
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher, eds.

ANALYTICAL MODELING AND SIMULATION OF THE ENERGY CONSUMPTION OF
INDEPENDENT TASKS

Thomas Rauber

University Bayreuth
Computer Science Department

D-95440 Bayreuth, GERMANY

Gudula Rünger

Chemnitz University of Technology
Computer Science Department

D-09107 Chemnitz, GERMANY

ABSTRACT

The estimation and evaluation of the energy consumption of computers is becoming an important issue.
In this article, we address the question how the energy consumption for computations can be captured by
an analytical energy consumption model. In particular, we address the possibility to reduce the energy
consumption by dynamic frequency scaling and model this energy reduction in the context of task execution
models. We demonstrate the use of the model by simulating task executions and their energy consumption.

1 INTRODUCTION

Computers consume a significant amount of energy while they are running and producing results. Until
recently, energy consumption has not been a major concern, and software has usually been built such that
the computations are executed as fast as possible, leading to a minimal execution time of the program. This
approach has especially been used in parallel computing where a minimal program execution time is an
important issue. Thus, many programming techniques and execution modes have been proposed with the
goal to structure the program computations and memory accesses such that a fast execution time results.
Accordingly, for parallel or distributed programs the metrics used to evaluate program performance, such
as speedup and efficiency, has been solely based on program execution times, no matter how much energy
is consumed.

In the era of climate change, environmental concerns make it necessary to extend the considerations of
program efficiency and to include energy consumption into the efficiency calculations (Saxe 2010). This is
especially important for large complex software systems to be used in many areas of research and industry.
In particular, it is important to develop suitable programming techniques for the design of programs which
can exploit a hardware system such that their computations are performed with low energy consumption
while guaranteeing good performance.

An important low-power design technique that is provided for many commodity processors is the
dynamic voltage-frequency scaling (DVFS) technique, which enables processors to dynamically adjust
voltage and frequencies of the entire processor or of individual cores aiming at a reduction of power
consumption. Reducing the voltage leads to a smaller energy consumption. However, longer computation
times may result due to the reduced frequency. In order to exploit frequency scaling for calculated energy
saving, the influence of that technique has to be studied at the application programmer’s level.

An effective way to structure parallel programs is the use of tasks (N’takpé, Suter, and Casanova 2007;
Vydyanathan, Krishnamoorthy, Sabin, Catalyurek, Kurc, Sadayappan, and Saltz 2009), which can be gen-
erated statically or dynamically. A task-based programming approach enables a structuring of a parallel
program according to the needs of an application algorithm and allows the use of load balancing and
scheduling techniques (Hoffmann and Rauber 2011) for an efficient exploitation of the sequential or par-
allel hardware platform. It has been shown that a task-based programming model can also be advanta-

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 2775978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Rauber and Rünger

geous for restructuring programs in the context of reducing energy consumption (Lee and Zomaya 2009;
Zhuo and Chakrabarti 2008).

In this article, we exploit an analytical energy model simulating the energy consumption effect of
frequency scaling. The model is applied to the execution of sequential tasks that may be executed
concurrently to each other, resulting in a parallel execution. The resulting energy consumption for different
processor assignments is investigated. For concurrently executed tasks, frequency scaling factors are
derived that lead to a minimum energy consumption for a specific parallel program. In previous work
(Rauber and Rünger 2011), we have applied the model to parallel tasks where each task can be executed by
a set of processors. In Rauber and Rünger (2012), it has been shown that the energy model is well suited
for modeling the energy consumption of current multicore processors with DVFS technique. This article
contributes an experimental investigation of the modeling technique by simulations for a large number
of randomly generated task sets with different distributions of the task execution times. Different scaling
factors are used and the resulting energy consumption and execution times are compared.

The article is organized as follows: Section 2 resumes the task-parallel programming model and
Section 3 presents the energy model used for simulating the energy consumption of task executions based
on frequency scaling factors. Section 4 derives energy consumption functions for the parallel execution of
tasks and presents corresponding frequency scaling factors. Section 5 presents an experimental evaluation
of the energy model using several different distributions of the task execution times. Section 6 discusses
related work and Section 7 concludes the article.

2 TASK-BASED PROGRAMMING MODEL

A task-based programming model assumes that the parallel program to be executed consists of a set of
tasks that can be executed by any of the processors or cores provided by the given execution platform.
For a parallel execution, several tasks can be executed in parallel, each on a separate processor or core,
if they are independent. A processor can fetch the next task for execution as soon as it becomes idle.
Task-based executions are integrated in many modern execution environments, such as OpenMP 3.0 and
parallel languages, such as Chapel or X10.

The fork-join pattern is a possibility to express sections of independent tasks to be executed in parallel.
At each point of program execution, new independent tasks can be created (fork) and the creating task
may wait until all these tasks will be terminated (join), see Fig. 1 (left) for an illustration of the fork-join
pattern. This includes an implicit barrier operation at the join operation involving all tasks of a fork-join
construct.

In this article, the energy consumption of task-based programs with parallel executions of independent
tasks is modeled. A homogeneous parallel platform with p identical processing units (processors or cores)
is considered. Assuming that the program consists of a set T of tasks, the overall execution time depends
on the execution time of the individual tasks T ∈ T and the coordination and waiting times of the tasks.
The execution time of a task T ∈ T is given as a cost function CT . This captures general task models
as they are used by many modern libraries and languages, such as OpenMP, X10, Fortress, and Chapel.
The cost function CT can express the actual execution time on a specific hardware platform, which can be
a measured time in seconds or a predicted time. More abstract functions depending on the needs of the
application programmer can be used. Usually, the execution time also depends on other parameters, such
as a problem size or parameters of the parallel execution platform. In the following, we consider a specific
problem instance and, thus, these other parameters can assumed to be fixed.

The execution time for the entire parallel program consisting of a task set T is built up from the
functions CT ,T ∈ T , according to the structure of the tasks and the processor assignment used. The
execution time for a set of tasks coordinated by a fork-join pattern Tfork-join is described by the formula

CTfork-join = max
i=1,...,p

CTi ,

2776

Rauber and Rünger

fork

task 1

join

...

2 3 4 5 n
new tasks created

ti
m

e

ex
ec

ut
io

n
ti

m
e idle times

T T TT

P P P P P P P

processors

TT T
6 p

Pp

p−1

p−1

p−2

p−23 4 5 6

T
5

1 2

1 2 3 4 T

P

Figure 1: Left: illustration for the execution of a fork-join based task-parallel program. Right: illustration
of idle times resulting from different task execution times.

assuming that p tasks T1, . . . ,Tp are created (fork) by a parent task T0 and that a join requires a barrier
synchronization, waiting for all tasks T1, . . . ,Tp to be completed before continuing. Thus, the execution time
is dominated by the execution time of the task Tm with the longest execution time, i.e., CTm = maxi=1,...,pCTi .
Waiting time may occur, since the processors executing other tasks must wait for the completion of Tm.

3 FREQUENCY-SCALING ENERGY MODEL

To capture the energy consumed by a processor, we use a well-accepted energy model that has already
been applied to embedded systems (Zhuo and Chakrabarti 2008), to heterogeneous computing systems
(Lee and Zomaya 2009), or to shared-memory architectures (Korthikanti and Agha 2010). This section
summarizes the energy model according to Zhuo and Chakrabarti (2008) and enriches the model by con-
sidering leakage power and task execution. In the energy model used, the power consumption of a processor
consists of the dynamic power consumption Pdyn, which is related to the switching activity and the supply
voltage, and the static power consumption Pstatic, which captures the leakage power consumption as well as
the power consumption of peripheral devices like the I/O subsystem (Jejurikar, Pereira, and Gupta 2004).
The dynamic power consumption is approximated by

Pdyn = a ·CL ·V
2 · f (1)

where a is the switching probability, CL is the load capacitance, V is the supply voltage, and f is the
operational frequency. For many years, the dynamic power consumption has represented the predominant
factor in CMOS power consumption, but for recent technologies, leakage power has an increasing impact and
represents roughly 20 % of power dissipation in current processor designs (Kaxiras and Martonosi 2008).
Modeling leakage power is difficult, since it consists of several components, including sub-threshold leakage,
reverse-biased-junction leakage, gate-induced-drain leakage, gate-oxide leakage, gate-current leakage, and
punch-through leakage. A simplified model for leakage power presented in Butts and Sohi (2000) models
the static power consumption due to leakage power as

Pstatic =V ·N · kdesign · Ileak

where V is the supply voltage, N is the number of transistors, kdesign is a design dependent parameter, and
Ileak is a technology-dependent parameter. In the following, similar to (Zhuo and Chakrabarti 2008), we
make the simplified assumption that Pstatic is independent of the scaling factor s. This is justified by the
close match between the data sheet curves of real DVFS (Dynamic Voltage-Frequency Scaling) processors
and the analytical curves obtained by using this assumption, see (Zhuo and Chakrabarti 2008). Moreover,
it should be noted that Pdyn from Equ. 1 does not capture the energy consumption of memory accesses
or I/O. Therefore, the model considered is especially suited for non-memory intensive programs. These
abstractions are made to keep the energy model as simple as possible to demonstrate the essentials of the

2777

Rauber and Rünger

analytical derivation technique presented in the following more clearly. The general methodology could
also be applied to a more complex energy model that may additionally capture other sources of energy
consumption.

3.1 Frequency Scaling Factors

The operational frequency f depends linearly on the supply voltage V , i.e., V = b · f with some constant
b . This equation can be used to study the change of the dynamic voltage with respect to various frequency
values. Reducing the frequency by a scaling factor s, i.e., using a different frequency value f̃ = s−1 · f
with s ≥ 1, leads to a decrease of the dynamic power consumption. This can be seen by using Equ. (1)
with f̃ , resulting in the following equation for the dynamic power consumption:

P̃dyn = a ·CL ·V 2 · f̃ = a ·CL ·b 2 · f̃ 3 = a ·CL ·V 2 · f · s−3 = s−3 ·Pdyn . (2)

According to Formula (2), the dynamic power is decreased by a factor of s−3 when reducing the frequency
by a factor of s. In the following, s is used as a parameter and the dynamic power consumption with scaling
factor s is denoted by Pdyn(s). The rest of this section summarizes how to model the energy consumption
of a single task executed sequentially on one processor.

3.2 Energy Consumption for a Sequential Execution of Tasks

Frequency scaling influences the execution time and the energy consumption of task executions. The
sequential execution time CT of a task T ∈ T increases linearly with s, resulting in the execution time
CT · s, when the frequency is reduced by a factor of s. Using the scaling factor s as parameter of the energy
consumption (which is the power consumption, measured in Watt, multiplied by the execution time), the
dynamic energy consumption of the task T for one processor can be modeled as:

ET
dyn(s) = Pdyn(s) · (CT · s) = s−3 ·Pdyn(1) · (CT · s) = s−2 ·ET

dyn(1) (3)

with ET
dyn(1) = Pdyn(1) ·CT . Analogously, the static energy consumption can be modeled as:

ET
static(s) = Pstatic · (CT · s) = s ·Estatic(1) (4)

with Estatic(1) = Pstatic ·CT . According to Equs. (3) and (4), the total energy consumption for the sequential
execution of T on one processor is:

ET (s) = ET
dyn(s)+ET

static(s) = (s−2 ·Pdyn(1)+ s ·Pstatic) ·CT (5)

expressing explicitly the dependence of the energy on the scaling factor s.

3.3 Optimal Frequency Scaling Factor

The optimal scaling factor minimizing the sequential execution of a task can be obtained by considering

Q(s) = s−2 ·Pdyn(1)+ s ·Pstatic (6)

of ET (s) in Equ. (5). Since CT in Equ. (5) is independent of the scaling factor s (Zhuo and Chakrabarti 2008),
the value that minimizes Q(s) also minimizes ET (s). The function Q(s) in Formula (6) is convex, because
its second derivative Q′′(s) exists and Q′′(s) ≥ 0. Thus, the optimal scaling factor can be obtained by
setting Q′(s) =−2 ·Pdyn(1)/s−3 +Pstatic to zero. Hence, the optimal scaling factor minimizing the energy
consumption ET (s) is

sopt =

(

2 ·Pdyn(1)
Pstatic

)1/3

. (7)

2778

Rauber and Rünger

Assuming that Pdyn(1) is independent of the computations performed, sopt depends only on the char-
acteristics of the given processor. For a processor with Pstatic = 4W and Pdyn(1) = 20W , sopt = 2.15
results.

It should be noted that, in practice, only a finite number of frequency scaling factors is available for
typical DVFS-enabled processors. Therefore, sopt must be rounded to the nearest scaling factor available.
This common methodology to treat scaling factors as arbitrary real numbers for the calculation and then
round the result to a realistic discrete number applies to all scaling factors computed throughout the article.

The scaling factor sopt from Equ. (7) minimizes the energy consumption of a single sequential task.
This scaling factor can also be used for multiple tasks. However, the computation of sopt does not yet
take waiting times for concurrently executed tasks into consideration. Such waiting times may occur at
join points when the tasks to be synchronized by a barrier have different execution times and cause idle
times of the processors. The next section shows that in this context, other scaling factors can lead to even
smaller energy values.

4 FREQUENCY SCALING FOR CONCURRENT TASKS

In this section, we investigate the energy consumption in the case that different scaling factors are used for
the concurrent execution of different tasks. Section 4.1 states that in order to obtain a minimum energy
consumption, the scaling factors for the different processors should be selected such that no idle times
occur. Section 4.2 computes the resulting energy consumption for two concurrently executed tasks, and
Section 4.3 generalizes the result to an arbitrary number of concurrent tasks.

4.1 Energy Optimal Scaling Factors

For the concurrent execution of tasks T1, . . . ,Tn, n ≥ 2, executed in parallel on n different processors
P1, . . . ,Pn, each processor executing one task may use a different frequency scaling factors s1, . . . ,sn for the
execution of its corresponding task. According to the fork-join semantics, all processors are busy for the
same amount of time before they can start another computation. The time for processor Pi is the execution
time for the task Ti and the idle time Ii elapsed before all other processors finish their execution, see Fig. 1
(right) for an illustration. Thus, the time for Pi is

CPi(si) =CTi · si + Ii . (8)

The energy optimal execution is achieved by a set of frequency scaling factors s1
∗, . . . ,sn

∗ for which the
overall energy consumption

ET1‖...‖Tn(s1
∗, . . . ,sn

∗) =
n

å
i=1

(CTi ·Q(si)+ Ii ·Pstatic) (9)

is minimal. In Rauber and Rünger (2012), it has been shown that such a solution has the property Ii = 0
for i = 1, . . . ,n. This results when using scaling factors s1

∗, . . . ,sn
∗ for tasks T1, . . . ,Tn with si

∗ ≥ 1 for
i = 1, . . . ,n such that CTi ·si

∗ =CTj ·s j
∗ for all pairs of tasks Ti,Tj, i, j ∈ {1, . . . ,n}, with sequential execution

time CTi , i = 1, . . . ,n.

4.2 Two Concurrently Executed Tasks

This section exploits the results of Section 4.1 for the execution of optimal scaling factors for two concurrent
tasks T1 and T2. These scaling factors s1 and s2 have to fulfill s1 ·CT1 − s2 ·CT2 = 0 and, thus:

s2 = s1 ·
CT1

CT2

. (10)

Using Equ. (10) in the energy consumption equation for T1||T2

ET1‖T2(s1,s2) = (s−3
1 ·Pdyn(1)+Pstatic)·s1 ·CT1 +(s−3

2 ·Pdyn(1)+Pstatic) · s2 ·CT2 (11)

2779

Rauber and Rünger

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 p

ow
er

 c
on

su
m

pt
io

n

C_T1(1)/C_T2(1)

comparison of different scaling factors for T1 || T2

concurrent scaling s_copt, s2 adapted
separate scaling s1 = s2 = s_opt

scaling factor s1 = s2 = 1
s1 = 1, s2 adapted

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

se
le

ct
ed

 ta
sk

 e
xe

cu
tio

n
tim

es

distribution of task execution times for 100 tasks

Gaussian
Rayleigh

Beta
uniform

Figure 2: Left: Comparison of the normalized energy consumption ET1‖T2(s1,s2)/CT1 of two concurrent
tasks using different scaling factors for an example processor with Pstatic = 4W and Pdyn(1) = 20W . Right:
Distribution of the task distribution times for a task set with 100 tasks, selecting the task execution times
between 1s and 10000s using different distribution functions.

leads to

ET1‖T2(s1,s2) = s−2
1 ·Pdyn(1)

(

CT1+
C3

T2
C2

T1

)

+2s1·Pstatic·CT1 . (12)

The energy function (12) is differentiable and has a minimum at

scopt =
3

√

√

√

√

Pdyn(1)
Pstatic

(

1+
C3

T2

C3
T1

)

(13)

which is computed by setting the derivative

d
ds1

ET1‖T2

(

s1,s1 ·
CT1

CT2

)

=−2s−3
1 Pdyn(1)

(

CT1+
C3

T2

C2
T1

)

+2Pstatic·CT1

to zero. Equation (13) is a generalization of sopt in Equ. (7), and for CT1 = CT2 , Equ. (13) simplifies to
Equ. (7).

Figure 2 (left) shows the normalized energy consumption for T1||T2 according to Equ. (11) for different
scaling factors s1 and s2 and varying values of CT1/CT2 . No specific values are assumed for CT1 and CT2 ,
and the x-axis depicts different relative sizes of CT1 compared to CT2 . The energy consumption shown
is normalized with respect to CT1 , i.e., the values ET1‖T2(s1,s2)/CT1 are depicted. Four different scaling
factors are compared; (i) concurrent scaling with scopt according to Equ. (13) and s2 chosen according to
Equ. (10); (ii) separate scaling with s1 = s2 = sopt according to Equ. (7); (iii) no scaling, i.e., s1 = s2 = 1,
and (iv) no scaling for s1 and s2 adapted according to Equ. (10). The figure illustrates that the smallest
amount of energy is consumed for the scaling factors according to Equ. (13) and (10). The resulting energy
consumption is smaller than the energy consumption resulting when using the optimal scaling factor sopt for
a task in isolation. The reason is that sopt does not take the waiting time into consideration. For CT1 =CT2 ,
cases (i) and (ii) result in the same energy consumption, since scopt = sopt and s2 = sopt in that case. The
other two cases lead to a much larger energy consumptions.

2780

Rauber and Rünger

4.3 Arbitrary Number of Tasks

The result obtained for choosing the optimal scaling factors for two concurrently executed sequential tasks
is now generalized to an arbitrary number of tasks. Let T1, . . . ,Tn be a set of independent tasks that have
been generated by a fork statement and that are executed concurrently on n processors. We assume that the
tasks are ordered in decreasing order of their sequential execution time CTi , i = 1, . . . ,n, i.e., T1 is the task
with the largest execution time. According to Equ. (10), the scaling factors for each task Ti ∈ {T2, . . . ,Tn}
are set to

si = s1 ·
CT1

CTi

(14)

to get an optimal energy result. Using Equ. (14) for si results in the following total energy consumption:

ET1‖...‖Tn(s1, . . . ,sn) == s−2
1 ·Pdyn(1)

(

CT1+
n

å
i=2

C3
Ti

C2
T1

)

+ n · s1·Pstatic·CT1 . (15)

To compute the minimum, the derivative

d
ds1

ET1‖...‖Tn (s1, . . . ,sn) =−2s−3
1 Pdyn(1)

(

CT1+
n

å
i=2

C3
Ti

C2
T1

)

+n ·Pstatic·CT1

is considered and set to zero. This yields that ET1‖...‖Tn is minimized, if the scaling factor

scopt(n) =
3

√

√

√

√

2
n

Pdyn(1)
Pstatic

(

1+
n

å
i=2

C3
Ti

C3
T1

)

(16)

is used for s1. The scaling factors si, i = 2, . . . ,n, are then determined according to Equ. (14). If all tasks
T1, . . . ,Tn have the same execution time, scopt(n) from Equ. (16) simplifies to sopt from Equ. (7). Depending
on the distribution of the task execution times and the values of Pdyn(1) and Pstatic, a value smaller than 1
may result for scopt(n) from Equ. (16). In that case, the value has to be rounded up to 1.

If less processors than independent tasks are available, the tasks have to be assigned to the processors
in several consecutive rounds. Assuming that p processors are available, each rounds assigns p tasks to
the processors for execution. The next section presents an experimental evaluation of the optimal scaling
factors.

5 EXPERIMENTAL EVALUATION

The energy model used in this article has been verified by energy measurements on two machines with
Intel Sandy Bridge processors (Rauber and Rünger 2012). The measurements have been performed with
a complex example application to solve ordinary differential equations with different characteristics. A
comparison between measured and predicted energy values shows a deviation that usually lies below 10 %.
Thus, the model is suitable for capturing the energy consumption for this class of example applications. To
illustrate the quantitative effects of the analytically computed optimal scaling factors, this section describes
an experimental evaluation based on randomly generated task sets. In particular, different scaling versions
for task executions are compared for different scenarios.

The task sets are generated using different distribution functions (uniform distribution, Gaussian tail
distribution, Rayleigh distribution, and Beta distribution), to select the task execution times randomly
between 1 sec and 10000 sec. To generate the distributions the GNU Scientific Library has been used. As
example, Fig. 2 (right) shows the randomly selected task execution times for a task set of 100 tasks using the
different distributions. It can be seen that the Beta distribution tends to select larger task execution times,

2781

Rauber and Rünger

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-4 -2 0 2 4

p(
x)

Gauss distribution

Gaussian sigma=1
Gaussian sigma=2
Gaussian sigma=3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5

p(
x)

Rayleigh distribution

Rayleigh sigma=1
Rayleigh sigma=2
Rayleigh sigma=3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1

p(
x)

Beta distribution

Beta a=4, b=1
Beta a=1, b=4
Beta a=2, b=2

Figure 3: Illustration of the distribution functions used for the selection of the task execution times: Gaussian
(left), Rayleigh (middle), Beta (right).

 0

 0.2

 0.4

 0.6

 0.8

 1

P=10
P=100

P=1000

P=10000

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

number T of tasks = number of processors

s=1 all
sopt all

scopt all
s=1 adapt
sopt adapt

scopt adapt

 0

 0.2

 0.4

 0.6

 0.8

 1

P=10
P=100

P=1000

P=10000

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

task times according to Gaussian tail distribution

s=1 all
sopt all

scopt all
s=1 adapt
sopt adapt

scopt adapt

Figure 4: Normalized energy consumption with task execution time created according to a uniform
distribution (left) and a Gaussian tail distribution (right). Percentage energy consumption of scaled systems
with respect to the unscaled system.

whereas the Gaussian tail distribution favors smaller task execution times. Figure 3 depicts the distribution
functions used. The Gaussian tail distribution used results by cutting off the Gaussian distribution at
x = 0 and considering the resulting right part of the distribution function. For the Gaussian and Rayleigh
distribution, the versions with s = 1 are used. For the Beta distribution, the version a = 4 and b = 1 is
used.

5.1 Frequency Scaling Factor Variations

Figure 4 (left) compares the percentage energy consumption of scaled systems with respect to the unscaled
system. The experiment has been performed for the following numbers of processors: p = 10, p = 100,
p = 1000, and p = 10000. Each processor is assumed to execute one task. The tasks are generated with
randomly selected execution times between 1 and 10000 seconds, leading to a uniform distribution of the
task execution times. Each experiment has been repeated 50 times to balance extreme situations caused
by the random task creation. The energy consumption has been computed according to Equ. (15) for an
example processor with Pstatic = 4W and Pdyn(1) = 20W . The following six choices of scaling factors for
the different processors are compared (from left to right in the diagram): (a) scaling factor s = 1 is used
for all processors; (b) scaling factor s = sopt according to Equ. (7) is used for all processors; (c) scaling
factor s = scopt according to Equ. (16) is used for all processors; (d) s = 1 is used for the processor with
the largest parallel execution time and Equ. (14) is used to adapt the remaining scaling factors; (e) sopt

according to Equ. (7) is used for the processor with the largest parallel execution time and Equ. (14) is

2782

Rauber and Rünger

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 1.4e+06

 8000 10000 12000 14000 16000 18000 20000 22000 24000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 10

s=1/all

s=sopt/alls=scopt/alls=1/adapt
s=sopt/adapt

s=scopt/adapt

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1.1e+07

 1.2e+07

 1.3e+07

 1.4e+07

 8000 10000 12000 14000 16000 18000 20000 22000 24000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 100

s=1/all

s=sopt/alls=scopt/all

s=1/adapt

s=sopt/adapt

s=scopt/adapt

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 1.1e+08

 1.2e+08

 1.3e+08

 1.4e+08

 8000 10000 12000 14000 16000 18000 20000 22000 24000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 1000

s=1/all

s=sopt/alls=scopt/all

s=1/adapt

s=sopt/adapt

s=scopt/adapt

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 1.1e+09

 1.2e+09

 1.3e+09

 1.4e+09

 8000 10000 12000 14000 16000 18000 20000 22000 24000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 10000

s=1/all

s=sopt/alls=scopt/all

s=1/adapt

s=sopt/adapt

s=scopt/adapt

Figure 5: Execution time vs energy consumption for different numbers of processors for a uniform
distribution of task execution times.

used to adapt the remaining scaling factors; (f) scopt according to Equ. (16) is used for the processor with
the largest parallel execution time and Equ. (14) is used to adapt the remaining scaling factors.

Figure 4 shows that the energy consumption can be considerably reduced by using the frequency scaling
factors sopt or scopt instead of s = 1. In particular, the scaling factor adaptation can be applied to reduce
the total energy consumption significantly. Using scopt for the processor with the largest execution time
and adapted scaling factors for the remaining processors leads to the smallest total energy consumption for
all numbers of processors. The resulting energy consumption lies below 60% of the energy consumption
resulting for the unscaled case, i.e., s = 1.

Figure 5 compares the execution times of task sets and the resulting energy consumption for different
numbers of processors (p = 10, p = 100, p = 1000, p = 10000). 50 sets of randomly generated tasks have
been used for the experiments, and the figure shows the average information. Each task in each task set
has a randomly generated execution time between 1 and 10000 seconds. For each task set, different scaling
factors, the resulting execution times and energy consumptions are computed. The same scaling version
as in Fig. 4 are compared. From the figures, the following observations can be made: As expected, using
scaling factor 1 always results in the smallest execution time. However, adapting the scaling factors of the
other processors can significantly reduce the energy consumption without negatively affecting the overall
execution time. Using s = scopt for the processor with the largest execution time leads to a smaller energy
consumption than using s = 1, but it also increases the resulting execution time accordingly.

Figure 4 (right) compares the choices of frequency scaling factors for a Gaussian tail distribution
of task execution times, which has a higher percentage of smaller tasks. For this task distribution, the
scaling factor scopt is close to 1, and therefore the adaptive scaling with 1 and scopt lead to similar energy
consumptions. Figure 6 (left) uses a Rayleigh distribution for the task execution times. In this case, the
non-adapted scaling versions for sopt and scopt already lead to significant energy savings. Figure 6 (right)

2783

Rauber and Rünger

 0

 0.2

 0.4

 0.6

 0.8

 1

P=10
P=100

P=1000

P=10000

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

task times according to Rayleigh distribution

s=1 all
sopt all

scopt all
s=1 adapt
sopt adapt

scopt adapt

 0

 0.2

 0.4

 0.6

 0.8

 1

P=10
P=100

P=1000

P=10000

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

task times according to Beta distribution with a=4, b=1

s=1 all
sopt all

scopt all
s=1 adapt
sopt adapt

scopt adapt

Figure 6: Normalized energy consumption with task execution time created according to a Rayleigh
distribution (left) and a Beta distribution (right). Percentage energy consumption.

uses a Beta distribution having a higher percentage of tasks with a larger execution time. In this case, the
energy consumption for sopt and scopt in the adapted and non-adapted case are quite similar. Using s = 1,
the energy consumption is much larger also in the adapted case.

Figure 7 depicts the resulting execution times and energy consumptions for different distributions of
the task execution times and different choices of frequency scaling factors for each of these distributions.
For p = 1000 processors, random task creations according to a uniform, a Gaussian, a Rayleigh, and a
Beta distribution are compared. The figure shows that the increase in execution time for the scaled versions
compared to the unscaled version strongly depends on the distribution of the task execution time. This
increase is small for a Gaussian distribution, tolerable for a uniform and Rayleigh distribution, and large for
a Beta distribution. Using the adapted scaling versions always leads to a considerable reduction in energy
consumption. The reduction is largest when using s = 1 or s = scopt for the largest task and adapting the
remaining scaling factors accordingly. The experiments have shown that the effect of choosing frequency
scaling factors strongly depends on the distribution of the execution times of the tasks to be executed.

6 RELATED WORK

Power-management features are integrated in computer systems of almost every size and class, from
hand-held devices to large servers (Saxe 2010). An important feature is the DVFS technique that trades
off performance for power consumption by lowering the operating voltage and frequency if this is pos-
sible (Zhuo and Chakrabarti 2008). The approach to determine the voltage scaling factor that minimizes
the total CPU energy consumption by taking both the dynamic power and the leakage power into con-
sideration has been discussed in Jejurikar, Pereira, and Gupta (2004), Irani, Shukla, and Gupta (2007),
Zhuo and Chakrabarti (2008) for sequential tasks.

The energy consumption of parallel algorithms for shared memory architectures based on the paral-
lel external memory (PEM) model (Arge, Goodrich, Nelson, and Sitchinava 2008) has been discussed in
Korthikanti and Agha (2010). In particular, the energy consumption of parallel prefix sums and parallel
mergesort is analyzed, but no communication costs are taken into consideration because of the shared
memory model. The interaction between the parallel execution and energy consumption is considered
in Cho and Melhem (2008) by partitioning a parallel algorithm into sequential and parallel regions and
computing optimal frequencies for these regions. No task structuring of the parallel algorithms is con-
sidered. Approaches for an energy complexity metric are discussed in Bingham and Greenstreet (2008).
Song, Su, Ge, Vishnu, and Cameron (2011) proposes a system-level iso-energy-efficiency model to analyze,
evaluate and predict energy-performance of data intensive parallel applications.

2784

Rauber and Rünger

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 1.1e+08

 1.2e+08

 1.3e+08

 1.4e+08

 8000 10000 12000 14000 16000 18000 20000 22000 24000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 1000

s=1/all

s=sopt/alls=scopt/all

s=1/adapt

s=sopt/adapt

s=scopt/adapt

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2.2e+08

 15000 20000 25000 30000 35000 40000 45000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 1000/Gauss

s=1/all

s=sopt/all
s=scopt/all

s=1/adapt

s=sopt/adapt

s=scopt/adapt

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2.2e+08

 2.4e+08

 2.6e+08

 2.8e+08

 15000 20000 25000 30000 35000 40000 45000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 1000/Rayleigh

s=1/all

s=sopt/all
s=scopt/all

s=1/adapt

s=sopt/adapt

s=scopt/adapt
 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 2.2e+08

 10000 12000 14000 16000 18000 20000 22000 24000

en
er

gy
 c

on
su

m
pt

io
n

[W
s]

execution time [s]

execution time vs. energy consumption for p = 1000/Beta

s=1/all

s=sopt/alls=scopt/all

s=1/adapt

s=sopt/adapts=scopt/adapt

Figure 7: Time vs energy consumption for p= 1000 processors using different distributions of task execution
times: uniform (top left), Gaussian tail (top right), Rayleigh (bottom left), and Beta (bottom right).

The energy consumption of interconnection networks of chip multiprocessors (CMP) is addressed in
Flores, Aragon, and Acacio (2010), Cebrian, Aragon, and Kaxiras (2011). An energy-oriented evaluation
of communication optimization for networks is given in Kadayif, Kandemir, Choudhary, and Karakoy (2003)
with a focus on sensor networks which have different characteristics as networks in high-performance
computing. In the domain of real-time scheduling, many techniques for utilizing available waiting
times based on DVFS have been considered, see, e.g., Horvath, Abdelzaher, Skadron, and Liu (2007),
Mishra, Rastogi, Zhu, Mossé, and Melhem (2003), Zhu, Melhem, and Mossé (2009). These approaches
are usually based on heuristics and are not based on an analytical model as presented in this work.

7 CONCLUSIONS

This article has investigated the energy consumption of the execution of task-based programs using a
fork-join based generation of tasks. For concurrently executed tasks, we have analytically derived scaling
factors that minimize the overall energy consumption. This investigation is based on hardware frequency
scaling techniques. As shown by the analytical model, the scaling factor formula can be used to set the
frequency of the processors executing a task such that the energy consumption is reduced by avoiding
waiting times at join points. For a specific system, the analytically optimal scaling factors may need to
be adjusted to the discrete set of available frequency scaling levels. The result for sequential tasks in a
fork-join pattern can be generalized to parallel tasks that employ several processors each. This programming
structure is suitable when the number of processors exceeds the number of tasks in a fork-join pattern.

2785

Rauber and Rünger

REFERENCES

Arge, L., M. Goodrich, M. Nelson, and N. Sitchinava. 2008. “Fundamental parallel algorithms for private-
cache chip multiprocessors”. In SPAA ’08: Proc. of the 20th Ann. Symp. on Parallelism in Algorithms
and Architectures, 197–206: ACM.

Bingham, B., and M. Greenstreet. 2008. “Computation with Energy-Time Trade-Offs: Models, Algorithms
and Lower-Bounds”. In ISPA ’08: Proc. of the 2008 IEEE Int. Symp. on Parallel and Distributed
Processing with Applications, 143–152: IEEE Computer Society.

Butts, J., and G. Sohi. 2000. “A static power model for architects”. In In Proc. of the 33rd Int. Symp. on
Microarchitecture (MICRO-33), 191–201.

Cebrian, J., J. Aragon, and S. Kaxiras. 2011. “Power-token balancing: Adapting CMPs tp power constraints
for parallel multithreaded workloads”. In Proc. of the 25th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS 11), 431–442: IEEE.

Cho, S., and R. Melhem. 2008. “Corollaries to Amdahl’s Law for Energy”. IEEE Comput. Archit. Lett. 7
(1): 25–28.

Flores, A., J. L. Aragon, and M. E. Acacio. 2010. “Heterogeneous Interconnects for Energy-Efficient
Message Management in CMPs”. IEEE Transactions on Computers 59:16–28.

Hoffmann, R., and T. Rauber. 2011. “Adaptive Task Pools: Efficiently Balancing Large Number of Tasks
on Shared-address Spaces”. International Journal of Parallel Programming 39 (5): 553–581.

Horvath, T., T. Abdelzaher, K. Skadron, and X. Liu. 2007. “Dynamic Voltage Scaling in Multitier Web
Servers with End-to-End Delay Control”. IEEE Trans. Comput. 56 (4): 444–458.

Irani, S., S. Shukla, and R. Gupta. 2007. “Algorithms for power savings”. ACM Trans. Algorithms 3 (4):
41.

Jejurikar, R., C. Pereira, and R. Gupta. 2004. “Leakage aware dynamic voltage scaling for real-time
embedded systems”. In DAC ’04: Proceedings of the 41st annual Design Automation Conference,
275–280: ACM.

Kadayif, I., M. Kandemir, A. Choudhary, and M. Karakoy. 2003. “An energy-oriented Evaulation of
Communication Optimizations for Microsensor Networks”. In Proc. of the EuroPar 2003 conference,
279–286: Springer LNCS 2790.

Kaxiras, S., and M. Martonosi. 2008. Computer Architecture Techniques for Power-Efficiency. Morgan &
Claypool Publishers.

Korthikanti, V., and G. Agha. 2010. “Towards optimizing energy costs of algorithms for shared memory
architectures”. In SPAA ’10: Proceedings of the 22nd ACM symposium on Parallelism in algorithms
and architectures, 157–165. New York, NY, USA: ACM.

Lee, Y., and A. Zomaya. 2009. “Minimizing Energy Consumption for Precedence-Constrained Applications
Using Dynamic Voltage Scaling”. In CCGRID ’09: Proc. of the 2009 9th IEEE/ACM Int. Symp. on
Cluster Computing and the Grid, 92–99: IEEE Computer Society.

Mishra, R., N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. 2003. “Energy Aware Scheduling for Distributed
Real-Time Systems”. In IPDPS ’03: Proc. of the 17th Int. Symp. on Parallel and Distributed Processing,
21.2: IEEE Computer Society.

N’takpé, T., F. Suter, and H. Casanova. 2007. “A Comparison of Scheduling Approaches for Mixed-Parallel
Applications on Heterogeneous Platforms”. In Proc. of the 6th Int. Symp. on Par. and Distrib. Comp.,
250–257: IEEE.

Rauber, T., and G. Rünger. 2011. “Modeling the Energy Consumption for Concurrent Executions of Parallel
Tasks”. In Proc. of the 14th Communications and Networking Simulation Symp. (CNS’11), 11–18: SCS.

Rauber, T., and G. Rünger. 2012. “Energy-aware Execution of Fork-Join-based Task Parallelism”. In Proc.
of the 20th Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS’12), 231–240. IEEE.

Saxe, E. 2010. “Power-efficient software”. Commun. ACM 53 (2): 44–48.

2786

Rauber and Rünger

Song, S., C.-Y. Su, R. Ge, A. Vishnu, and K. Cameron. 2011. “Iso-energy-efficiency: An approach to power-
constrained parallel computation”. In Proc. of the 25th IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS 11), 128–139: IEEE.

Vydyanathan, N., S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc, P. Sadayappan, and J. Saltz. 2009.
“An Integrated Approach to Locality-Conscious Processor Allocation and Scheduling of Mixed-Parallel
Applications”. IEEE Transactions on Parallel and Distributed Systems 20 (8): 1158–1172.

Zhu, D., R. Melhem, and D. Mossé. 2009. “Energy efficient redundant configurations for real-time parallel
reliable servers”. Real-Time Syst. 41 (3): 195–221.

Zhuo, J., and C. Chakrabarti. 2008. “Energy-efficient dynamic task scheduling algorithms for DVS systems”.
ACM Trans. Embed. Comput. Syst. 7 (2): 1–25.

2787

