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ABSTRACT

Traditional metamodel-based optimization methods assume experiment data collected consist of performance
measurements only. However, in many settings found in stochastic simulation, direct gradient estimates
are available. We investigate techniques that augment existing regression and stochastic kriging models to
incorporate additional gradient information. The augmented models are shown to be compelling compared
to existing models, in the sense of improved accuracy or reducing simulation cost. Numerical results also
indicate that the augmented models can capture trends that standard models miss.

1 INTRODUCTION

Commonly used in simulation optimization, a metamodel provides an auxiliary functional relationship
between input and output of a simulation model. Other simulation optimization approaches include ranking
and selection, stochastic approximation and sample path optimization; see Fu (2002), Fu et al. (2008)
for a recent survey and tutorial with references. Conducting simulations to collect experimental data is
necessary to build metamodels, where the simulated data collected are usually performance measurements
for parameters of interest. However, direct derivative information may also be available in stochastic
simulation settings, where the output responses include not only the performance measurement, but also
values of the gradient of performance measurement with respect to the parameters. Perturbation analysis
(PA) (Ho and Cao 1991; Glasserman 1991; Glasserman 2004) and likelihood ratio/score function methods
(LR/SF) (Rubinstein 1986; Rubinstein and Shapiro 1993) are techniques that aim at estimating the gradient
the performance measure. Applications of direct gradient estimates have been studied extensively, including
queueing, inventory and finance applications (Asmussen and Glynn 2007; Fu 2008).

Metamodel-based methods decouple optimization from simulation, as metamodels approximate stochas-
tic responses through an algebraic function and deterministic optimization procedures are applied to the
metamodel. In general, there are two types of metamodel strategies: iterated local metamodels and global
metamodels. An overview of local and global metamodel-based optimization is given in Barton and
Meckesheimer (2006) and Barton (2009).

Iterated local metamodels, also known as sequential response surface methodology, rely on low-
order polynomial regression. A first-order polynomial is usually used to fit local response surface in a
small region to determine the search direction. Following a line search, new regions for the parameters
of interest are exploited repeatedly until the region of most interest is determined. At the final step, a
quadratic approximation is chosen and deterministic optimization methods are applied to locate the optimum.
Regression techniques and experiment design are critical in this procedure; see Kleijnen (2008) for details.

In global metamodels, high-order polynomial regression or nonlinear regression techniques based on
existing knowledge about the response surface are appropriate; see Yang et al. (2007) for an example. To
capture global characteristics of a response surface, more flexibilities in the models are required. Therefore,
kriging, splines, neural networks and radial basis functions are more adequate to fit global metamodels.
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Among all these, kriging metamodels have received a lot of attention in the stochastic simulation community
over the past decade (Cressie 1993; Stein 1999; Kleijnen et al. 2010). Recently, Ankenman et al. (2010)
proposed stochastic kriging as an extension of kriging, which takes the uncertainties in simulation noise
into consideration. Stochastic kriging is considered to be flexible and promising in fitting global response
surfaces, especially in stochastic simulation settings.

Gradient estimates have been used in local search procedures such as stochastic approximation (Ho and
Cao 1983; Fu 1994). For metamodel-based optimization, researchers have made attempts to incorporate
gradient estimates into iterate local metamodels and global metamodels. In the sequential aspect, another
approach called gradient surface method (GSM) was proposed by Ho et al. (1992) as a simulation
optimization procedure that fits the gradient response surface directly using the gradient estimates only;
the function estimates themselves are not used in the procedure. Liu (2003) developed approaches to
approximate response surface based upon artificial neutral networks and kriging. Chen et al. (2011)
introduced stochastic kriging with gradient estimators (SKG) approach to exploit gradient estimates in
stochastic kriging, showing that the new approach provides better prediction in the sense of smaller mean
squared error (MSE). This approach is similar to cokriging used in deterministic simulations. Therefore,
differentiability of correlation functions are required in their approach, as derivatives of stochastic processes
are used to formulate models for gradient estimates.

In this paper, we examine the potential improvements in fitting local and global metamodels when
gradient information is available. In the regression setting, we investigate the Direct Gradient Augmented
Regression (DiGAR) in Fu and Qu (2012), which is a modification of the standard linear regression model to
incorporate gradient estimates; in the stochastic kriging setting, the gradient extrapolated stochastic kriging
(GESK) method proposed in Qu and Fu (2012) is investigated, where we use all available simulation
outputs (both performance measurements and gradient estimates) to extrapolate more data. More spatial
correlations are introduced to the data from extrapolation, which can be employed by stochastic kriging.

Experiments are used to illustrate the effectiveness of the augmented models. Preliminary results show
that the DiGAR approach has several attractive features: it is less sensitive to outliers; it corrects the shape
of the fitted curve - the slope for a linear fit and the curvature for a quadratic fit; it provides estimators
with smaller variance than the standard regression model. Based on the numerical experiments considered
here, GESK is shown to perform better than stochastic kriging, and it is comparable to or better than SKG.
Moreover, GESK captures fluctuations of the response surface which are usually missed by the other two
approaches.

The rest of the paper is organized as follows. Section 2 and 3 present models to incorporate gradient
estimates in regression and stochastic kriging. In Section 4, numerical results for both enhanced metamodels
are provided. Section 5 presents conclusions and topics for future research.

2 AUGMENTING REGRESSION MODELS

In this section we review the DiGAR models in Fu and Qu (2012) that incorporate gradient estimates under
various assumptions.

2.1 Independent DiGAR

Given a data set {xi,yi}k
i=1 and xi = (xi1,xi2, · · · ,xid)

′ ∈Rd , the classical linear regression model takes the
form:

yi = β0 +β1xi1 +β2xi2 + · · ·+βdxid + εi,

where the prime denotes transpose. The parameters βi’s are regarded as unknown and to be estimated.
Now consider the enhanced setting where the k data points are (x1,y1,g1), . . . ,(xk,yk,gk), with gi =

(g1
i ,g

2
i , · · · ,gd

i )
′ ∈Rd representing a direct estimate of the gradient of yi at xi, The DiGAR model takes the
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form

yi = β0 +β1xi1 +β2xi2 + · · ·+βdxid + εi, (1)

g j
i = β

j +δ
j

i , (2)

where yi and g j
i , for i = 1,2, . . . ,k and j = 1,2, · · · ,d, are the performance measures and gradient estimates

with residuals {εi} and {δ j
i }, respectively.

If we stack all the (d +1)× k equations in (1) and (2) together, we have the same vector form model
as in classical linear regression

y = Xβββ + εεε, (3)

where

y =


y1
g1
...

yk
gk

 , X =



1 x11 · · · x1d
0 1 · · · 0

0 0
. . . 0

0 0 · · · 1
...

...
1 xk1 · · · xkd
0 1 · · · 0

0 0
. . . 0

0 0 · · · 1


, βββ =


β0
β1
...

βd

 , εεε =


ε1
δδδ 1
...

εk
δδδ k

 , δδδ i =


δ 1

i
δ 2

i
...

δ d
i

 . (4)

For illustration purposes, we consider the one-dimensional problem, i.e., the given data points are
(x1,y1,g1),. . ., (xk,yk,gk) and Xβββ = β0 + xβ1. Using the ordinary least-squares approach, the function to
be minimized is the sum of the squared deviations in both yi and gi,

L =
k

∑
i=1

(yi−β0−β1xi)
2 +

k

∑
i=1

(gi−β1)
2. (5)

Here equal weights for the sum of squared error are used, and the extension to convex combination is
considered in Fu and Qu (2012). Denote β̂ D

i and β̂ L
i , i = 0,1, as estimators from DiGAR and classical

linear regression, respectively. The resulting estimators that minimize (5) are

β̂
D
0 = ȳ− β̂

D
1 x̄, (6)

β̂
D
1 =

k
∑

i=1
(xi− x̄)(yi− ȳ)+ kḡ

k
∑

i=1
(xi− x̄)2 + k

, (7)

while the estimators in classical linear regression are

β̂
L
0 = ȳ− β̂

L
1 x̄, β̂

L
1 =

k
∑

i=1
(xi− x̄)(yi− ȳ)

k
∑

i=1
(xi− x̄)2

,

where x̄, ȳ and ḡ are the corresponding sample means of xi, yi and gi. Note that in the augmented model,
the form of β̂ D

0 in (6) remains unchanged, whereas β̂ D
1 in (7) has the additional terms kḡ and k in the

numerator and denominator, respectively, reflecting the added gradient information.
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Assumption 1

i) E(δi) = E(εi) = 0, ∀i.
ii) Cov(εi,ε j) = 0, Cov(δi,δ j) = 0, Cov(εi,δ j) = 0, ∀ i, j.

iii) Var(εi) = σ2 and Var(δi) = σ2
g .

We have the following lemma about the variances of the slope estimator.

Lemma 1 Under Assumption 1, the variance of DiGAR estimator Var(β̂ D
1 ) ≤ Var(β̂ L

1 ) if σ2
g ≤ C ·σ2,

where

C =

k+
k
∑

i=1
x2

i − kx̄2

k
∑

i=1
x2

i − kx̄2
.

The primary reason that we are interested in the slope estimator is that we expect DiGAR can provide
better search direction than classical linear regression in a sequential optimization procedure. Since C > 1,
it suggests that as long as the variance of the gradient estimations gi is not too much larger than the variance
of yi, the DiGAR estimator will have smaller variance.
Assumption 2 The residuals are normally distributed, i.e., εi ∼N (0,σ2), δi ∼N (0,σ2

g ).
Under Assumptions 1 and 2, yi and gi are independent due to the residuals being uncorrelated, and the

likelihood function is given by

L(β0,β1,σ
2,σ2

g ) = (2π)−k(σσg)
−k exp

{
− 1

2σ2

k

∑
i=1

(yi−β0−β1xi)
2− 1

2σ2
g

k

∑
i=1

(gi−β1)
2

}
,

which leads to the following respective maximum likelihood estimators (MLEs) for β0 and β1:

β̂
D
0 = ȳ− β̂

D
1 x̄, β̂

D
1 =

1
σ2

k
∑

i=1
xiyi +

k
σ2

g
ḡ− k

σ2 x̄ȳ

1
σ2

k
∑

i=1
x2

i +
k

σ2
g
− k

σ2 x̄2
. (8)

Lemma 2 Under Assumptions 1 and 2, the MLE β̂ D
1 in (8) has smaller variance than β̂ L

1 .

2.2 Correlated DiGAR

In simulation metamodeling, the response outputs yi often have heterogeneous variances and correlation
induced by common random numbers. Moreover, the response outputs yi and gradient estimates gi are
usually correlated. Thus, Assumption 1 is violated.

Similar to classical linear regression, generalized least squares (GLS) can be used to handle het-
eroscedasticity and correlations. Using the model in (3), we assume the residuals have zero mean, i.e.,
E(εεε) = 0, so E(y) = Xβββ , and Cov(εεε) = V, where the covariance matrix V is non-diagonal due to the
correlations between yi and gi. The generalized least squares estimator is

β̂ββ = (X′V−1X)−1X′V−1y,

and the covariance matrix for β̂ββ is
Cov(β̂ββ ) = (X′V−1X)−1.

If the residuals are assumed to be normally distributed, the MLE of βββ is the same as the GLS estimator.
We will analyze the GLS estimator, especially the slope estimator in the following. To make the

analysis tractable, we consider a special case.
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Assumption 3 V is a positive definite matrix such that yi is correlated with gi only when i = j with
correlation ρ .

Under Assumptions 1 (i), 1 (iii) and the variance of β̂ D
1 is given by

Var(β̂ D
1 ) =

σ2

1
1−ρ2

(
k
∑

i=1
x2

i − kx̄2

)
+ k σ2

σ2
g

, (9)

If 0 < σ2 < ∞, 0 < σ2
g < ∞ and −1 < ρ < 1, then we can show that Var(β̂ D

1 ) in (9) is smaller than Var(β̂ L
1 ).

Generally, ρ is unknown and must be estimated based on the data. The theoretical analysis indicates
potential for variance reduction from estimating the correlation. However, the extra computational budget
spent on estimating ρ must be traded off with any potential performance gains.

3 AUGMENTING STOCHASTIC KRIGING

Given an experiment design (xi,ni), i = 1,2, · · · ,k, stochastic kriging introduced by Ankenman et al. (2010)
models the simulation output y j(xi) from jth replication at design point xi as:

y j(xi) = f(xi)
′
βββ +M(xi)+ ε j(xi), (10)

where f(xi) ∈ Rp with known functions of xi, βββ ∈ Rp with unknown parameters to be estimated, M is a
realization of a zero-mean random field. The trend term f(xi)

′βββ represents the overall surface mean and
the measurement error is denoted as ε j(xi). The uncertainties in M and ε j are referred as extrinsic and
intrinsic uncertainties, respectively. Denote the sample mean of response output and the average simulation
noise at xi as

ȳ(xi) =
1
ni

ni

∑
j=1

y j(xi), ε̄(xi) =
1
ni

ni

∑
j=1

ε j(xi),

with ȳ = (ȳ(x1), ȳ(x2), · · · , ȳ(xk))
′.

Suppose we want to predict the response y(x0) at x0. Let ΣΣΣM be the k× k covariance matrix implied
by the random field M and ΣΣΣε be the k× k covariance matrix implied by the simulation noise across all
design point x1,x2, · · · ,xk. Let ΣΣΣM(x0, ·) = (Cov(y(x0),y(x1), · · · ,Cov(y(x0),y(xk))

′ denote the covariances
between y(x0) and the responses from all design points. Also, let F = (f(x1), f(x2), · · · , f(xk)) be the design
matrix. The MSE-optimal predictor is of the form

ŷ(x0) = f(x0)
′
β̂ββ +ΣΣΣM(x0, ·)′(ΣΣΣM+ΣΣΣε)

−1(ȳ−F′β̂ββ ), (11)

and the optimal MSE is

MSE(ŷ(x0)) = ΣΣΣM(x0,x0)−ΣΣΣM(x0, ·)′ [ΣΣΣM+ΣΣΣε ]
−1

ΣΣΣM(x0, ·). (12)

In an enhanced data setting, we observe the responses y j(xi) and the gradient estimates g j(xi) for the jth
simulation replication at design points xi. Instead of modeling the gradient estimates by partial derivative
of the random field M as in Chen et al. (2011), we model g j(xi) as a noise measurement of the true
gradient g(xi), i.e., g j(xi) = g(xi)+δδδ j(xi). Denote the sample mean of gradient estimates and the average
simulation noise at xi as

ḡ(xi) =
1
ni

ni

∑
j=1

g j(xi), δ̄δδ (xi) =
1
ni

ni

∑
j=1

δδδ j(xi).

Notice that the response and the gradient estimates are noisy and usually correlated, and we assume that
δ̄δδ (xi) is independent of the random field M.
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3.1 Augmenting Dataset with Gradient Estimates Via Extrapolation

To incorporate gradient estimates into stochastic kriging, we extrapolate in the neighborhood of the original
design points {xi}, i = 1,2, · · · ,k, i.e., additional response data is generated via linear extrapolations using
the gradient estimates as follows:

x+i = xi +∆xi, ȳ+(x+i ) = ȳ(xi)+ ḡ(xi) ·∆xi. (13)

Different extrapolation techniques can be applied in (13), and we can also add multiple points to the
neighborhood of xi. In this preliminary study we assume that the same step size is used for all design
points, i.e., ∆xi = ∆x, i = 1,2, · · · ,k. We also assume that only one additional point is added in the
neighborhood of xi. Let ȳi = ȳ(xi) and ȳ+i = ȳ(x+i ) for simplicity and ȳ∗ be the 2k×1 vector containing
all the original response outputs and the additional response outputs in (13):

ȳ∗ = (ȳ1, ȳ2, · · · , ȳk; ȳ+1 , ȳ
+
2 , · · · , ȳ

+
k ).

Similarly, x+ is defined as
x∗ = (x1,x2, · · · ,xk;x+1 ,x

+
2 , · · · ,x

+
k ).

To fit this augmented dataset into the stochastic kriging approach, we model the additional points similar
to the original response output, i.e.,

ȳ+(x+i ) = f(x+i )
′
βββ +M(x+i )+ ε

+(x+i ),

and the variance of the noise ε+(x+i ) and the covariance between ε+(x+i ) and ε(xi) are approximated by

Var
(
ε
+(x+i )

)
= Var(ε(xi))+(∆x)2 tr

[
Cov(δ̄δδ (xi))

]
+2(∆x)1′Cov

(
ε̄(xi), δ̄δδ (xi)

)
,

Cov
(
ε
+(x+i ),ε(xi)

)
= Var(ε(xi))+∆x1′Cov

(
ε(xi), δ̄δδ (xi)

)
.

Let ΣΣΣ
†
M = Cov[M(xi),M(x+j )], ΣΣΣ

+
M = Cov[M(x+i ),M(x+j )], i, j = 1,2, · · · ,k, and ΣΣΣ

∗
M be a 2k×2k covariance

matrix across all the original design points and additional design points, which takes the form

ΣΣΣ
∗
M =

[
ΣΣΣM ΣΣΣ

†
M

ΣΣΣ
†
M ΣΣΣ

+
M

]
. (14)

Similarly, let

ΣΣΣ
∗
ε =

[
ΣΣΣε ΣΣΣ

†
ε

ΣΣΣ
†
ε ΣΣΣ

+
ε

]
, (15)

where

ΣΣΣ
†
ε = diag

{
Cov

(
ε
+(x+1 ),ε(x1)

)
, · · · ,Cov

(
ε
+(x+k ),ε(xk)

)}
,

ΣΣΣ
+
ε = diag

{
Var
(
ε
+(x+1 )

)
, · · · ,Var

(
ε
+(x+k )

)}
.

Let ΣΣΣ
∗
M(x0, ·) be the covariance between y(x0) and all 2k design points. Also, let F∗= (f(x1), f(x2), · · · , f(xk),

f(x+1 ), f(x
+
2 ), · · · , f(x

+
k ))
′ be the design matrix. Under the enhanced data setting, we can easily find the

MSE-optimal predictor and the corresponding MSE by substituting ȳ∗, F∗, ΣΣΣ
∗
M(x0, ·), ΣΣΣ

∗
M and ΣΣΣ

∗
ε for ȳ, F,

ΣΣΣM(x0, ·), ΣΣΣM and ΣΣΣε in (11) and (12), respectively.
The random field M is assumed to be second-order stationary, i.e.,

ΣΣΣM(xi,x j) = τ
2R(xi−x j;θθθ),

where τ2 = Var [M(x)] and R(xi− x j;θθθ) is a correlation function with parameter θθθ depending on the
distance between xi and x j. The extended covariance matrix ΣΣΣ

∗
M follows the same correlation structure,

and the parameters (τ2,θθθ) and βββ can be estimated from maximum likelihood estimators (MLEs) provided
that ΣΣΣ

∗
ε is known.
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3.2 The Step Size

Incorporating the gradient estimates into stochastic kriging via extrapolation requires choice of step sizes.
Different step sizes, even with the same data set, will lead to different stochastic kriging metamodels. The
linear approximation is only appropriate in a small neighborhood of the design points, so the step size
cannot be too large. If the size step is too small, the additional points obtained from linear approximation
provide little information. Therefore, it is crucial to find rational choices for the step sizes. Depending on
the chosen objectives, the optimal step sizes may vary.

The step size ∆x can simply be treated as a new parameter. Therefore, we can estimate ∆x with
other parameters (βββ ,τ2,θθθ) simultaneously by MLE. Under Assumption 1 in Ankenman et al. (2010), the
objective function can be written as

Maximize L (βββ ,τ2,θθθ ,∆x) =− ln
[
(2π)k

]
− 1

2
ln [|ΣΣΣ∗M+ΣΣΣ

∗
ε |]−

1
2
(ȳ∗−F∗′βββ )′ [ΣΣΣ∗M+ΣΣΣ

∗
ε ]
−1 (ȳ∗−F∗′βββ ),

(16)
where ȳ∗, ΣΣΣ

∗
M and ΣΣΣ

∗
ε are functions of ∆x.

Another reasonable objective is to choose the stepsize to minimize the integrated mean squared error
(IMSE). Lower IMSE suggests smaller deviation associated with the approximation over the region of
interest. The problem can be formulated as

Minimize IMSE =
∫

x0∈Ω

MSE∗(x0;∆x)dx0, (17)

where Ω is the region of interest and

MSE∗(x0;∆x) = ΣΣΣ
∗
M(x0,x0)−ΣΣΣ

∗
M(x0, ·)′[ΣΣΣ∗M+ΣΣΣ

∗
ε ]
−1

ΣΣΣ
∗
M(x0, ·).

Both (16) and (17) are unconstrained optimization problems. However, in the optimization process,
maintaining the invertibility of the matrix ΣΣΣ

∗
M+ΣΣΣ

∗
ε is crucial, as an ill-conditioned matrix causes numerical

stability issues. Therefore, adding a constraint on the condition number of the matrix ΣΣΣ
∗
M+ΣΣΣ

∗
ε is necessary.

One key difference between the objectives in (16) and (17) is that the MLE approach estimates all the
parameters (βββ ,τ2,θθθ) with ∆x simultaneously. However, the IMSE approach requires ΣΣΣ

∗
M to be known in

advance. In practice, a two-stage strategy can achieve this:

1. In Stage 1, use (xi,yi) to obtain MLE β̂ββ , τ̂2 and θ̂θθ .
2. Calculate MSE∗(x0;∆x) with β̂ββ , τ̂2 and θ̂θθ as a function of ∆x.
3. In Stage 2, maximize IMSE in (17) as function of ∆x.

It is worth mentioning that the problem of finding step sizes is closely related to the experiment design
of stochastic kriging. To develop an experiment design, we need to decide the locations of design points
xi and allocate number of replications ni to xi. In stochastic kriging, the locations of design points control
the way we exploit the region of interest, while the number of replications determines sizes of variances
of intrinsic noise. In the problem of finding step sizes, the k newly added design points depend on step
sizes, and the variances of intrinsic noise ΣΣΣ

∗
ε also depends on step sizes.

The IMSE criterion was used in Ankenman, Nelson, and Staum (2010) to develop experiment designs
for stochastic kriging. They concluded that both intrinsic and extrinsic uncertainty matter in the experiment
design and suggested to choose design points that are centrally located. However, there is no simple
extension of their results to determine step sizes.

3.3 Enhanced Experiment Design in Stochastic Kriging

In this section we investigate the potential to improve the experiment design for stochastic kriging with
gradient estimates. The convexity information suggested by gradient estimates can be used to improve
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experiment design. Consider a one-dimensional problem. If the gradient estimates at two consecutive
design points xi and xi+1 satisfy g(xi)g(xi+1) < 0, then it suggests that with a high probability that there
exist local extreme values in [xi,xi+1]. Although the benefit of adding another design point between xi and
xi+1 is not fully justified, we believe that it helps the stochastic kriging metamodel to capture fluctuations
in the response surface and offer accurate locations of optimizers. However, this can be only applied to
response surfaces that have local extreme values within the region of interest.

In practice, given a total replication budget N, we propose the following two-stage design policy based
on these results:

1. In Stage 1, implement a space-filling design with m design points x1,x2, · · · ,xm and allocate n1
number of replications to each design point.

2. Collect simulation outputs ȳ(x1), ȳ(x2), · · · , ȳ(xm) and ḡ(x1), ḡ(x2), · · · , ḡ(xm).
3. For ḡ(xi)ḡ(xi+1)< 0, add another design point in between xi and xi+1. The new design point can

be determined by fitting a linear model to the gradient surface within [xi,xi+1].
4. In Stage 2, suppose there are k design points, including all xi and the extrapolated design points,

after Step 3. Allocate the remaining N−mn1 replications to the k design points using the IMSE
based experiment design proposed in Ankenman et al. (2010).

4 NUMERICAL EXAMPLES

We conduct some numerical experiments to illustrate DiGAR and GESK, to empirically investigate their
properties in practice, and to compare with standard regression models and stochastic kriging. In the first
example, we consider the mean total time for a customer (not the steady-state time in system), e.g., mean total
time for the 2nd customer, in a first-come, first-served, single-server queue, where only DiGAR and standard
regression models are considered. In the second example, we consider an example from Santner et al.
(2003) with artificial noise to compare stochastic kriging (SK), stochastic kriging with gradient estimators
(SKG) in Chen et al. (2011) and gradient extrapolated stochastic kriging (GESK). The third example
considers the steady-state waiting time in an M/M/1 queue, where all these techniques for metamodels
are investigated. Software for stochastic kriging is downloaded from http://www.stochastickriging.net, and
code for SKG and GESK are modified based on this.

4.1 Example 1

In an M/M/1 queue with arrival rate 1/5, we consider the expected system time in system for each customer
as a function of the mean service time. We compute the true theoretical dependence of the expected
system time on the mean service time, which is used to judge the quality of the fitted curve. We choose
10 equally spaced design points in [3.6,4.5] and run 10 replications on each design point. The simulated
data, true model and fitted models are plotted in Figure 1, with y(i) indicating the expected system time
for ith customer. All methods fit the model reasonably well for the 2ndand 3rd customer, but there are
dramatic differences in y(4) and y(5). The slope of the OLS model has the incorrect sign, whereas all
the DiGAR models capture the correct orientation of the curve. Independent DiGAR and DiGAR with
normality assumption (DiGARn) are closer to the true model, compared to correlated DiGAR (DiGAR*).
Many more numerical results using this example are contained in (Fu and Qu 2012).

4.2 Example 2

We take an example from Santner et al. (2003) to compare SK, SKG and GESK. Suppose the function is
y(x) = exp(−1.4x)cos(7πx/2)+ε over −2≤ x≤ 0, where the noise ε ∼N (0,1). Direct gradient estimate
is not available in this case, and we use g(x) = y′(x)+δ for gradient estimates where δ ∼N (0,25). We
use a Gaussian correlation function R(x,x′) = exp{θ(x−x′)2} and choose 4 different experimental designs.
The number of design points and the number of replications are 6 and 20, 8 and 20, 8 and 200, 20 and 200.
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Figure 1: Expected time in system for each customer.

Predictions using 6 design points are shown in the leftmost plot in Figure 2. The number of design
points is too small for SK and SKG to explore the design space, but GESK is able to explore the design
space more via extrapolation. Although predictions from GESK are not that accurate, they still capture
the fluctuations of the response surface. Results from experiment 2 are shown in the middle left plot. The
fitted model using SK is close to the true model. Both SKG and GESK improve the fitting by incorporating
gradient estimates, and improvement from SKG is bigger.

Another observation in this example is that predictions may become worse as the number of replications
increases. These behaviors are illustrated in experiment 3 and 4. In experiment 3, the number of replications
at each design point is increased to 200 (20 replications at each design point in experiment 2). The prediction
using SK is even worse than experiment 2, but both SKG and GESK improve their predictions compared
to experiment 2. In experiment 4, the number of design points is 20 and the number of replications at each
design point is 200. GESK is the only method that make predictions close to the true values. This is an
unexpected result. Generally, when we increase the number of replications, the effect of noises decreases
and the prediction should be more accurate. A possible explanation is that as number of replications
increases, the effect of intrinsic noise can be negligible. As mentioned in Staum (2009), stochastic kriging
becomes like kriging when intrinsic variances are negligible. Kriging interpolates all response outputs,
which is exactly what we observe for SK and SKG in experiment 4.

4.3 Example 3

We consider an M/M/1 queue with arrival rate 1. As a function of the service rate x, the expected steady-
state waiting time is given by y(x) = 1/(x(x−1)). Metamodels fitted by different techniques are shown in
Figure 3. The number of design points and the number of replications for each design point used in the
left and middle plots are 5 and 1000, 20 and 250, each replication with 100 customers. The right plot uses
50 design points, 2000 replications for each design point and 1000 customers in each replication.
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Figure 2: Test function: y(x) = exp(−1.4x)cos(7πx/2)+ ε .

A quadratic model y(x) = β0 +β1x+β2x2 is fitted via OLS regression and DiGAR, respectively. Both
regression models do not fit the true model well. The reason for poor predictions is that regression models
are misspecified, i.e., there is no quadratic function can precisely fit the expected waiting time.

We use constant trends and Gaussian correlation functions for SK, SKG and GESK. It is obvious that
the fitted models are all better than regression models. The right plot shows that all three methods can
fit the model really well when the computing budget is large enough. However, we can see performance
differences when the number of design points is small. In the left plot, GESK and SKG are better than
SK in relative errors; in the middle plot, GESK and SK are close and slightly better than SKG visually.
Therefore, the improvement from incorporating gradient estimates is more significant when the computing
budget is small, and GESK has good prediction consistently compared to the other two methods.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper we investigated both augmented regression models and augmented stochastic kriging models
that exploit the availability of direct gradient estimates in stochastic simulation settings. Both augmented
models are qualitatively able to capture trends that the standard models might miss. For stochastic kriging,
preliminary numerical experiments indicate the following:

• GESK and SKG both improve predictions by incorporating gradient estimates.
• GESK doesn’t require differentiability on the chosen correlation function, unlike SKG.
• GESK makes good predictions in different cases with good choice of step sizes.
• The performance of GESK highly depends on the choice of step sizes.

Our work points to several other directions for future research. The first direction is to apply DiGAR
in simulation-based optimization using sequential RSM. The expected improvements in optimization ef-
ficiency from DiGAR models need to be characterized and quantified in theoretical work and numerical
experimentations. Another direction is to focus on in-depth exploration of rational choice of step sizes used
in GESK and develop multi-stage experiment design for stochastic kriging using gradient information.
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Figure 3: Expected waiting time in M/M/1 queue.
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