cides how much beer to order and calculates its costs for current stock and outstanding orders.

 Regional Labor Markets: Simulates an economy with three goods: labor, an investment (or capi-

tal) good and a consumption good, and four types of agents: households, consumption goods pro-

ducers, malls and capital goods producers, and three markets: an investment goods market, a con-

sumption goods market and a labor market.

5.2 The Simurena Development Portal

The Simurena Development Portal allows a developer to maintain a set of simulation scenarios (see

the screenshot in Fig. 3) and make decisions if they are to be published in the Simurena Library using a

1593

Wagner

Creative Commons license. For each simulation scenario, the developer may upload one or more associ-

ated media files (such as diagrams, images, or sound/music). The portal also allows to check the syntactic

correctness of a simulation scenario and to generate the executable JavaScript code. For the future it is

planned to provide visual editors that ease the creation of simulation models.

Figure 3: The start page of the Simurena Development Portal

In particular, educational simulations and games, such as management games, can be developed with

the Simurena Portal in a model-driven manner and then published on the Web. In model-driven simula-

tion engineering, developers can define a user interface model, in addition to the simulation model.

Through using the newest web technologies (such as HTML5 and WebGL) the Simurena Portal can gen-

erate state-of-the-art user interfaces without requiring the developer to know these technologies.

6 THE SIMULATION LANGUAGE

A simulation model is an executable specification that is either written in a general-purpose programming

language or in a special programming language called simulation language. The Simurena Portal is using

the XML-based Agent-Object-Relationship (AOR) simulation language AORSL (AORSL 2012, Wagner

et al 2009). This language has an XML syntax that allows embedding JavaScript code snippets such as

expressions and functions. The XML syntax of AORSL requires some learning effort, but it frees the de-

veloper from having to be an expert in JavaScript and Web user interface programming. Only the simula-

tion-specific computations have to be encoded with JavaScript expressions and functions, but not the gen-

eral simulation logic and environment (such as the user interface).

The following sections discuss the basic concepts of the AOR simulation language.

6.1 Simulation Scenarios and Simulation Models

A simulation scenario consists of

1. simulation parameter settings, such as setting a value for the number of simulationSteps,

2. a simulation model,

1594

https://oxygen.informatik.tu-cottbus.de/aors/AORSL.html

Wagner

3. an initial state definition, and

4. an optional user interface definition, including an initial state user interface, a statistics user in-

terface and/or an animation user interface.

A simulation scenario consists of

1. a set of entity type definitions, including different categories of event, message, object and agent

types; and

2. a set of environment rules, which define causality laws governing the environment's state changes

and the causation of follow-up events.

A simulation model consists of:

1. a set of entity type definitions, including different categories of event, message, object and agent

types; and

2. a set of environment rules, which define causality laws governing the environment's state changes

and the causation of follow-up events.

So, an empty template for a simulation scenario has the following structure:

<SimulationScenario xmlns="http://aor-simulation.org"

 version="0.9"

 scenarioName="MySimulationScenario"

 ... >

 <SimulationParameters simulationSteps="1000" ... />

 <SimulationModel modelName="MySimulationModel">

 <documentation> ... </documentation>

 <EntityTypes> ... </EntityTypes>

 <EnvironmentRules> ... </EnvironmentRules>

 </SimulationModel>

 <InitialState> ... </InitialState>

 <UserInterface>

 <InitialStateUI> ... </InitialStateUI>

 <StatisticsUI> ... </StatisticsUI>

 <AnimationUI> ... </AnimationUI>

 </UserInterface>

</SimulationScenario>

6.2 Objects and Events

Objects and events are the most fundamental entities of discrete event simulation. Thus, for making a

simulation model, suitable object types and event types have to be defined. As an example, we define an

object type for a service desk with the attributes busy and queueLength, and with a function random-

ServiceTime:

<ObjectType name="ServiceDesk">

 <Attribute name="busy" type="Boolean"/>

 <Attribute name="queueLength" type="Integer"/>

 <Function name="randomServiceTime" resultType="Integer">

 ...

 </Function>

</ObjectType>

There is a distinction between two kinds of events: those that are caused by other events, and those that

happen spontaneously (exogenous events). Here is an example of a type definition for caused events:

<CausedEventType name="CustomerDeparture">

 <Attribute name="serviceTime" type="Integer"/>

</CausedEventType>

1595

Wagner

In this model of a service desk queuing system, any customer departure (or service end) event is caused

by the preceeding service start event. However, our model also contains an example of an exogenous

event type, for which a random occurrence periodicity is defined:

<ExogenousEventType name="CustomerArrival">

 <Periodicity>

 <DiscreteRandomVariable>

 <UniformInt lowerBound="1" upperBound="8" />

 </DiscreteRandomVariable>

 </Periodicity>

</ExogenousEventType>

Notice that the periodicity of CustomerArrival events is defined in terms of a random variable based

on the uniform distribution of integers between 1 and 8.

Global variables, object types and event types allow defining the state structure of a discrete event

system. So we still need to define the dynamics of such a system. That is, for any event type, we have to

specify the state changes of affected objects and the follow-up events caused by the occurrence of an

event of that type. This can be done with the help of rules, as described in the next section.

6.3 Transition Rules

Transition rules allow defining the dynamics (that is, state changes and follow-up events) caused by event

occurrences. There are two kinds of transition rules in AORSL. Those rules that define the dynamics of

the objective environment due to physical causation (the "behavior" of objects) are called environment

rules. Rules defining the reactive behavior of agents are called reaction rules.

Transition rules consist of six elements:

1. WHEN specifies the type of event that triggers the rule;

2. FOR allows declaring variables, which are either bound to a specific value or object, or to a set of

objects;

3. DO is an unconditional execution element specifying state changes and follow-up events;

4. IF is a logical condition formula possibly containing variables;

5. THEN and ELSE are two conditional execution elements specifying further state changes and fol-

low-up events.

Any of the execution elements DO, THEN and ELSE may consist of two subelements:

 UPDATE-ENV, an expression specifying an update of the environment (or system) state;

 SCHEDULE-EVT, an expression specifying a list of follow-up events that will be scheduled.

6.4 Agents

While objects are typically passive entities, agents are interactive: they may interact both with their inan-

imate environment (via perceptions and state-changing actions) and with each other (via message-based

communication). As a modeling concept agents can be used for making higher-level simulation models

whenever the problem domain includes interacting objects such as biological agents (animals or humans),

social agents such as organizations or households, or artificial agents such as robots, machines, or interac-

tive software systems. Since an agent is just a special kind of object, there may be no need to model a

given problem with agents. However, modeling interacting objects as agents generally leads to more natu-

ral and more readable simulation models.

For modeling agents, we have to define suitable agent types in the simulation model, and then define

specific agents of those types in the initial state of the simulation scenario. Like an object type, an agent

type also allows defining a set of properties and functions that apply to all instances of the agent type. In

addition, it allows specifying:

 reaction rules for defining an agent's reactive behavior (including its communicative behavior);

 internal event types, including periodic time event types and reminder event types;

1596

Wagner

 a memory size: how many events can be memorized (that is, held in a memory storage).

Reaction rules have a similar syntax like environment rules. They are triggered by perception events,

including incoming message events, or by internal time events.

6.5 Animation

Animation is particularly important for educational simulations and games. Simurena simulations can be

animated by visualizing objects and their state, by sonifying events and by allowing human users to inter-

act with the simulated world. An animation user interface can be added to any simulation model as an in-

cremental extension that does not affect the simulation model.

Objects and their states are visualized by defining a view for an object type (or for a specific object).

A view is defined by a 2D shape (Square , Rectangle, Triangle, Arc, Circle, Ellipse, RegularPolygon,

Polygon, Polyline) or a 3D shape (Cube, Cuboid, Cone, Cylinder, Pyramid, RegularTriangularPrism,

Sphere, Tetrahedra, Mesh).

Events can be 'sonified' by defining an event appearance for an event type. This allows attaching

specific sounds and melodies to the occurrence of events of that type.

Human users (or players) can interact with the simulated world by performing in-world actions via

the user interface. Any simulation model can be turned into an interactive simulation by adding a partici-

pation model and a corresponding agent control user interface.

6.6 Participatory Simulation

The Simurena simulation language AORSL allows adding a participation model and a corresponding user

interface to a given multi-agent simulation model such that the result is a participatory simulation, which

can be turned into a simulation game by adding motivational elements such as defining a goal that the

player has to achieve.

6.6.1 Participation Model

In the AOR simulation model of the Beer Game the participation model is defined in the following way:

<AgentControlUI waitForUserInput="true">

 <AgentControlByAgentType type="IntermediarySupplyChainNode"

 suspendReactionRules="EndOfWeek_OrderingBeer_R1_Rule

 EndOfWeek_OrderingBeer_R2_Rule

 EndOfWeek_OrderingBeer_R3_Rule

 EndOfWeek_OrderingBeer_R4_Rule">

 …

 </AgentControlByAgentType>

</AgentControlUI>

The element AgentControlByAgentType specifies the agent control user interface for the agent type In-

termediarySupplyChainNode, and implicitly defines all agents of that type to be controllable. It also

suspends four rules that together define the ordering behavior of intermediary supply chain nodes. The

user-performable in-world actions are implicitly specified by the user action forms and user action event

listeners defined in the agent control UI. Since the attribute waitForUserInput is set to true, the user ac-

tion of ordering beer is blocking, that is, the simulator waits in each round for the user to make a beer or-

dering decision.

6.6.2 Output Panels

Output panels, which allow displaying information about the current simulation state, are part of the agent

control UI. An example of an output panel defined in the AOR simulation model of the Beer Game is the

following:

<LeftOutputPanel>

1597

Wagner

 <OutputFieldGroup label="Your state">

 <OutputField label="Inventory" agentAttribute="inventory">

 <Hint>

 <Text>How many crates of beer are in stock?</Text>

 </Hint>

 <Format decimalPlaces="0"><PackagingUnits>cases</PackagingUnits></Format>

 </OutputField>

 <OutputField label="Backorders" agentAttribute="backorderQuantity">

 <Hint>

 <Text>How many crates of beer are in backlog?</Text>

 </Hint>

 <Format decimalPlaces="0"><PackagingUnits>cases</PackagingUnits></Format>

 </OutputField>

 <OutputField label="Cost" agentAttribute="costs">

 <Hint>

 <Text>Your current costs.</Text>

 </Hint>

 <Format decimalPlaces="2"><Currency>EUR(€)</Currency></Format>

 </OutputField>

 </OutputFieldGroup>

</LeftOutputPanel>

6.6.3 User Action Forms

For the participatory Beer Game model we might define a user action form with one form field for allow-

ing the user to enter a value for the parameter quantity of the action SendOrder associated with the form.

In the AOR simulation scenario, this user action form would be defined in the following way:

<UserActionForm actionRule="SendOrder" enabledWhenEventOfType="EndOfWeek"

 label="Order">

 <ActionRuleParameterUI parameter="quantity" label="Order quantity">

 <Hint>

 <Text>How many crates of beer do you want to order?</Text>

 </Hint>

 <Format decimalPlaces="0"><PackagingUnits>cases</PackagingUnits></Format>

 </ActionRuleParameterUI>

</UserActionForm>

7 OTHER SIMULATION PORTALS

We briefly discuss two other educational simulation portals: MERLOT (2012) and NetLogo (2012), as

well as the open source simulation portal OpenABM (2012). All three have severe limitations with re-

spect to accessibility, reuse and creation of simulation models.

MERLOT is an educational resource repository designed primarily for faculty and students of higher

education. Although its idea is to support OE, it has many usability problems and allows contributors to

upload resources in all kinds of formats and licenses, including non-open resources. Consequently most

of its resources are not broadly accessible, since they are not made with web standards. Since many of

MERLOT’s resources are not open source, reuse is limited. MERLOT does not support the creation of

OE resources.

NetLogo is a user-friendly programming language, which is mainly used for making simulation mod-

els. Its website provides a large collection of open source simulation models that can be used in OE.

However, NetLogo simulation models are not broadly accessible and have only limited reusability, since

they are not made with web standards, but with the obsolete Java applet technology.

OpenABM provides various resources for agent-based modeling and simulation, including a reposito-

ry of open source simulation models, which can be in any format, implying limited accessibility and lim-

ited reusability. OpenABM does not support the creation of simulation models.

1598

http://www.merlot.org/merlot/index.htm
http://ccl.northwestern.edu/netlogo/
http://www.openabm.org/

Wagner

REFERENCES

AORSL (Agent-Object-Relationship Simulation Language) Reference Manual. 2012. Accessed May 23,

2012. https://oxygen.informatik.tu-cottbus.de/aors/AORSL.html.

MERLOT (Multimedia Educational Resources for Learning and Online Teaching). 2012. Accessed May

23, 2012. http://www.merlot.org/merlot/index.htm

NetLogo. 2012. Accessed May 23, 2012. http://ccl.northwestern.edu/netlogo/

MIT (Massachusetts Institute of Technology) OpenCourseWare. 2012. http://ocw.mit.edu/index.htm

NSF (National Science Foundation). 2008. Fostering Learning in the Networked World: The Cyberlearn-

ing Opportunity and Challenge. NSF document number nsf08204. Accessed May 23, 2012.

http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf08204.

Narayanan, S., and P. Kidambi. 2011. Interactive Simulations: History, Features and Trends. In Human-

in-the-Loop Simulations: Methods and Practice. Edited by Rothrock, L., and S. Narayanan Springer-

Verlag.

OpenABM. 2012. Accessed May 23, 2012. http://www.openabm.org/

Rothrock, L., and S. Narayanan (eds.). 2011. Human-in-the-Loop Simulations: Methods and Practice.

Springer-Verlag.

Simurena Library. 2012. A public library of simulations and games for education and entertainment. Ac-

cessed May 23, 2012. http://portal.simulario.de/public/.

Sterman J.D. 1992. Teaching Takes Off − Flight Simulators for Management Education − "The Beer

Game". OR/MS Today, October 1992, 40-44.

UNESCO. 2012. Open Educational Resources. http://www.unesco.org/new/en/communication-and-

information/access-to-knowledge/open-educational-resources/. Accessed May 23, 2012.

Wagner G., O. Nicolae and J. Werner. 2009. Extending Discrete Event Simulation by Adding an Activity

Concept for Business Process Modeling and Simulation. In: Proceedings of the 2009 Winter Simula-

tion Conference, edited by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, De-

cember, 13-16, 2009. pp. 2951–2962. Austin, Texas, USA.

AUTHOR BIOGRAPHY

GERD WAGNER is Professor of Internet Technology at the Department of Informatics, Brandenburg

University of Technology, Germany. His research interests include agent-oriented modeling and agent-

based simulation, foundational ontologies, (business) rule technologies and the Semantic Web. In recent

years, he has been focusing his research on the development of an agent-based discrete event simulation

framework, called ER/AOR Simulation (see www.AOR-Simulation.org). He can be reached at

http://www.informatik.tu-cottbus.de/~gwagner/.

1599

https://oxygen.informatik.tu-cottbus.de/aors/AORSL.html
http://www.merlot.org/merlot/index.htm
http://ccl.northwestern.edu/netlogo/
http://ocw.mit.edu/index.htm
http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf08204
http://www.openabm.org/
http://portal.simulario.de/public/
http://www.unesco.org/new/en/communication-and-information/access-to-knowledge/open-educational-resources/
http://www.unesco.org/new/en/communication-and-information/access-to-knowledge/open-educational-resources/
http://www.aor-simulation.org/
http://www.informatik.tu-cottbus.de/~gwagner/

