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ABSTRACT

We analyze a stratified strategy for numerical integration and for simulation of coalescence. We use random
points which are more evenly distributed in the unit cube than usual pseudo-random numbers. They are
constructed so that only one point of the set lies in specific sub-intervals of the cube. This property leads
to an improved convergence rate for the variance, when they are used for integrating indicator functions.
A bound for the variance is proved and assessed through a numerical experiment. We also devise a Monte
Carlo algorithm for the simulation of the coagulation equation. We start with an initial population of
particles whose sizes are sampled from some initial distribution, and these sizes evolve according to the
coalescence dynamics; the random numbers used are the stratified points described above. The results of
some numerical experiments show a smaller variance, when compared to a Monte Carlo simulation using
plain random samples.

1 INTRODUCTION

Coagulation models have applications in domains of technology and engineering where sprays are used.
Sprays are flows produced by the ejection of liquid drops from so called atomizers and are used in many
industrial fields such as biotechnology, pharmacology, electronic printing or fuel cell manufacturing. The
efficiency of atomization depends on the spray characteristics, among which drop size distribution is one
of the most important. The classical method for modeling drop size distribution is generally empirical as
one just fits a curve through the data collected for a wide range of atomizers and operating conditions.
This approach is time-independent, but collision and coalescence in the spray may modify the drop size
distribution in a transient way. The coagulation equation can be employed to predict the evolution of drop
size distribution.

Models of coalescence were introduced by von Smoluchowski (1916) in his work on coagulation
processes in colloids. He proposed the following infinite system of differential equations for the evolution
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of the number N0c(i, t) of clusters of mass i = 1,2,3 . . .

∂c
∂ t

(i, t) =
1
2 ∑

1≤ j<i
K(i− j, j)c(i− j, t)c( j, t)−∑

j≥1
K(i, j)c(i, t)c( j, t). (1)

Here N0 is the total number of clusters at time t = 0, so that ∑i≥1 c(i,0) = 1, and K(i, j) is the coagulation
kernel. The mass i is discrete and belongs to N∗ := {1,2,3, . . .}; so a cluster of mass i consists of i
elements of unit mass. Numerical solution of the Smoluchowski’s coagulation equation is a difficult task
for deterministic methods, and stochastic algorithms have been proposed by Babovsky (1999) and Eibeck
and Wagner (2000). The Monte Carlo (MC) schemes take a system of test particles which interact and
form larger particles according to the dynamics described in (1). Time is discretized and at each time
step, random numbers are used to find out which particles interact and to determine the size of the new
particles. Despite the versatility of MC methods, a drawback is their slow convergence. An approach to
acceleration is to change the choice of random numbers used. Quasi-Monte Carlo (QMC) methods use
quasi-random numbers instead of pseudo-random numbers. The efficiency of a QMC method depends on
the quality of the quasi-random points that are used. These points should form a low-discrepancy point set.
We recall from Niederreiter (1992) some basic notations and concepts. If s≥ 1 is a fixed dimension, then
Is := [0,1)s is the s-dimensional half-open unit cube and λs denotes the s-dimensional Lebesgue measure.
For a point set U consisting of u1, . . . ,uN ∈ Is and for a Lebesgue-measurable subset A of Is we define th
local discrepancy by DN(A,U) := N−1

∑
N
k=1 1A(uk)−λs(A), where 1A is the indicator function of A. The

discrepancy of the point set U is defined by DN(U) := supA |DN(A,U)|, the supremum being taken over
all subintervals of Is. The idea of (t,m,s)-nets is to consider point sets U for which DN(A,U) = 0 for a
large family of intervals A. Such point sets should have a small discrepancy. For an integer b ≥ 2, an
interval of the form I` := ∏

s
i=1[(`i−1)b−di , `ib−di), with integers di ≥ 0 and 1 ≤ `i ≤ bdi for 1 ≤ i ≤ s is

called an elementary interval in base b. If 0≤ t ≤ m are integers, a (t,m,s)-net in base b is a point set U
consisting of bm points in Is such that DN(I`,U) = 0 for every elementary interval I` in base b with measure
λs(I`) = bt−m, i.e., ∑

s
i=1 di = m− t. The effectiveness of QMC methods has limitations. First, they are valid

for integration problems, they may not be directly applicable to simulations, due to the correlations between
the points of a quasi-random sequence. This problem can be overcome by writing the desired result as
an integral. This leads to a second limitation: the improved accuracy of QMC methods may be lost for
problems in which the integrand is not smooth. It is necessary to take special measures to make optimal
use of the greater uniformity associated with quasi-random sequences. This was achieved by Lécot (1991)
and El-Haddad, Lécot, and L’Ecuyer (2008) through the additional step of reordering the particles at each
time step. A third drawback of the QMC approach is that it is often difficult to estimate the error. There
is no confidence interval and the deterministic error bounds are usually very pessimistic. A possibility is
to use randomized QMC algorithms where a random parameter is introduced in the construction of the
quasi-random points: this approach was initiated by Cranley and Patterson (1976) for numerical integration;
in the same context, see the review article of L’Ecuyer and Lemieux (2000). Randomized QMC algorithms
for Markov chains have been introduced and studied by L’Ecuyer, Lécot, and Tuffin (2006), L’Ecuyer,
Lécot, and Tuffin (2008) and L’Ecuyer, Lécot, and L’Archevêque-Gaudet (2009).

The aim of the present paper is to construct and analyze a stratified MC strategy for approximate
integration and for simulation of coalescence. The random points used retain some properties of nets,
as described before. The difference with the previous works of L’Ecuyer, Lécot, and Tuffin (2006) and
L’Ecuyer, Lécot, and Tuffin (2008) is twofold. Firstly we are not focusing on variance reduction; we are
interested here in estimating the variance as a function of the number of random points. Secondly, we
compare theoretical bounds and numerical estimates of the variance, with the same properties of the random
points used. In Section 2 we analyze a MC method using stratified sampling for approximate integration.
Since we have experienced that some simulation methods can be reduced to numerical integration of
indicator functions of sub-domains of Is, we consider here the case of the integral of an indicator function,
and we analyze the variance of the approximate measure of a subset of Is. In Section 3, we propose a
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stratified MC method for Smoluchowski’s coagulation equation, using the stratified points. Each step of
the simulation is formulated as a numerical integration in I3. In order to benefit from the great uniformity
of stratified points, the particles are sorted by increasing size before performing MC quadrature. We carry
out numerical experiments based on a comparison of the method with a standard MC scheme.

2 STRATIFIED MONTE CARLO INTEGRATION

Many applications require the evaluation of integrals. The dimensional effect is the phenomenon whereby
deterministic quadrature rules deteriorate in performance as the dimension increases. Monte Carlo (MC)
methods do not suffer so much from the dimensional effect. Stratified sampling and Latin hypercube
sampling (LHS) are techniques for increasing efficiency of MC methods: see, e.g., (Haber 1966; McKay,
Beckman, and Conover 1979; Cheng and Davenport 1989; Tong 2006). We are interested here in sets of
N = ns random points in Is such that

(P1) in every interval I` := ∏
s
i=1[(`i−1)n−1, `in−1) (for 1≤ `i ≤ n and 1≤ i≤ s) lies only one point,

(P2) in every interval Ii−1× [(k−1)n−s,kn−s)× Is−i (for 1≤ i≤ s and 1≤ k≤ ns) lies only one point.

See Figure 1 for an example in dimension s = 2. The proposed method is a combination of stratification
in the N cubic boxes (property P1) and of LHS (property P2), in the sense that the N random points have
the two properties simultaneously. These points are evenly spread over the unit cube, and retain some
properties of the nets of QMC methods; it is hoped that they can lead to a variance reduction.

Figure 1: An example of a stratified sample of 42 points (?) in dimension s = 2.

In the following, we restrict ourselves to s = 3 for simplicity (in addition, we encounter only three-
dimensional integrals in Section 3). In this cases, N = n3 and the sets may be generated as follows. Let
σ1,σ2,σ3 be random bijections {1, . . . ,n}2→{1, . . . ,n2} and u1

` ,u
2
` ,u

3
` be uniform random variables over

I, for `= (`1, `2, `3) with 1≤ `i ≤ n; we assume that all these variables are independent. Then we set

V` :=
(
`1−1

n
+

σ1(`2, `3)−1
n3 +

u1
`

n3 ,
`2−1

n
+

σ2(`1, `3)−1
n3 +

u2
`

n3 ,
`3−1

n
+

σ3(`1, `2)−1
n3 +

u3
`

n3

)
, (2)

for `= (`1, `2, `3) with 1≤ `i ≤ n.
If g : I3→ R is a square-integrable function, we want to evaluate

I :=
∫

I3
g(x)dλ3(x).

For the usual MC approximation, let {U1, . . . ,UN} be N independent random variables uniformly distributed
over I3. Then X := N−1

∑
N
k=1 g ◦Uk is an unbiased estimator of I (crude MC estimator). Now let
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Y := N−1
∑` g◦V` be the stratified estimator of I . We have

E[g◦V`] =
1
n6 ∑

m

∫
I3

g
(
`1−1

n
+

m1−1
n3 +

u1

n3 ,
`2−1

n
+

m2−1
n3 +

u2

n3 ,
`3−1

n
+

m3−1
n3 +

u3

n3

)
du,

where the sum extends over all triples m = (m1,m2,m3) of integers with 1≤ mi ≤ n2. Hence

E[g◦V`] = n3
∫

I`
g(u)du, (3)

consequently E[Y ] = I and Y is another unbiased estimator of I . We specialize now to the case when g
is an indicator function: let A be a measurable subset of I3 and g := 1A. Then

Var(X) =
1
N

λ3(A)
(
1−λ3(A)

)
≤ 1

4N
.

We want to estimate Var(Y ). For `= (`1, `2, `3) with 1 ≤ `i ≤ n and m = (m1,m2,m3) with 1 ≤ mi ≤ n2,
let I`,m := ∏

3
i=1[(`i−1)n−1 +(mi−1)n−3,(`i−1)n−1 +min−3); then I` =

⋃
m

I`,m.

Proposition 1 Let A⊂ I3 be such that

A = {u ∈ I3 : u1 < f1(u2,u3)}= {u ∈ I3 : u2 < f2(u1,u3)}= {u ∈ I3 : u3 < f3(u1,u2)},

where all fi are Lipschitz continuous functions I2→ I, with a Lipschitz constant c (for the maximum norm).
Let {V` : 1≤ `1 ≤ n,1≤ `2 ≤ n,1≤ `3 ≤ n} be defined by (2). If Y := N−1

∑` 1A ◦V`, then

Var(Y )≤ c+2+6(c+2)2

N4/3 .

Proof. We can write

Var(Y ) =
1

N2 ∑
`

Var(1A ◦V`)+
1

N2 ∑
6̀=`′

Cov(1A ◦V`,1A ◦V`′).

Using (3), we obtain:
1

N2 ∑
`

Var(1A ◦V`) = ∑
`

W0(`),

where W0(`) = λ3(A∩ I`)n−3− (λ3(A∩ I`))2 and so

∑
`

|W0(`)| ≤
1
n6 #{` : I` 6⊂ A and I`∩A 6= /0}.

Here, #E denotes the number of elements of a set E. We have the following analogues of (3). If g : I3→R
is a square-integrable function, then for ` 6= `′:
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• if `1 6= `′1, `2 = `′2, `3 = `′3,

E[g◦V` g◦V`′ ] =
1

n6(n2−1)2 ∑
m1=m′1

m2 6=m′2,m3 6=m′3∫
I3

g
(
`1−1

n
+

m1−1
n3 +

u1

n3 ,
`2−1

n
+

m2−1
n3 +

u2

n3 ,
`3−1

n
+

m3−1
n3 +

u3

n3

)
du

·
∫

I3
g
(
`′1−1

n
+

m′1−1
n3 +

u′1
n3 ,

`′2−1
n

+
m′2−1

n3 +
u′2
n3 ,

`′3−1
n

+
m′3−1

n3 +
u′3
n3

)
du′

=
n12

(n2−1)2 ∑
m1=m′1

m2 6=m′2,m3 6=m′3

∫
I`,m

g(u)du
∫

I`′,m′
g(u′)du′,

and similar expressions for `1 = `′1, `2 6= `′2, `3 = `′3 or `1 = `′1, `2 = `′2, `3 6= `′3,
• if ∀i 6= j (`i, ` j) 6= (`′i, `

′
j),

E[g◦V` g◦V`′ ] =
1

n6(n2−1)3 ∑
m1 6=m′1,m2 6=m′2,m3 6=m′3∫

I3
g
(
`1−1

n
+

m1−1
n3 +

u1

n3 ,
`2−1

n
+

m2−1
n3 +

u2

n3 ,
`3−1

n
+

m3−1
n3 +

u3

n3

)
du

·
∫

I3
g
(
`′1−1

n
+

m′1−1
n3 +

u′1
n3 ,

`′2−1
n

+
m′2−1

n3 +
u′2
n3 ,

`′3−1
n

+
m′3−1

n3 +
u′3
n3

)
du′

=
n12

(n2−1)3 ∑
m1 6=m′1,m2 6=m′2,m3 6=m′3

∫
I`,m

g(u)du
∫

I`′,m′
g(u′)du′,

Hence we obtain

1
N2 ∑

6̀=`′
Cov(1A ◦V`,1A ◦V`′) = ∑

`1 6=`′1
`2=`′2,`3=`′3

W1(`,`
′)+ ∑

`2 6=`′2
`1=`′1,`3=`′3

W2(`,`
′)+ ∑

`3 6=`′3
`1=`′1,`2=`′2

W3(`,`
′)

+ ∑
(`i,` j)6=(`′i,`

′
j)

W4(`,`
′),

where the last sum is over all i 6= j. Here

W1(`,`
′) =

n6

(n2−1)2 ∑
m1=m′1

m2 6=m′2,m3 6=m′3

λ3(A∩ I`,m)λ3(A∩ I`′,m′)−λ3(A∩ I`)λ3(A∩ I`′),

and similar expressions for W2(`,`
′) or W3(`,`

′),

W4(`,`
′) =

n6

(n2−1)3 ∑
m1 6=m′1,m2 6=m′2,m3 6=m′3

λ3(A∩ I`,m)λ3(A∩ I`′,m′)−λ3(A∩ I`)λ3(A∩ I`′).

And so

∑
`1 6=`′1

`2=`′2,`3=`′3

|W1(`,`
′)| ≤ 1

n6 #{(`,`′) : `1 6= `′1, `2 = `′2, `3 = `′3, I` 6⊂ A, I`∩A 6= /0, I`′ 6⊂ A, I`′ ∩A 6= /0},

365
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Table 1: Calculation of λs(A): convergence order α of the variance as a function of N.

dimension s MC stratified MC theoretical bound
2 0.99 1.49 1.50
3 1.00 1.33 1.33

and similar expressions for the sums of |W2(`,`
′)| or |W3(`,`

′)|,

∑
(`i,` j)6=(`′i,`

′
j)

|W4(`,`
′)| ≤ 3

n8 #{(`,`′) : ∀i 6= j (`i, ` j) 6= (`′i, `
′
j), I` 6⊂ A, I`∩A 6= /0, I`′ 6⊂ A, I`′ ∩A 6= /0}.

We have the following inferences:

• if I` 6⊂ A, there exists (u`,2,u`,3) ∈ [(`2−1)n−1, `2n−1)× [(`3−1)n−1, `3n−1) such that

n f1(u`,2,u`,3)< `1,

• if I`∩A 6= /0, there exists (v`,2,v`,3) ∈ [(`2−1)n−1, `2n−1)× [(`3−1)n−1, `3n−1) such that

`1 < n f1(v`,2,v`,3)+1.

and similar assertions with f2 or f3. Hence

#{` : I` 6⊂ A and I`∩A 6= /0} ≤ n2(c+2),

#{(`,`′) : `1 6= `′1, `2 = `′2, `3 = `′3, I` 6⊂ A, I`∩A 6= /0, I`′ 6⊂ A, I`′ ∩A 6= /0} ≤ n2(c+2)2,

and same bounds when `1 = `′1, `2 6= `′2, `3 = `′3 or `1 = `′1, `2 = `′2, `3 6= `′3,

#{(`,`′) : ∀i 6= j (`i, ` j) 6= (`′i, `
′
j), I` 6⊂ A, I`∩A 6= /0, I`′ 6⊂ A, I`′ ∩A 6= /0} ≤ (n2(c+2))2.

So the result follows.

The hypothesis on the boundary of A is easily expressed, but quite restrictive. The conclusion remains
certainly valid under not so stringent conditions (see the example below). Restrictive constraints were
also imposed by L’Ecuyer, Lécot, and Tuffin (2008) for a proof in dimension s = 2, in the context of the
simulation of Markov chains. In the simple case considered here, our variance bound represents a gain of
the factor N−1/3 as opposed to simple MC. This may be generalized in dimension s, where the variance
bound is of order O(N−1−1/s). The same order for the bound has been established by L’Ecuyer, Lécot, and
Tuffin (2008). The gain is of diminishing importance as s becomes large and limits the use of the present
stratification to problems of moderate dimension. This is precisely the case in some MC particle simulations,
such as the scheme proposed in Section 3. We use a simple example to illustrate the previous analysis.
We consider the subset of the unit ball A := {u ∈ Is : ‖u‖2 < 1}, where we denote by ‖u‖2 the Euclidean
norm of u. In order to estimate the variance of the MC and stratified MC approximations, we can replicate
the quadrature independently M times and compute the sample variance. We use M = 100, . . . ,1000 and
we only see small differences between the estimates. The results (for M = 1000) are displayed in Figure
2. It is clear that the better accuracy due to the proposed method goes beyond an improved convergence
order, at least in this very simple experiment. Assuming Var = O(N−α), linear regression can be used to
evaluate α and the outputs are listed in Table 1. The values obtained are very close to the orders of the
bounds given in Proposition 1 (despite the fact that the hypothesis is not satisfied) and its generalization
to arbitrary dimensions.

The stratified sampling strategy, with only one point in the N = ns cubic boxes (property P1) without
the LHS property (P2), has been analyzed by El-Haddad, Fakhereddine, and Lécot (2013). The same order
O(N−1−1/s) for the variance bound is obtained. But this approach fails to improve crude MC results when
it is applied to particle simulation, such as the algorithm proposed in the next section.
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Figure 2: Sample variance of M = 1000 independent copies of the calculation of λs(A) as a function of N;
s = 2 and 102 ≤ N ≤ 4002 (left), s = 3 and 103 ≤ N ≤ 2003 (right). Log-log plots of MC (◦) and stratified
MC (?) outputs.

3 SIMULATION OF COAGULATION

We go back to Equation (1). We assume that the coagulation kernel K(i, j) is nonnegative and symmetric:
K(i, j) ≥ 0 and K(i, j) = K( j, i). Multiplying (1) by i and summing over all i, indicates that mass is
conserved

d
dt ∑

i≥1
ic(i, t) = 0,

provided an interchange of summation order on the right is valid. Let C1 := ∑i≥1 ic(i,0); rather than
approximating the density of clusters c(i, t), one can approximate the mass density f (i, t) := ic(i, t)/C1,
which satisfies the following equation for i = 1,2,3 . . .

∂ f
∂ t

(i, t) = ∑
1≤ j<i

K̃(i− j, j) f (i− j, t) f ( j, t)−∑
j≥1

K̃(i, j) f (i, t) f ( j, t), (4)

where K̃(i, j) :=C1K(i, j) j−1. Equation (4) has been used by Babovsky (1999) for constructing a stochastic
algorithm for Smoluchowski’s coagulation equation. If E is a subset of N∗ := {1,2,3, . . .}, we denote by
sE the sequence

sE(i) =

{
1 if i ∈ E,
0 otherwise.

Equation (4) can be given the following form

d
dt ∑

i≥1
f (i, t)sE(i) = ∑

i, j≥1
K̃(i, j) f (i, t) f ( j, t)(sE(i+ j)− sE(i)) , (5)
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for any E ⊂ N∗. We denote by f0 the initial mass density. We have ∑i≥1 f0(i) = 1. We choose an integer
n≥ 1 and we put N := n3. We write δ j for the unit mass at j

δ j(i) =

{
1 if i = j,
0 otherwise.

A point set J0 of N particles j0
1, . . . , j0

N is sampled from the probability distribution f0. Then

f 0 :=
1
N

N

∑
k=1

δ j0
k
≈ f0.

The particles with the same j0
k do not represent the number of clusters of mass j0

k in the system, but
rather represent the mass of clusters of mass j0

k in the system. In the simple case of a monodisperse initial
condition

f0(1) = 1, f0(2) = f0(3) = · · ·= 0,

we set
j0
1 = · · ·= j0

N = 1.

We assume that the kernel K̃(i, j) is bounded and we put

K̃? := sup
i, j≥1

K̃(i, j).

We choose a time step ∆t such that ∆tK̃? < 1. Computations are still possible for unbounded kernels: see
the second numerical experiment below. For an integer p, we set tp := p∆t and fp(i) := f (i, tp). If we
assume that we have a point set Jp of N particles jp

1 , . . . , jp
N such that

f p :=
1
N

N

∑
k=1

δ jp
k
≈ fp, (6)

we compute f p+1 as follows.
Generating a stratified sample: We compute a new {V` : 1≤ `1 ≤ n,1≤ `2 ≤ n,1≤ `3 ≤ n}, given by

(2), independent of all samples used previously.
Relabeling the particles: We order particles by size

jp
1 ≤ jp

2 ≤ . . .≤ jp
N .

This type of sorting was used by Lécot (1991), and El-Haddad, Lécot, and L’Ecuyer (2008) for a QMC
approach and by L’Ecuyer, Lécot, and Tuffin (2006) and L’Ecuyer, Lécot, and Tuffin (2008) in a randomized
setting. It guarantees convergence: since the algorithm can be described by a series of numerical integration,
the sorting helps in minimizing the amplitude of the jumps of the function to be integrated. Sorting strategies
were discussed by L’Ecuyer, Lécot, and L’Archevêque-Gaudet (2009).

Coagulation: Equation (5) is discretized using the Euler scheme, and we define gp+1 by

1
∆t

(
∑
i≥1

gp+1(i)sE(i)−∑
i≥1

f p(i)sE(i)

)
= ∑

i, j≥1
K̃(i, j) f p(i) f p( j)(sE(i+ j)− sE(i)) ,

for any E ⊂ N∗, and so

∑
i≥1

gp+1(i)sE(i) =
1
N

N

∑
k1=1

(
1− ∆t

N

N

∑
k2=1

K̃( jp
k1
, jp

k2
)

)
sE( jp

k1
)+

∆t
N2

N

∑
k1=1

N

∑
k2=1

K̃( jp
k1
, jp

k2
)sE( jp

k1
+ jp

k2
). (7)
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The probability gp+1 approximates fp+1, but is not uniform, like f p. We recover this kind of approximation
if we use a MC estimate. We first express the right-hand side of (7) as the three-dimensional integral of
an indicator function I p+1

E .
Integration: Let 1k1,k2 be the indicator function of [(k1− 1)N−1,k1N−1)× [(k2− 1)N−1,k2N−1), and

Ip
k1,k2

denote the indicator function of
[
0,∆tK̃( jp

k1
, jp

k2
)
)

. For any E ⊂ N∗, define

I p+1
E (u) :=

N

∑
k1=1

N

∑
k2=1

1k1,k2(u1,u2)
((

1− Ip
k1,k2

(u3)
)

sE( jp
k1
)+ Ip

k1,k2
(u3)sE( jp

k1
+ jp

k2
)
)
,

for u = (u1,u2,u3) ∈ I3. Then

∑
i≥1

gp+1(i)sE(i) =
∫

I3
I p+1

E (u)du.

We obtain f p+1 by

∀E ⊂ N∗ ∑
i≥1

f p+1(i)sE(i) =
1
N ∑

`

I p+1
E (V`).

It is possible to summarize the calculation on a time step as follows. If u ∈ I, let k(u) := bNuc. Then,
for `= (`1, `2, `3) with 1≤ `i ≤ n, we have:

jp+1
k(V`,1)

=

{
jp
k(V`,1)

+ jp
k(V`,2)

if V`,3 < ∆tK̃( jp
k(V`,1)

, jp
k(V`,2)

),
jp
k(V`,1)

otherwise.

The numbers V`,1 and V`,2 select particles; particle k(V`,1) has for coagulation partner particle k(V`,2), and
the coagulation probability is Pc := ∆tK̃( jp

k(V`,1)
, jp

k(V`,2)
). Then V`,3 is used to select an event:

• if 0≤V`,3 < Pc, particles k(V`,1) and k(V`,2) coalesce,
• if Pc ≤V`,3 < 1, no coalescence occurs.

Because of the LHS property (P2), each particle is considered once for possible coalescence, during each
time step.

The corresponding MC scheme is as follows: there is no reordering of particles and, for 1≤ k ≤ N,

jp+1
k =

{
jp
k + jp

Lk
if Uk < ∆tK̃( jp

k , jp
Lk
),

jp
k otherwise.

Here L1, . . . ,LN are independent random samples drawn from the uniform distribution on {1, . . . ,N}, while
U1, . . . ,UN are independent random samples drawn from the uniform distribution on I.

We want to compare the previous stratified scheme with a usual MC algorithm. It has long been recognized
that three particular kernels K(i, j) are mathematically tractable (Aldous 1999): for monodisperse initial
configuration f0 = δ1, explicit solutions of Smoluchowski’s coagulation equation are available. In the
following we restrict our consideration to the kernels K(i, j) = 1 and K(i, j) = i+ j (note that the latter
does not satisfy the hypothesis of bounded K̃). Let us define the moments of the solution:

C0(t) := ∑
i≥1

c(i, t) = ∑
i≥1

f (i, t)
i

and C2(t) := ∑
i≥1

i2c(i, t) = ∑
i≥1

i f (i, t).

At time tp, C0(tp) and C2(tp) are approximated according to (6) as follows:

C0(tp)≈
1
N

N

∑
k=1

1
jp
k

and C2(tp)≈
1
N

N

∑
k=1

jp
k

and we compare MC and stratified MC strategies.
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Table 2: Calculation of C0(T ) (left) and C2(T ) (right) at time T = 1.0: convergence order β of the variance
as a function of N.

C0(T ) Kernel MC stratified MC
Constant 1.01 1.22
Linear 1.06 1.15

C2(T ) Kernel MC stratified MC
Constant 0.99 1.28
Linear 0.78 1.14

• K(i, j) = 1. The moments of the exact solution of (4) with monodisperse initial condition are
C0(t) = 2/(2+ t) and C2(t) = 2+ t.

• K(i, j) = i+ j. The moments of the exact solution of (4) with monodisperse initial condition are
C0(t) = e−t and C2(t) = e2t .

In both cases, we compute C0(T ) and C2(T ) at time T = 1.0 with N particles and P = 4000 time steps.
We put N = (4m)3, with 1≤m≤ 8. For estimating the variance of the MC and stratified MC approximations,
we replicate the calculation independently M = 1000 times and compute the sample variance. The results
are displayed in Figure 3 for the constant kernel and in Figure 4 for the linear kernel.

Figure 3: Constant kernel. Sample variance of M = 1000 independent copies of the calculation of the
moments C0(T ) (left) and C2(T ) (right) as a function of N (with 43 ≤ N ≤ 323). Log-log plots of MC (◦)
and stratified MC (?) outputs with linear regression lines.

We see that the stratified MC method achieves a better convergence order of the variance as a function
of N. Assuming Var = O(N−β ), linear regression can be used to evaluate β and the outputs are listed in
Table 2.

4 CONCLUSION

We have proposed a stratified sampling technique that produces random points which are evenly distributed
in the unit cube. We have proved that for approximating the measure of special subsets, the technique
leads to reduced variance, when compared to usual Monte Carlo. Then we have proposed a procedure
for solving Smoluchowski’s coagulation equation. The approach is to use the Monte Carlo method to
simulate the aggregation of clusters. A sample of test particles is chosen, time is discretized and since
we approximate the mass density, the scheme works with a fixed particle number. We have considered an
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El Haddad, Fakhereddine, Lécot, Soucemarianadin, and Tembely

Figure 4: Linear kernel. Sample variance of M = 1000 independent copies of the calculation of the
moments C0(T ) (left) and C2(T ) (right) as a function of N (with 43 ≤ N ≤ 323). Log-log plots of MC (◦)
and stratified MC (?) outputs with linear regression lines.

improvement to this method by using stratified random numbers in the implementation of the algorithm.
To make optimal use of the greater uniformity of the points, the particles are reordered by size at each time
step. We test our method in two cases where analytic solutions to the Smoluchowski equation are known.
In both comparisons, the numerical experiments show that the variance of the simulation using stratified
sampling is significantly less than the variance for a standard MC simulation.

Future works include generalizations of the variance bound for numerical integration with stratified
points and variance estimates when these points are used for simulation of coalescence.
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L’Ecuyer, P., C. Lécot, and B. Tuffin. 2006. “Randomized quasi-Monte Carlo simulation of Markov
chains with an ordered state space”. In Monte Carlo and Quasi-Monte Carlo Methods 2004, edited by
H. Niederreiter and D. Talay, 331–342. Berlin: Springer.
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