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ABSTRACT 

Petri nets (PNs) are widely used to model discrete event dynamic systems (computer systems, manufac-
turing systems, communication systems, etc). Continuous Petri nets (in which the markings are real num-
bers and the transition firings are continuous processes) were defined more recently; such a PN may mod-
el a continuous system (biological systems, fluid systems, etc). or approximate a discrete system 
(manufacturing systems, transport systems, etc). A paper presents the main ideas origin of the definition 
of this model. Different timings can be associated with discrete transitions leading to different derived 
models. When the maximal firing speeds associated with continuous transitions hybrid Petri net is ob-
tained if one of its parts is discrete and the other part is continuous. This are constant, an elegant model is 
obtained allowing fast simulations. 

1 INTRODUCTION 

Carl Adam Petri is a contemporary German mathematician (C. A. Petri 1962). In the early sixties, he de-
fined a general purpose mathematical model for describing relations existing between conditions and 
events. Then, he continued working on the net theory. Many other researchers have provided a large 
number of theoretical results concerning these nets. Engineers have appropriated this model, usually 
called Petri net, for modeling the discrete event dynamic systems they have to handle, particularly for 
computer science and automatic control applications. Various extensions have been proposed and are 
listed in the references. Some of them concern the discrete behavior autonomous or timed (M. Ajmone-
Marsan et al), (B. Berthomieu and M. Diaz 1991), (C. Ramchandani 1973). Others address new important 
application domains such as transport systems (A. Di Febbraro and N. Sacco 2003) or biological systems 
(A. Doi, et al.) and (A. Saito et al.). 
 Many systems are naturally hybrid, i.e., their modeling needs at least one continuous state variable 
and at least one discrete state variable. In some cases, a discrete system, or part of a system, can be ap-
proximated by a continuous model. 

Petri nets (PNs) are widely used to model discrete event dynamic systems (computer systems, manu-
facturing systems, communication systems, etc). Continuous Petri nets (in which the markings are real 
numbers and the transition firings are continuous processes) were defined more recently; such a PN may 
model a continuous system or approximate a discrete system. A hybrid Petri net can be obtained if one of 
its parts is discrete and the other part is continuous. This paper is basically a brief survey of the work of 
the author's team on hybrid PNs.  

In a discrete PN, the marking of a place may correspond either to the Boolean state of a device (for ex-
ample a resource is available or not), or to an integer (for example the number of parts in a buffer). A 
general analysis method is to compute the set of reachable states and deduce the different properties of the 
system. But when a PN contains a large number of tokens, the number of reachable states explodes and 
this is a practical limitation of the use of Petri nets. To illustrate this point, consider a manufacturing line 
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shown in Figure 1 and composed of three machines M1, M2 and M3 in order, and two intermediate buffers 
B1 and B2 with respective finite capacities, C1 and C2. Each machine can be operational or down and the 
parts move on the machines, and wait in the intermediate buffers if required. We assume that there are 
always raw parts upstream M1 and available space downstream M3. The number of reachable states of this 
system is N = 23(C1 + 1)(C2 + 1); then N = 1 352 for C1 = C2 = 12. For a set composed of 10 machines and 
9 buffers each with capacity 12, N = 210  139 which is greater than 1013 states! 

 

 
 

Figure 1: A manufacturing line. 
 
 This observation led us to define continuous PNs and hybrid PNs. In a continuous PN, the markings 
of places are real numbers and the firing of transitions is a continuous process. For the example consid-
ered above, the flow of parts on the machine may be approximated by a continuous flow and the numbers 
of parts in the buffers may be approximated by real numbers. However, the state of each machine (opera-
tional or not) is necessarily discrete. Hence, a hybrid model can be used for this system. This paper will 
present the basic concepts mainly in an intuitive way. For a formal presentation, the reader may refer to 
the given reference of the book “Discrete, Continuous, and Hybrid Petri Nets” (David and Alla, 2010). 
Numerous works in the hybrid PNs field have been developed in the literature, some results are listed in 
the references. 

The paper is organized as follows. In Section 2, the basic continuous model known as constant con-
tinuous PN is presented. Adding a discrete part leads to Hybrid PN model described in Section 3, and a 
conclusion is given in Section 4. 

2 CONTINUOUS PETRI NETS 

A continuous PN may be either autonomous (no time is involved) or with firing speeds associated with 
transitions. A timed model may be used for the performance evaluation of systems. Various timed contin-
uous PN models have been defined which differ by the calculation of the instantaneous firing speeds of 
the transitions. They provide good approximations for performance evaluation when a PN contains a large 
number of tokens. All the models work on the same basic rule. The only difference is the way in which 
the instantaneous firing speeds are defined; it follows that other definitions of this firing speed can be 
chosen. First, we give hereunder the definition of the basic model called Constant speed Continuous PN 
(CCPN), then the main ideas will be presented via an example. 
 
Definition 1 A CCPN is a tuple  P, T, Pre, Post, m0, Spe such that P = {P1, P2, ..., Pn} is a finite, not 
empty, set of places; T = {T1, T2, ..., Tm} is a finite, not empty, set of transitions; P  T = Ø, i.e., the sets P 
and T are disjointed; Pre: P  T  Q+ is the input incidence application; Post: P  T  Q+ is the output 
incidence application; m0: P  R+ is the initial marking. Spe is a function from the set T of transitions to 
Q+ {∞}. For Tj, Spe(Tj) = Vj is maximal speed associated with transition Tj. 

 
 Let us consider a simple production system composed of two machines and two buffers (Figure 2.a). 
Each part is processed first by Machine M1, then by Machine M2 with respectively 1/2 and 1/3 times 
units (t.u.) as processing times. The parts are carried by pallets recycled at each end of production. We 
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suppose that initially, there are two pallets in the entrance buffer of Machine M2. The timed PN model of 
this system is given in Figure 2.b. Performances can be deduced from the simulation of this model. 

 

 
 

Figure 2: a- A simple production system; -b- Timed PN model. 
 

 Now, let us suppose that instead of two pallets, the system contains 75 pallets (Figure 3.a). Then it 
seems obvious that the simulation of such system will become longer. Another alternative is to consider 
the number of pallets not as integers but as real numbers, and then the dynamic behavior of the parts will 
be approximated as a flow. We then obtain naturally a continuous model given in Figure 3.b. where the 
continuous places are represented with double circles and the continuous transitions with rectangles. With 
each transition is associated a maximal firing speed Vi equal to the inverse of durations di. The markings 
of the continuous places are real numbers and then place P2 is marked with 75. 

 

 
 

Figure 3: a- Timed PN with 75 pallets; -b- Corresponding CCPN. 

3409



Alla and Ghomri 
 

 Let us study the dynamic behavior of this system. As P2 is marked, transition T2 is fired with its max-
imal speed V2. The instantaneous firing speed is equal to its maximal value, i.e. Machine M1 has enough 
parts in its entrance buffer and works at its maximal speed (marking of place P2 is positive). Let us con-
sider now buffer 1, it is fed with a flow equal to 3 and its maximal speed is 2, then the instantaneous fir-
ing speed of transition T1 is V1 = 2. 
 It follows that for each marking m1 and m2 of places P2 and P2: 

 
                                     dm1/dt = (3 - 2), and then m1(t) = t                                     (1)                   
        
                                     dm2/dt = (2 - 3), and then m2(t) = 75 – t       (2) 
 
 Relations (1) and (2) remain true as long as m2 > 0. 
 
 At time t = 75, m2 = 0 and m1 = 75. Transition T1 can still be fired at its maximal speed since m1 > 0 , 
but T2 cannot. As a matter of fact m2 = 0 (buffer 2 is empty). However place P2 is fed at speed V1 by firing 
of T1 (machine M1 feeding). Then transition T2 can be fired at speed v2(t) = 2 witch is no longer the max-
imal speed. In terms of production systems, it is the slowest machine which imposes its speed to the 
whole system. 
 Maximal speeds are noted with a capital V, and instantaneous speed with a small v. Then, 
 

                       v1(t)  = V1 = 2   and   v2(t)  = V2 = 3  for 0  t < 75      (3) 
 
                      v1(t)  = V1 = 2   and   v2(t)  = V1 = 2  for  t   75        (4) 
 

 The corresponding markings are illustrated in Figure 4.  
 For  t   75, transition T1 is said to be strongly enabled (all the input places are marked), and transi-
tion T2 is said to be weakly enabled  (all the input places which are empty are fed by firing of other tran-
sitions). We have here an original characteristic of a CCPN : a place with a null marking enables its out-
put transition. 

 

 
 

Figure 4: a- Marking evolution of the CCPN in Figure3.b; b- Evolution graph. 
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 It can be noticed that the above constant CCPN has only one event to consider in the simulation, i.e. 
the instant when the marking of place P2 becomes null.  
 The dynamic behavior of a CCPN can also be described by an evolution graph as shown in Figure 
4.b. In this graph a node is called an invariant behavior states (IB-state). A speed vector is associated with 
each node which is constant over a certain time period since the evolutions of the markings are linear time 
functions. The description of an evolution graph will be described in detail for a hybrid PN. Formal algo-
rithms for the computation of instantaneous firing speeds and of evolution graph are presented in detail in 
the book (David and Alla 2010). They cannot be presented here especially the  case of conflicts structure. 
 The reduced number of  nodes is the most important property of this model. The number of nodes in 
this example is 2, it remains the same what may the number pallets be. Algorithms for computing the in-
stantaneous firing speeds and evolution graphs can be found in the book (David and Alla 2010).. In gen-
eral case, it is a complex problem because the conflict resolution is hard to solve in general configura-
tions. The problem has been solved in case of specific policies such as priority or sharing. Taking into 
account conflicts has made the algorithms very complex, however in our knowledge it is the first time 
that conflicts are deeply studied. 

3 HYBRID PETRI NET 

In order to take into account logical conditions in a continuous PN, Hybrid PNs were defined. They com-
bine a continuous part with a discrete one. The basic hybrid PN associates a continuous PN with a dis-
crete PN. The discrete model is a timed PN where fixed real values are associated with transitions. The 
formal definition of a hybrid PN is given below. 

Definition 2 A hybrid Petri net is a tuple  P, T, h, Pre, Post, m0, Tempo fulfilling the following condi-
tions:  P = {P1, P2, ..., Pn} is a finite, not empty, set of places; T = {T1, T2, ..., Tm} is a finite, not empty, 
set of transitions; P  T = Ø, i.e. the sets P and T are disjointed; h: P  T  {D, C}, called "hybrid func-
tion", indicates for every node whether it is a discrete node (sets PD and TD) or a continuous one (sets PC 
and TC); Pre: P  T  Q+ or N is the input incidence application; Post: P  T  Q+ or N is the output in-
cidence application; m0: P  R+ or N is the initial marking. In the definitions of Pre, Post, and m0, N cor-
responds to the case where Pi  PD, and Q+ or R+ corresponds to the case where Pi  PC. Tempo is a func-
tion from the set T of transitions to Q+:  if Tj  T D, dj = tempo(Tj) = timing associated with Tj; if Tj  T C, 

Vj = 1
tempo(Tj )

 = Maximal firing speed associated with Tj. Pre and Post functions must meet the following 

criterion: if Pi and Tj are such that Pi  PD and Tj  TC, then Pre(Pi,Tj) = Post(Pi,Tj) must be verified. 
 

 Q+ and R+ are respectively the sets of positive rational and real numbers 
 Here again we introduce in an intuitive way the main characteristics of this model. The followings el-
ementary patterns give the basic modeling schemas. In Figure 5.a, the discrete part controls the continu-
ous one. When the machine is working, the production is allowed. By firing transition T3 it is stopped. 
Figure 5.b presents the opposite influence: the continuous part controls the discrete one. When the level 
of the output buffer reaches the value 14.8, transition T4 is fired and the production is stopped. We can 
have more complex behaviors such as the transformation of a discrete marking into a continuous one and 
vice-versa. 
 Let us take again the example of the simple manufacturing system, and let us suppose now that the 
two machines can be stopped for example for maintenance reasons. Machines M1 and M2 work respec-
tively during 90 and 45 t.u. then they are stopped. They can work again after 72 t.u. for M1 and 58 t.u. for 
M2. This system can be modeled by the hybrid PN given in Figure 6.a. 
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Figure 5: Hybrid PN a- Influence of the discrete part on the continuous part; b- Influence of the continu-
ous part on the discrete part. 
 

 
 

Figure 6: a- Hybrid PN model of the production system; b- Part of the evolution graph. 
 

 The dynamic behavior of a hybrid PN is more complex to study since it combines two dynamics. It 
can also be described by an evolution graph. Figure 6.b shows the beginning part of the evolution graph 
of the hybrid PN in Figure 6.a. This graph is made of IB-states and transitions among them. An IB-state is 
such that the marking of the discrete part and the instantaneous speed vector of the continuous part remain 
constant as long as the system is in the same IB-state. For example, IB-state1 in Figure 6-b corresponds to 
the behavior from the initial state: the marking of the discrete part is m1 = m2 = 1; and the instantaneous 
peed vector is. v1 = 2, v2 = 3. i.e., the two machines are working at their maximal speeds. The marking of 
the continuous part which is written m5 = 0 and m6 = 75, corresponds to the continuous marking when the 
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IB-state is reached (initial state in our example). The continuous marking evolves continuously and line-
arly as long as the system is in the same IB-state. For each continuous place, the balance of the marking is 
defined as the algebraic sum of instantaneous speeds of the transitions feeding the place (i.e., input transi-
tions, with a positive sign), and of the transitions emptying the place (i.e., output transitions, with a nega-
tive sign). Hence, this balance, denoted Bi for place Pi, corresponds to the time derivative of mi.  
 For the continuous places in Figure.6.a: 

 
     dm5/dt = (3 - 2) = 1, and dm6/dt = (2 - 3) = -1            (5) 

 
 Accordingly, the marking m6 decreases and will become 0 at time t = 75. However the discrete mark-
ings enable transitions T1 and T3. The first firing occurrence is the one of transition T3 at time t = 45. This 
firing corresponds to from IB-state 1 to IB-state 2 in Figure 6.b. Only the continuous transition T5 remains 
enabled and its instantaneous firing speed is v5 = 2. Then the next event is the marking of place v5 which 
becomes null at time t = 67,5 (45 + 22,5) and so on. We have highlighted here the main events which pi-
lot the dynamic of the hybrid PN: the firing of a discrete transition and the marking of a continuous place 
becoming null. Complete simulations algorithms can be found in the references. 

4 CONCLUSION 

In this paper, we have presented the basic ideas describing the continuous and hybrid models. This has be 
done mainly in an intuitive way in order to make accessible these modeling tools to the simulation com-
munity. A complete presentation with case studies can be found in the book (David and Alla, 2010. 
 Continuous systems together with their modeling, analysis and control have long provided research 
with subject matters. Modeling, analysis and control of discrete systems have undergone major develop-
ments in recent decades. In recent years the need has emerged to consider systems which are partially 
continuous and partially discrete, in other words hybrids systems. To model such systems we could use 
certain modeling tools normally used for discrete systems. Petri nets are known to be powerful tools for 
modeling and analysis of discrete systems. The continuous and hybrid Petri nets allow modeling and 
analysis of continuous and hybrid systems on the same conceptual basis.  
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