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ABSTRACT 

In light of the pressures of increasing demands on earth’s resources, society faces serious challenges in 
food production and distribution.  Food supply chain (FSC) models are critically important, providing de-
cision-makers with tools that allow for the evaluation and design of FSCs, en route to ensuring sustaina-
ble FSC productivity.  Multi-agent simulation (MAS) is well-suited to modeling FSCs for this purpose,  
enabling capture of decision-making, interactions, and adaptations of autonomous FSC actors.  However, 
certain characteristics of FSCs are particularly difficult to model in detail, as data requirements can be in-
tensive.  In this paper we highlight some of the challenges modelers face in deciding the most appropriate 
methods for representing the elements of an FSC in an MAS model.  We provide examples from the liter-
ature that show how other modelers have chosen to address these challenges.  Finally, we discuss benefits 
and limitations of each example’s approach, in terms of realism and data requirements. 

1 MODELING FOOD SUPPLY CHAINS WITH MULTI-AGENT SIMULATION 

Food supply chains (FSCs) range widely in size and complexity, from subsistence farmers growing their 
own food to city-dwellers purchasing groceries from a supermarket.   Because of food’s vital importance 
to survival, and the multitude of pressures exerted on these systems, methods for producing food more ef-
ficiently are an important area of study. One such method to improve food production efficiency is math-
ematical modeling.  FSC models are now potentially more useful than ever before, as human beings face 
serious challenges with food production and distribution.  Worldwide demand for food is growing, but is-
sues such as energy and water resource limitations, agricultural pollutants, and climate change constrain 
our ability to increase food production.  FSC models can help us face these challenges by improving our 
ability to make decisions that support long-term human and environmental well-being.  However, to be 
useful, FSC models must  balance tractability with the ability to realistically capture the essential ele-
ments of FSCs.   

Mathematical optimization is the most common method of modeling the food production stage of an 
FSC.  Many existing agricultural optimization models are static, deterministic linear programming (LP) 
models with the single objective of maximizing farm income or profit, subject to constraints of farm input 
costs and/or availability.  However, very few of these models are able to capture stochastic or dynamic el-
ements of FSCs, and most of these models only analyze a single stage of the FSC – food production.  
Food systems have also been modeled using discrete-event simulation.  While discrete-event simulations 
can explicitly model time dynamics and stochastic behavior, they are incapable of modeling the sociolog-
ical processes that influence decision-making by individual FSC actors (Higgins et al. 2010).  To capture 
the dynamic, stochastic, and multi-faceted elements of a FSC, recent research suggests that FSCs be mod-
eled as complex adaptive systems (Meter 2006, Higgins et al. 2010).  A complex adaptive system (CAS) 
is a system of interconnected autonomous entities that make choices to survive and, as a collective, 
evolves and self-organizes over time (Pathak et al. 2007).  Thus a CAS framework can be used to study 
an FSC.  Multi-agent simulation (MAS) is a modeling tool that can effectively model the heterogeneous, 
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autonomous, intelligent, and interacting actors that comprise a CAS, making MAS a particularly appro-
priate tool for modeling an FSC. 

This paper seeks to highlight some of the challenges that modelers face in deciding the most appro-
priate methods for representing the elements of an FSC in an MAS model.  We also provide examples 
from the literature that show how other modelers have chosen to address these challenges.  Finally, we 
discuss the benefits and limitations of each example’s approach in terms of realism and data requirements.   

2 CHALLENGES 

Despite the advantages of using MAS to model FSCs, there are very few existing MAS models of multi-
stage food supply chains in the literature.  The seemingly unbounded capability of modeling details using 
MAS poses one of the most significant challenges to modelers, who must take care not to overwhelm a 
model with details and assumptions such that the focus on the original research question is lost or dimin-
ished (Johnson 1998).  The data requirements for modeling an FSC using MAS are also potentially enor-
mous, and finding sources of high-quality quantitative and qualitative data that fulfill the requirements of 
the model can be very difficult, particularly at the farming stage.  In fact, the substantial data requirements 
may account for the sparseness of MAS-FSC models in the literature (Higgins et al. 2010).  Therefore, 
model scope and boundary conditions for an MAS-FSC model must be carefully determined.  Two main 
factors will control the boundary conditions: the nature of the research questions being addressed and the 
availability of good-quality data.  In general, as aspects of a model become increasingly detailed, more 
data is required, which implicitly predisposes the model to be region-specific and potentially less general-
izable.   

While many MAS models face some or all these challenges to varying extents, here we will address 
these challenges within the specific context of FSC modeling.  A thorough analysis of the literature on 
food systems and food systems modeling reveals that FSCs consist of a combination of five elements that 
combine to create significant modeling challenges: 1) the natural environment, 2) planning and decision-
making processes, 3) interactions among FSC stages, 4) economic processes, and 5) the political and so-
cial environment.  Depending on the type of system being modeled, the way that a model includes each of 
these elements differs.  We will discuss each of these elements, provide examples from the MAS-FSC lit-
erature, and discuss ways that one might address the challenges of bounding the model and collecting data 
in a multi-echelon MAS-FSC model.  Additionally, using flowchart representations of multi-echelon 
MAS-FSC models, we will provide examples of how each of these elements might be incorporated into 
an MAS-FSC model.  We begin with Figure 1, which shows the flow of data and materials through a 
simple “base” model of a three-stage MAS-FSC, which does not explicitly include any of the five FSC 
elements (see Appendix A for the pseudocode associated with this model).  This base model includes 
farmer agents, who produce food and replenish the inventory of a single distributor agent, who then uses 
this inventory to satisfy customer demand. 

2.1 Impact of the Natural Environment 

Unlike the stages of many other types of supply chains, on-farm processes directly and strongly influence 
and are influenced by the surrounding natural environment.  Most MAS-FSC models take data inputs 
from the natural environment into account, and many models also capture farm outputs into the environ-
ment, as a means of capturing farm efficiency and environmental impact.  For example, Belem et al. 
(2011) embed the CENTURY carbon cycling simulator in their MAS of a farming community to deter-
mine the sustainability of certain land uses and farming practices over time.  The CENTURY model and a 
GIS are used to represent the farm-environment impacts in great detail, and this requires a significant 
amount of input data: regional demographics, cropping systems, farm economy, biophysical properties 
(e.g. soil types and climate data), animal characteristics, and spatial data (Belem et al. 2011).  Happe et al. 
(2011) attach the FARM-N fertilizer management model to their MAS of a farming region to assess the 
relationship between environmental impact and different regional structures and farming practices over 
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time.  Given a farming scenario, this model is able to predict very specifically the quantity of resultant 
polluting outputs.  The authors acknowledge that the tradeoff for this high-quality output is that the input 
data requirements (including number of animals produced, their start and end weight, the quantity of feed 
consumed per animal and the protein content of that feed) are enormous and highly region-specific 
(Happe et al. 2011).  Many other MAS-FSC models do not model environmental impacts at this level of 
detail, but most of them include the impact of weather on farm productivity, which can be modeled in de-
tail or very simply.  For example, Matthews (2006) uses historical data to generate 100 years of daily 
weather data with a weather generator, and then uses this data as an input in his MAS-FSC model.  In 
contrast, the weather in the model of Le Bars et al. (2005) has only three possible values (wet, dry, very 
dry), which are selected randomly in each annual time step.   
 

 

Figure 1: Flowchart representation of an MAS-FSC “base model”  

 The relationship between biological and ecological processes and crop yields can also be modeled 
very accurately using crop simulator software (e.g. DSSAT).  There are many crop simulators available, 
and given sufficiently-detailed input data (e.g. land characteristics, soil conditions, weather), these simu-
lators can simulate soil fertility and water dynamics, and then provide data on the resulting crop yields.  
Matthews (2006) and Schreinemachers et al. (2007) embed crop simulators within their MAS models to 
achieve a high level of biological realism, capturing soil fertility dynamics.  Lynam (2002) also includes 
detailed models of biological processes in his MAS model of food production, using a geographic infor-
mation system (GIS) in combination with crop yield equations and soil erosion models.  Becu et al. 
(2003) focus their MAS on studying the impact of different water management schemes on farming sys-
tems, and they create their own biophysical simulator to model the effect of water cycling through the soil 
and atmosphere and the resulting impact on crop yield.  MAS models that do not require the details pro-
vided by crop simulators may embed simpler yield/ecological functions instead (e.g. Le Bars et al. 2005, 
Janssen 2001).  Although these models may provide less accuracy in their input-output relationships, they 
also require significantly less input data than the crop simulators.  Other models of food systems do not 
explicitly model the details of the biological processes involved in food production.  Polhill, Gotts, and 
Law (2001) use a database to look up yield values based on a farmer agent’s land characteristics and ran-
domly-generated external conditions.  Deffuant et al. (2002) use MAS to model the diffusion of new pro-
duction practices in a farming region, and model the impact of farmer behaviors on output implicitly (i.e., 
adopting a new practice carries a risk of lower yields).  The amount of detail and the amount of input data 
required to model the biological processes of on-farm production depends on the goals and intended focus 
of the modeler.   
 Gathering the necessary data to model the relationships between the natural environment and farm 
outputs can be challenging if highly detailed interactions are required.  Collecting the appropriate primary 
biological input data may require special equipment and skills, as well as access to farms.  Even if large 
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quantities of data on a particular region are available, crop yield functions that apply to that region may be 
inappropriate in other regions.  Therefore, modeling a large, multi-regional FSC with detailed biological 
processes could be extremely data-intensive.  Additionally, the crop yield functions and aggregate data on 
farm productivity that is available (via USDA and FAO websites, for example) is for conventionally-
grown commodity crops, whereas data on yields from farmers that use sustainable practices is not widely 
published. 

The chosen time step depends on the level of detail that a modeler wants to achieve, as well as the 
types of output in which the modeler is interested.   The time step that is selected for an MAS-FSC model 
also partly determines the amount of input data required.  In terms of inputs, the models of Matthews 
(2006) and Schreinemachers et al. (2007) use data-intensive crop simulators.  However, Schreinemachers 
et al. note that their model is significantly less data-intensive because it runs on an annual time step, rather 
than a daily time step, as does the Matthews model.  In terms of outputs, if the focus of the model is on 
soil fertility dynamics, a daily time step might be appropriate, whereas an annual time step might be more 
appropriate for a model focused on farmer decisions that occur only at the end of a farming season.  Be-
cause most MAS-FSC models in the literature focus on end-of-season farmer decision-making and adap-
tation, most models use an annual time step. 

Figure 2 shows a modification of the base MAS-FSC model (Figure 1), in which the impact of the 
natural environment on the FSC (weather) and the impact of the FSC on the environment (farm waste 
outputs) are captured.  As with the models in the MAS-FSC literature, the natural environment directly 
impacts the farming stage of the FSC; however, it does not directly affect food distribution downstream.  
However, negative impacts of food production on the natural environment (e.g., pollution) could indirect-
ly affect the behavior of the FSC, as consumers become aware of these impacts and modify their buying 
patterns. 

 

Figure 2: Flowchart representation of an MAS-FSC model with environmental impacts 

2.2 Capturing Agent Decision and Planning Processes 

Another on-farm modeling boundary decision is the amount of data required for farm planning and land-
use decisions.  Examples of farmer land-use decisions include quantity/types of crops to plant, alternative 
land uses, and farm size.  MAS-FSC models that focus on land-use decisions can be extremely data-
intensive, depending on how many options the farmers have and their capacity to analyze data.  Freeman, 
Nolan, and Schoney (2009) develop a detailed set of farmer decision-making rules that depend on many 
factors, including the farmer’s age and level of risk aversion, the expected yields, prices, and production 
costs of different crop types, and available credit.  In conjunction with an LP used to make crop choices, 
the farmers use this set of rules to determine in each time step which crops to produce and how much to 
increase/decrease the size of their farms.  Kamusoko et al. (2009) also use a large amount of input data to 

1170



Krejci and Beamon 
 

model land-use decisions.  Their model uses Markovian transition probabilities that are based on histori-
cal GIS data, which are then used to determine land-use choices.  Polhill, Gotts, and Law (2001) also 
model land-use decisions; in their model, the selection process itself is somewhat complex, but the input 
data is very simple.  In fact, the options available to agents are not representations of real-world land uses 
– the options simply have attributes that make them more or less desirable to agents, depending on land 
characteristics and external conditions.   

Other models do not model land-use decisions in such a detailed way, but simply model a farmer’s 
choice of crops.  Even this simplified approach can require significant data to accurately model the rela-
tionship between crop choice and profitability.  For example, Sengupta et al. (2005) use an LP to model 
farmer crop decisions, where farmers select a mix of crops (and crop prices) that will maximize their prof-
its, constrained by the type and quality of soil on their farms.  Becu et al. (2003) also use a simple LP to 
model crop choice where farmers maximize profits subject to cash, labor, and water availability.  In both 
of these models, the relationship between yields and inputs are captured through crop yield functions.  
The parameters in the LP (e.g. crop prices, water availability) may be expected values, where the farmer 
bases his decision on historical averages, and so subsequent reality may be different after the decision is 
made.  Other models simply define a static crop rotation, based on actual farmer rotation schedules and 
without any adaptation to account for changes in the environment.  For example, Belem et al. (2011) 
model two different static crop rotations, and the rotation type that a farmer uses depends on the farmer’s 
strategy (in this case, native farmers use one type and migrant farmers use the other).  Other models, such 
as the model described in Barreteau and Bousquet (2000), do not explicitly model farmer choices among 
different crop types but simply model the binary decision of whether or not to cultivate a given plot in a 
given season. 

Although it is common to use optimization to simulate farmer planning and decision-making, it is un-
likely that farmers behave rationally or always have sufficient information to effectively optimize.  In re-
ality, farmers may apply simple rules or heuristics to make decisions, and often adapt the rules over time 
to account for new information.  However, to make farmer behavior more realistic, a modeler must either 
make assumptions about farmer behavior, or gather and analyze real-life farmer behavioral data.  This 
could require interviews, surveys, and/or interactive simulations.  Because real-life FSCs consist of many 
actors with highly variable attributes (particularly at the farming stage), modeling each actor in the simu-
lation is infeasible for an FSC of any appreciable size.  Instead, MAS-FSC models often use data on actor 
behavior to create categories of agents and then extrapolate to create a simulated agent population.  For 
example, Sengupta et al. (2005) create a typology of farmer agents based on literature and surveys to cat-
egorize agents by such characteristics as level of risk aversion, desire for profitability, and environmental 
ethics.  Barreteau and Bousquet (2000) also create different farmer categories based on cultivation objec-
tives and give farmer agents from each category different rules and capabilities for obtaining credit and 
making strategic decisions.  In contrast, Janssen’s (2001) model gives each farmer agent only two simple 
attributes: the ability to earn returns using conservative or intensive fertilizer applications.  However, the-
se attribute parameters can take on many different values, allowing the creation of many unique farmers 
with a wide variety of simulated knowledge and skills. 

For a multi-echelon MAS-FSC, different agent planning and decision-making processes would occur 
based on a particular agent’s function.  For example, farmer agents would plan crop rotations, but food 
distribution agents might be concerned with choosing efficient transportation modes and inventory man-
agement policies, while retailer agents might focus their efforts on optimizing customer utility.  These 
varied agent objectives throughout the FSC give rise to an important and interesting aspect of supply 
chain behavior – the potential for suboptimal supply chain performance resulting from individually-
optimizing supply chain members.  Figure 3 is another modification of the base MAS-FSC model in 
which farmer and distributor agent planning activities are included.  In this version of the model, farmers 
analyze distributor demand patterns to adjust their land use and crop-choice strategies accordingly, while 
distributors analyze customer demand patterns to adjust their inventory replenishment levels.  Both agent 
types use historical information with an intent to improve their operational efficiency and their fill rates.   
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Figure 3: Flowchart representation of an MAS-FSC model with agent planning  

2.3 Modeling FSC Interactions 

MAS-FSC models of a food-producing region must capture the interactions that occur among multiple 
farmer agents.  In some models in the literature, particularly those models that focus on land use, agents 
interact only indirectly through markets (e.g. Happe et al. 2011).  Other models give agents the ability to 
interact directly.  For example, the communication of information among farmers occurs in many MAS-
FSC models in the literature.  Deffuant et al. (2002) model complex communication of information 
among farmers, in which farmers receive information on the economic and social benefits of organic 
farming and share this information across their social network.  In this model, a farmer’s social network is 
determined by geographic proximity, with farmers in the same town communicating more frequently than 
with distant farmers, and farmers with similar farming systems having greater influence over one another.  
The geographic locations and farming system types were determined using census data from an actual re-
gion in France.  An interesting feature of this model is the inclusion of uncertainty in whether or not in-
formation is modified during the agents’ interaction, which captures the difficulty of communicating 
complex ideas accurately.  Polhill, Gotts, and Law (2001) model indirect communication among land-
managing agents through various forms of imitation among neighboring agents.  These imitations range 
from simple indiscriminate mimicry of other agents’ behaviors to complex evaluations of other agents be-
fore imitation.  Janssen’s (2001) model also uses imitation to model indirect communication among 
farmer agents, but in this case farmers choose to imitate only other farmers that have farming abilities that 
are similar to their own.  In both of these models of imitative behavior, it is assumed that the agents have 
perfect global knowledge of their imitation group’s behavior and abilities. 

In addition to communication of information, farmers in real-life FSCs can also interact through co-
operation, particularly if they share a common goal or a resource.  This type of interaction has been mod-
eled most frequently as a negotiation processes among agents.  For example, Le Bars et al. (2005) model 
farmer agents that share a water resource for crop irrigation. The farmers take turns requesting shares of 
water from a single regional water manager, who responds to each request with a proposed share.  Each 
farmer will accept or reject the proposal, based on his current negotiation strategy, which evolves over 
time as the farmer gains new information.  This negotiation cycle continues until all farmers are satisfied.  
An interesting component of these negotiations is the farmer types: some farmers are “selfish” and ask for 
more water than they know they actually need, whereas other farmers are “reasonable” and ask for only 
what they need.  Becu et al. (2003) also model the negotiation of a shared water resource, but in this case 
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the management of the resource is decentralized, and the negotiations occur within pairs of upstream and 
downstream canal managers. 

A model of a multi-echelon FSC would likely include more interaction among agents than the models 
of the farming stage, because agents in a given stage can potentially interact not only with another but al-
so with other stages.  The rules for trade among stages must then be determined, which could include 
pricing, rules for negotiation, supply and demand values, and the effects of competition on these values.  
The flow of material (inputs and outputs) and information among different stages must also be managed.  
Additionally, the rules for evolving relationships among different FSC stages, and therefore the feasible 
structure of the FSC, must be developed.  Figure 4 shows a variation of the base MAS-FSC model that 
captures agent information-sharing.  In this model, the customer estimates its expected demand and in-
forms the distributor agent, which shares that information with the farmer agents.  This type of infor-
mation-sharing would allow the distributor and farmer agents to make better-informed planning decisions 
and would likely improve the overall performance of the FSC.  However, adding even this simple interac-
tion to the model creates new modeling complexities – the modeler must determine the mechanism 
through which the information-sharing occurs, any costs associated with this interaction, the quality/value 
of the information that is shared, and whether the farmer agents interact among themselves on the basis of 
this information. 

 

Figure 4: Flowchart representation of an MAS-FSC model with FSC interactions 

2.4 Modeling Economic Processes 

Crop yield functions, on-farm planning, and farmer-to-farmer interactions are essential elements of FSC 
models.  However, the FSC typically comprises businesses that operate based on profits and losses, and 
so the economic aspects of FSC processes must also be considered.  Modeling these economic aspects can 
potentially be very complex.  For example, at each stage of the FSC, the cost of inputs to that stage must 
be assigned, but in real-life FSCs, the cost of inputs typically fluctuates over time and may depend on fac-
tors within and/or external to the FSC.  For example, the cost of agrochemicals and transportation is di-
rectly related to energy costs, which can be highly variable and unpredictable.  Within the FSC, the cost 
and/or availability of water for irrigation may depend on the number of farmers that use a shared water 
source and those farmers’ behaviors.  The complexities of determining the selling prices of food are even 
greater.  In real-life FSCs, crop prices are influenced by many market factors, such as the demand for the 
crop at regional, national, and global levels, the available supply (which is often influenced by weather 
conditions), agricultural subsidies and price supports, and speculations by commodity investors.  To cap-
ture realistic market behavior, a model would need to include the dynamics of farmer competition and 
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fluctuating demand levels.  The availability of credit and an agent’s level of debt are also important to 
consider when modeling FSCs, particularly for farmers.  At the start of each growing season, a farmer 
must typically invest in expensive production inputs (e.g. seeds, fertilizer, equipment) and then wait for a 
significant length of time (for crop growth) before realizing any returns on the harvest.  Therefore, farm-
ers often must have access to credit to cover these up-front input costs. 

However, most MAS-FSC models in the literature simply assume that input costs, output prices, and 
demand levels are exogenous to the model, with values that are either fixed or randomly-determined, alt-
hough the values may have some basis in historical data.  For models of food-producing regions that sell 
commodities on an open market, these simplifying assumptions may be adequate.   However, some MAS-
FSC models incorporate some economic data and supply-demand relationships, particularly the models 
that focus on land use.  For example, Freeman, Nolan, and Schoney (2009) model farmer land purchases 
as auctions, which requires significant data inputs to value the land, such as soil quality, transportation 
costs, and historic selling prices, as well as data inputs to evaluate farmer creditworthiness.  Barreteau and 
Bousquet (2000) also model farmers’ efforts to obtain credit, but use simple rules by which lenders de-
termine the creditworthiness of a farmer. 
 A multi-echelon MAS-FSC model would likely require more complexity in economic processes than 
the models of farming regions in the literature, because the exchange of goods and services between stag-
es at different supply chain levels must be explicitly modeled.  For example, an MAS-FSC model might 
include the sale of a farmer agent’s crops to a distributor agent.  Depending on the power dynamics of this 
exchange, the farmer or distributor might act simply as a price-taker.  However, a more complex ex-
change might involve a negotiation process between the agents to determine mutually-acceptable prices 
and delivery quantities.  The development of a contract between the farmer and distributor might even oc-
cur.  In any case, the modeler can choose among game theory, algorithms, or heuristics to model each par-
ticipating agent.  Figure 5 is a variation of the base MAS-FSC model that includes economic processes: 
when the distributor agent purchases food from the farmer agents, funds flow back to the farmers, and 
when the distributor sells to the customer, the distributor receives payment.  Additionally, this model in-
cludes a price-setting mechanism by which the distributor determines how much it will pay farmers for 
food.  Although the flowchart in Figure 5 is not structurally much different from the base model, the 
modeling logic that determines how the distributor will set purchase prices is potentially very complex.   

 

Figure 5: Flowchart representation of an MAS-FSC model with economic processes 
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2.5 Impact of the Political and Social Environment 

The FSC significantly influences and is influenced by the social environment in which it operates.  The 
FSC is also embedded within a political environment, which can strongly influence the behaviors and ca-
pabilities of FSC actors.  While this is true to some degree for most supply chains, the FSC is particularly 
intertwined with political systems, through government actions such as subsidies, policies for land use, 
environmental regulations, and food safety regulations.  A model of the FSC would be incomplete with-
out accounting for the influence of the political and social environment that surrounds it.   

Accordingly, these elements are often included in MAS-FSC models in the literature.  For example, 
Sengupta et al. (2005) study the effect of government policy on environmental outcomes by modeling the 
impact of subsidies on farmer agents’ decision to fallow highly-erodible land.  Using information gath-
ered from farmer surveys, they develop a model of heterogeneous farmer agents to predict the influence 
of the government program on farmer behavior and thus regional land use.  The authors successfully vali-
date their model by comparing its output with the changes in an actual regional land-use map over time.  
The models of Happe et al. (2011) and Janssen (2001) include elements that simulate environmental regu-
lation to reduce pollution from farms.  Happe et al. (2011) use their model to explore the impact of re-
stricting farmers’ maximum allowable livestock density on ammonia emissions and farmers’ land-use de-
cisions.  Janssen’s (2001) model includes a “tax payment” parameter with a value that depends on the 
intensity of a farmer’s fertilizer use.  The tax value can be varied in different simulated scenarios to study 
its impact on farmer pollution and subsequent eutrophication in a neighboring lake.  Using sensitivity 
analysis, the author uses his model’s output to show that the pollution tax could potentially improve envi-
ronmental outcomes, but that the effect depends greatly on farmer risk tolerance and utility functions (i.e. 
farmers who are easily satisfied and risk-averse are not as susceptible to influence).  Deffuant et al. (2002) 
also models government influence on farmer behavior through the inclusion of a Local Chamber of Agri-
culture.  This institution provides farmers with information on organic farming practices, with the intent 
of encouraging farmers to adopt sustainable behaviors.  In addition to this political element, Deffuant et 
al. (2002) describe farming as a “public act” and model the impact of public opinion (which is transmitted 
through the media) on farmers’ willingness to convert to organic production practices.  The authors com-
pare the number of simulated farmers that convert to organic farming with actual historical results for val-
idation purposes.  They report that the simulated outputs did not fit the actual data because of the many 
approximations of model parameter values.  However, the general behavior of the model matches the au-
thor’s qualitative knowledge of the process.  Le Bars et al. (2005) do not explicitly include elements of 
the political and social environment in their model’s inputs or structure; however, they analyze the results 
of various simulation scenarios based on different viewpoints (individual, global, ethical (distribution of 
wealth), and environmental) that have a basis in political/social concerns. 

Figure 6 is a variation of the base MAS-FSC model in which the impact of social pressure for product 
traceability is included.  The demand for traceability is becoming increasingly common in FSCs as con-
sumers have become concerned about food safety and production methods.  Although the structure of the 
model represented in Figure 6 scarcely differs from the base model (farmers now share production data 
with the distributor, and the distributor shares that data with customer), capturing the implications of this 
process can be complicated – how exactly will farmers comply with this pressure?  Will the farmer face 
labeling/packaging requirements or audits by the distributor?  Will the model allow farmers to transmit 
erroneous data?  The complexity of modeling this element could be potentially significant, depending up-
on the level of modeling detail. 

3 DISCUSSION 

MAS is a particularly useful tool for modeling FSCs.  However, there are elements of the FSC that can be 
difficult to capture, because of their complexity and/or the amount of data needed to represent them accu-
rately.  A modeler must therefore make decisions on how to bound the level of detail of each of these el-
ements: what should be explicitly modeled, what assumptions should be made, and what can be excluded, 
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depending on the research question and availability of data.  Table 1 summarizes the five FSC elements 
and the previously-discussed examples from the literature of how existing MAS-FSC models address the-
se elements. 

 

Figure 6: Flowchart representation of an MAS-FSC model with social impact 

Table 1: Summary of key elements of FSCs and examples of how they are addressed in MAS-FSC 
models in the literature 

 
Explicitly Modeled:  

High Detail 
Explicitly Modeled:  

Low Detail 
Implicitly Modeled  

or Exogenous 
Natural  
Environment 

Belem et al. (2011) 
Happe et al. (2011) 
Schreinemachers  
et al. (2007) 
Matthews (2006) 
Becu et al. (2003) 
Lynam (2002) 

Le Bars et al. (2005) 
Janssen (2001) 

Deffuant et al. (2002) 
Polhill, Gotts & Law (2001) 

Agent  
Decisions  
& Planning 

Freeman, Nolan, & Schoney (2009) 
Kamusoko et al. (2009) 
Sengupta et al. (2005) 
Becu et al. (2003) 

Belem et al. (2011) 
Polhill, Gotts & Law (2001) 

Barreteau & Bousquet (2000) 

FSC  
Interactions 

Le Bars et al. (2005) 
Becu et al. (2003) 
Deffuant et al. (2002) 

Polhill, Gotts & Law (2001) 
Janssen (2001) 

Happe et al. 2011 

Economic 
Processes 

Freeman, Nolan, & Schoney (2009) Barreteau & Bousquet (2000)  

Political &  
Social  
Environment 

Deffuant et al. (2002) 
 

Happe et al. (2011) 
Sengupta et al. (2005) 
Janssen (2001) 

Le Bars et al. (2005) 

 
A review of the literature has revealed the following insights into the current state and anticipated fu-

ture of MAS-FSC modeling: 
• There is a trend among models in the literature to move toward greater integration of primary 

simulators (e.g. crop simulators) with MAS models. 
• The use of optimization to simulate agent decision-making is common in MAS-FSC models, 

even though one of the benefits of MAS is that it allows modelers to give agents bounded ration-
ality and limited information/computational abilities. 

• Most MAS-FSC models focus on capturing the natural environment and agent decision-making in 
detail; significant opportunities exist for increasing the level of detail and increased exploration of 
agent interactions (e.g. communication, cooperation, negotiation, coordination) and their impact 
on FSC performance. 
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• Based on the literature, economic processes, when considered, are often assumed exogenous to 

MAS-FSC models unless they are central to the model (as in land-use models), perhaps because 
they can be very complicated and may not add much value. 

• Nearly all of the MAS-FSC models in the literature use case-study data from a specific region to 
build their models, although not all models attempt to use this data for validation.  As models of 
multi-echelon FSCs are developed, this will become even more difficult, as the data requirements 
will be greater. 

These insights are based upon an analysis of single-echelon models in the literature.  Because multi-
echelon FSC models use these single-echelon models as building blocks, these insights can be extended 
to influence future multi-echelon models.  Modelers should keep in mind that adding detail and function-
alities to an MAS-FSC model does not necessarily improve its ability to produce useful results and may 
even reduce its ability to explain relationships between inputs and outputs.  It is critical that models are 
carefully and appropriately bounded. 

A BASE MODEL PSEUDOCODE 
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