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ABSTRACT 

Influence parameters on construction processes and logistics are very diverse. Using a simulation 
model, many parameter variations can be created by taking different input data. Still it is impossible 
for all process parameters to be taken into account, as their many interrelations form a highly complex 
system. The lack of time, personnel, and computing capacities hinder the analysis of the whole and 
complex system. The close relation between construction processes and logistics results in several key 
parameters being taken into consideration. Identifying which parameters have a smaller and which 
have a greater impact is relevant in order to develop well performing simulation models and to reduce 
simulation effort. According to the performed simulation studies, it can be shown, which parameters 
have to be taken into account, while other parameters can be neglected. The presented research focuses 
on the sensitivity analysis on the impact of logistics parameters on the simulation results.  

1 INTRODUCTION 

In recent years, simulation has been used as a challenging and new approach in the field of 
construction. Research focuses on different aspects of construction simulation. Given examples are 
execution planning (Beißert 2011), workspace management (Elmahdi et al. 2011), scenario planning 
(AbouRizk 2011) and construction site safety (Zhang et al. 2011). Simulated processes vary from 
infrastructure projects, e.g., roads (Günthner 2010), airports (Scherer et al. 2011) or tunneling 
(AbouRizk 2011) to structural engineering (Scherer et al. 2011) and outfitting (Beißert 2011). 

Due to the nature of the simulation model, several changes of the input and output data can be 
analyzed. Still it is impossible for all construction process parameters to be taken into account, as their 
many interrelations form a highly complex system. The lack of time, personnel, and computing 
capacities hinder the analysis of the whole and complex systems. 

One way to solve this problem is to reduce the simulation model to a simplified basis. This implies 
that special knowledge about the relationship between the input and output data is necessary. And such 
a reduced model is no more universal. It is only applicable for the one and only special aspect for 
which it has been generated. 

Franz (1989) however postulates that simulation models for construction processes must be very 
flexible and reactive. This enables the user to consider the characteristics of the construction site as 
well as of the construction processes. Furthermore the close relation between construction and logistic 
processes (Voigtmann and Bargstädt 2010) anticipates the inappropriate suppression of parameters 
which should be taken into account. Especially in outfitting processes a huge variety of construction 
and logistic strategies must be taken into account. 

At the beginning the effects of different application settings, e.g., map scale, routing algorithm, 
storage search (starting point and direction inside a storage area) on the construction process are 
largely unspecified. Identifying which parameters have small and which have great impact is relevant 
in order to develop well performing simulation models. 

Depending on the simulation focus the considered parameters (from process, from logistics and 
model-inherent) have to be thoroughly chosen. Therefore special knowledge about the relationships 
between the input and output data is necessary. 
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The benefits of this detailed knowledge can be illustrated by a simple example. If the quantity of 
the required heavy construction material is known, the maximum load of the builder’s hoist must be 
taken into consideration. This influence on simulation results is only taken into account in processes 
which require material defined by its weight. Simulation of processes which are driven by the volume 
of the material are independent from the hoist’s maximum load. On the other hand, for the voluminous 
material it is a difference, whether construction hoists or cranes are available. Also the effects of 
several hoists, possibly at different locations, must be analyzed. 

Furthermore the effects of changes of input data on the output have to be analyzed. Doubling an 
input parameter might cause a variation of the output parameter of only a few percent. Then large-
scale changes of the input parameter are possible without real effect on the output. If, however, a 
minimal input variation causes large changes in the output, it is necessary to regard this input data in 
more detail and deliberately use it for changes. So the sensitivity of the whole system is considered 
regarding the different parameters.  

The research focuses on sensitivity analysis between logistics and the construction processes. The 
paper is structured as follows: First, a short summary of the simulation of construction logistics and 
sensitivity analyses is given (Section 2). Then an explanation of parameter complexity is outlined 
(Section 3). Section 4 shows the exemplary analysis of logistic parameters. Finally a summary is 
included. 

2 SIMULATION OF CONSTRUCTION LOGISTICS 

2.1 Simulation Model 

The presented approach starts out from a simulation model, which is appropriate to display 
construction processes, especially outfitting processes. The constraint-based model has been 
developed by König et al. to analyse construction processes and work orders (König et al. 2007a; 
König et al. 2007b) The concept is, that work steps can only start, when certain necessary constraints 
are fulfilled. The model is implemented into the Simulation Toolkit Shipbuilding (STS) of the 
SimCoMar community (Steinhauer 2007; SimCoMar 2012) and runs on Tecnomatix Plant Simulation 
(Siemens PLM Software 2012). 

Constraints, which must be fulfilled in order to start a work step, are: pre-processes have to be 
finished and the required material, resources and work area have to be available. This is managed by 
several STS-components: material control, resource control and constraint manager. Material 
transports and, if necessary, the rearrangement of stored material are managed by a logistic control 
component. A detailed description of the program operating mode is given by Voigtmann and 
Bargstädt (2010). 

2.2 Variable Parameters 

Generally every input data can be described either as a variable or as a boundary condition or as a 
fixed value. Decisions on how to describe the data depends on the simulation or research focus. 
Variable parameters inside the simulation model can be clustered into three groups: process-oriented, 
logistics-oriented and concerning the mode of simulation. 

Process-oriented are all parameters, which have influence on the type of construction processes, 
work order, amount of work, duration and similar, Table 1. 

Table 1: Examples for process-oriented parameters 

Influence on construction process Example 
by type building type, scope of performances, construction 

activities
by work order execution schedule, work order, constraints 
by amount and duration scope of work, number of workers, worker 

qualification 
others number of floors, floor plan 

 
Logistics-oriented parameters (direct logistic parameters) can be grouped into configurational and 

strategic parameters. Examples for configurationally parameters are the number and location of hoists 
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and their capacity and speed, the number, size and location of storage areas and other logistic 
hardware parameters. Strategic parameters describe logistic strategies, e.g., for delivery or storage, and 
organizational structures, e.g., responsibilities for several logistic activities. Furthermore beyond these 
direct logistic parameters there are other parameters which influence the construction site logistics, 
called indirect logistic parameters. Typical examples are material transport characteristics as 
dimensions, weights, stackability, or special process characteristics like work area, safety zone, 
accessibility after work, temporarily or completely blocked areas and areas closed for storage). 

The third group of variable parameters are those concerning the mode of simulation. This sum up 
all model settings, which influence the simulation run, like search algorithms and optimization 
routines. Map scale and routing algorithms are typical model settings. Furthermore the order of entries 
in a list (of user defined input data) can result in different settings for the simulation. Entries, which 
are not prioritised or sorted within a list, are normally processed in their order of entry. For example: 
two deliveries planned at the same time will be regarded in their order of entry in the list. 

The process-oriented and the logistics-oriented parameters are the important input data. In order to 
analyze and optimize a construction schedule all of the influencing parameters should be varied step 
by step. To find an optimal parameter combination for the schedule all results have to be compared. 
Additionally the effects of the model settings have to be considered. The parameters influencing the 
modes of simulation should have no effects, but it has to be checked thoroughly. 

2.3 Sensitivity Analysis 

Sensitivity analysis investigates the impact on model output changing by varied input parameter. 
Factor screening is one important part of sensitivity analysis. It analyzes the quantitative influence of 
input parameters on a result. Local and global sensitivity analyses are the two other parts. They 
analyze the influence by input parameter variation intra-sectorially or within their general domain 
(Siebertz et al. 2011). 

Sensitivity analysis enables to answer question like: How do the optimal results change when 
changing input parameters? How inaccurate is a result by using rough input data? Additionally the 
identification of influencing parameters allows to assess the robustness of a simulation result. 
Therefore sensitivity analysis is appropriate to analyze sensitivity of the whole system and to identify 
parameters which have to be thoroughly chosen and which ones are negligible. 

Starting point is the above mentioned factor screening. Factors with obvious impact have to 
analyzed in more detail. Choice between local and global sensitivity analysis is based on factor 
properties and factor reflecting. With the scope of the application in mind, some factors are analyzed 
in realistic ranges only. For example it is not necessary to vary packaging size parameter from zero to 
infinity. 

3 PARAMETER COMPLEXITY 

The number of possible variable parameters is almost innumerable. Furthermore the range of each 
parameter can be limited to technical or local conditions, e.g., hoist’s capacity or size of storage areas. 
For example for analyze hoist’s capacity also the size of the increments of the parameter is restricted. 

For other parameters the valid range of values or parameter increments is not really known. Often 
ranges of value are defined by experience or careful consideration. More difficult it is to define the 
appropriate parameter increments. The increment might be constant, exponential or freely selectable. 

The following example shows the complexity of the problem. In a large office building one single 
outfitting trade in the 8th floor is considered. Assume that four types of builder’s hoists (different in 
speed and capacity) and three possible locations are available. Furthermore a minimum of two workers 
and a maximum of five is given. All assumed site conditions (parameters) are given in Table 2, the 
suitable range of parameter values is also shown.  
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Table 2: Parameters and values for an exemplary site 

Parameter Suitable parameter values Number of 
values 

type of builder’s hoist type A , type B, type C, type D 4 
location of builder’s 
hoist 

location A, location B, location C 3 

number of workers 2, 3, 4, 5 4 
delivery strategies “all at the beginning”, “daily”, “weekly” 3 
packaging size 25, 30, 35 per pallet 3 
storage strategy central (4 possible locations), distributed on each floor 5 
storage size from 10 m² to 40 m² with increments of 5 m² 7 
responsibility for 
logistic activities 

“all work done by workers”, “workers only assemble”, 
“unloading and storage by logisticians” 

3 

work order upstream, downstream 2 
 

The parameter list can easily be extended. To find the optimal combination of these parameters, 
every parameter value must be combined with each other. Already this small example yields more 
than 90.000 possible combinations, which is the product of all numbers of values. Effects of the model 
settings (e.g., map scale, increment size) are still not regarded. 

Assuming, that an optimal combination has been found and realized and that the company gets a 
similar contract with the same kind of work, the same building type, a similar ground floor plan and 
same other conditions. But that building has only 4 floors instead of 8. Theoretically all parameter 
combinations have to be analysed again. If one single simulation run including parameter setting and 
documentation of the values and the results takes 5 minutes, then analysing all 90.000 combinations 
needs more than 300 days. 

It is obvious that a concentration on the most governing parameters is necessary. With respect to 
the engineering logic some parameter correlations are obvious. For a two storey building it is not 
necessary to vary the hoist’s speed or capacity. There the efforts for vertical transport in comparison to 
horizontal transport are negligible. Also for distributed storage areas the range of values for the size of 
storage areas is less crucial than for central storage. The maximum number of workers is limited by 
the demand on work space. These are examples for obvious correlations, but often parameter 
correlations are not so obvious and easy to be identified. 

Engineering and logistic knowledge about the major parameters of influence is essential. To 
accelerate planning, irrelevant parameters and parameter combinations should be eliminated. It 
minimizes experimental scheduling and the number of simulation runs. The identification of typically 
qualified parameter combinations, which depend on specific processes or building attributes, ensures 
optimisation potential and makes it quickly accessible. Especially the influence of logistic parameters 
on construction processes is not much explored yet (Voigtmann and Bargstädt 2010). 

4 LOGISTIC SENSITIVITY 

If doubling an input parameter causes only a variation of the output parameter by a few percent, then 
large-scale changes of this input parameter becomes possible. Otherwise, if a minimal change in input 
causes big changes in output parameter variety, it is necessary to regard this input data in more detail 
and change it very carefully. Analyzing such system reactions and effects of changes of single input 
data on the other parameters shows the sensitivity of the model.  

In the following this sensitivity analysis is shown on the logistics in the model. It shows the 
exemplary analysis of direct and indirect logistic parameters on other processes and the application of 
these on different ranges of parameter values. 

4.1 Size of Storage Area 

Construction processes are affiliated to logistic processes. Deliver of material and transport to location 
of installation are preconditions for assembling. Material flow is often disturbed by interlaying and 
other temporary obstacles. Processes for material transport, storage and rearrangement sums up to ca. 
15 percent of daily working time (Boenert and Blömeke 2006). Further 15 percent are caused by ways 
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5 SUMMARY 

Influence parameters on construction processes and construction logistic are multiplex. To reduce 
simulation efforts it is not possible to randomly neglect some of the parameters. The presented paper 
points out, that some parameters unexpectedly have a great effect on the simulation results, which 
depends on the simulated process, chosen logistic conditions and the modes of simulation presetting. It 
also showed, that the influence of a number of other parameters can be neglected, since those have 
almost no influence on the simulation results. 

In summary the general analysis of parameters and their influence allows to focus on the main 
parameters and their realistic value ranges. The given examples show effects on some typical criteria. 
Just to better understand the underlying engineering and logistic determinants, other parameters should 
be analyzed as well, in order to be able to better optimize future simulation models for larger contexts 
and complex buildings. 
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