
Proceedings of the 2012 Winter Simulation Conference
C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

BPMN PATTERN FOR AGENT-BASED SIMULATION MODEL REPRESENTATION

Bhakti S. S. Onggo

Department of Management Science
Lancaster University Management School

Lancaster, LA1 4YX, UNITED KINGDOM

ABSTRACT

The explicit representation of a conceptual model allows it to be communicated and analyzed by the
stakeholders in a simulation project. When communication involves different types of stakeholders, a
good representation that can be understood by all stakeholders is essential. Many existing methods for the
conceptual model representation of agent-based simulation models are less friendly to business users.
This paper advocates use of the Business Process Model and Notation diagrams for agent-based simula-
tion conceptual model representation in the context of business applications. This paper also proposes a
BPMN pattern that provides visual representation of an agent and its behavior represented as a set of in-
ternal and external functions.

1 INTRODUCTION

An agent-based simulation (ABS) model is a simulation model formed by a set of autonomous agents that
interact with their environment and other agents through a set of internal rules to achieve their objectives
(Onggo 2010). There is no universal agreement in the literature on ABS on the definition of an agent
(North and Macal 2007). Instead, we have observed, from the literature, a spectrum of complexity in the
definition of an agent. At one extreme, an ABS model is composed of a set of homogeneous agents with a
set of simple attributes and simple behaviors. North and Macal (2007) refer to this type of agent as a
pseudo-agent. At the other extreme, we have seen ABS models formed by a set of heterogeneous agents
with various complex attributes (such as memory) and complex behaviors (such as communication, per-
ception, planning and learning).

The lack of consensus on what constitutes an agent results in various methods of representing an ABS
model. There are a number of representation methods that we have seen in the simulation literature. The
behavior of agents in many ABS models is often expressed as logical rules. Hence, it is very common to
see pseudo-code (or even computer code itself) used to represent agent behaviors in the literature. The
pseudo-code representing an ABS model tends to be closer to actual computer code. People without any
knowledge of computer programming may have difficulty in understanding such model representations.
On the flip side, pseudo-code, if written properly, can be a very effective communication method for peo-
ple who are familiar with computer programming to discuss ABS model behavior.

DEVS (Discrete event system specification) has also been used in the literature (e.g. Zaft and Zeigler
2002, Saple and Yilmaz 2006, Onggo 2010). DEVS is a formal specification language that has been ap-
plied to represent a wide range of systems (Zeigler 1976). It provides a mathematical representation of an
ABS model that can be translated into a simulator automatically. The correctness of the representation can
be validated mathematically.

Another formal language that has been used in the literature is Petri Nets, especially in multi-agent
systems (MAS). Although there are some differences between ABS and MAS (North and Macal 2007),
the representation of agents and agent behaviors is a topic common to the two fields. Similar to DEVS,

978-1-4673-4780-8/12/$31.00 ©2012 IEEE 3657978-1-4673-4782-2/12/$31.00 ©2012 IEEE

Onggo

Petri Nets can represent the static structure and dynamic of behavior of an ABS model. Holvoet (1995)
was among the earliest to propose the idea of representing agents in Petri Nets. Since the initial work by
Holvoet (1995), there have been significant advances in the research that address their limitations, such as
the lack of specification for inter-agent communications, the static nature of the nets and the lack of a
specification for intelligence. One notable piece of work was produced by Moldt and Wienberg (1997),
who extended Colored Petri Nets to include the intelligent behavior and specifications of agent communi-
cations. A more recent example is the work of van der Zee (2009), who used Timed Colored Hierarchical
Petri Nets in the representation of ABS models in the context of manufacturing systems.

Allan (2010) conducted a literature review on popular ABS frameworks and found out that the major-
ity of the tools were based on Object Oriented principles, i.e. they used classes and methods to represent
agents and agent behaviours. Hence, it is not surprising to find that many articles use UML diagrams (or
their variants), which are commonly used in Object Oriented design, to represent agents and agent behav-
iours. UML provides a multi-faceted representation of an ABS model using various UML diagrams and
annotations. Hence, it has the advantage of providing a more complete representation of an ABS model.
UML has another advantage in that it is a standard supported by various organizations, especially in the
software industry. It can be extended and tailored to suit specific domains, e.g. Bauer (1999) and Odell et
al. (2000) extended UML to make it more suitable for modelling agents and agent-based systems in gen-
eral.

Given its origin in Artificial Intelligence (North and Macal 2007), many existing methods used in
ABS conceptual model representation are less friendly to business users who may not be familiar with
software engineering or computer programming concepts. The paper advocates the use of Business Pro-
cess Model and Notation (BPMN), a standard designed for business users, for ABS conceptual model rep-
resentation. This paper extends the earlier work presented at the last Winter Simulation Conference
(Onggo and Karpat 2011). Some feedback from the audience was on how to represent interactions and
more complex agent behaviour in BPMN. To address this, a BPMN pattern is proposed and will be dis-
cussed in Section 3. The outline of this paper is as follows. Section 2 briefly summarizes the earlier work
reported in Onggo and Karpat (2011). It is followed by an explanation of the relevance of BPMN for ABS
model representation. Section 3 elaborates on the proposed BPMN pattern and demonstrates how agent
behaviours and the interactions between agents can be represented using this pattern. Section 4 offers
concluding remarks.

2 ABS MODEL REPRESENTATION USING BPMN

BPMN is a business process modelling language and standard controlled by the Object Management
Group (OMG). BPMN 2.0 supports a number of diagrams which include: process diagram, collaboration
diagram, choreography diagram and conversation diagram. These diagrams share a common collection of
core graphical elements that can be grouped into five categories: flow objects, connecting objects, swim-
lanes, data and artefacts. The shapes of the core graphical components are shown in Table 1.

Flow objects (events, activities and gateways) and connecting objects are the most essential compo-
nents because they are used to define the structure and behaviour of a process. Connecting objects are
used to connect flow objects to each other or to other elements. OMG (2010) provides a detailed specifi-
cation of all BPMN core elements.

2.1 Relevant BPMN Diagrams: Collaboration and Conversation

Two BPMN diagrams are particularly relevant to the proposed representation method for ABS models.
They are the collaboration and conversation diagrams. The collaboration diagram is used to represent the
interactions between two or more participants. Figure 1 shows an example of a collaboration diagram that
describes what happens when a customer places an order with an online trader. The online trader will
check the inventory status with the distributor and send the order status to the customer. In this example,
three participants are involved and they interact through messages.

3658

Onggo

Table 1: BPMN core graphical components – adapted from OMG (2010)

Element Notation Element Notation
Event

 Pool

Activity

 Lane

Gateway

 Data object, Da-
ta input, Data
output

Sequence flow Data store

Message flow Group

Association Text annotation

Data association

Figure 1: BPMN collaboration diagram

Figure 2: BPMN conversation diagram

Customer Trader Distributor

3659

Onggo

The conversation diagram provides a high level overview of the interactions between participants in

the model. Figure 2 summarizes the interactions between the participants shown in the collaboration dia-
gram in Figure 1. The diagram only shows the participants (as pools), and detailed interactions are encap-
sulated within the hexagon.

2.2 Representing the ABS Model Using BPMN Diagrams

The main advantage in using BPMN to represent ABS models in the context of business applications is
that BPMN is a standard designed for business users and is supported by big vendors such as IBM, Ora-
cle, SAP, Unisys, etc. It is likely that the number of software tools that support BPMN will grow. The
main disadvantage of BPMN is that it is designed for a process-oriented modelling tool. This section ad-
dresses this issue and explains that BPMN can be used to represent ABS models. Unless otherwise stated,
the ABS models in this section onwards refer to ABS models in the context of business applications.

Macal and North (2010) show a wide range of ABS applications and identified business-related ap-
plications, such as the artificial society, economics and market analysis. Bonabeau (2002) divided the ap-
plication of ABS to business into four areas: flows (e.g. customer flow management, traffic management),
market (e.g., stock market, ISP market), organization (e.g. organizational behaviour, risk analysis, busi-
ness operations) and diffusion (e.g. adoption of new products, viral marketing). These applications show
that a method for ABS model representation needs to support the representation of agents, agent behav-
iours, agent interactions and the environment. The examples given in Macal and North (2010) and Bona-
beau (2002) show that typical agents in business applications are individuals (such as consumers and in-
vestors) and organizations (such as firms and government institutions). These agents plan and execute
their plans to achieve their objectives. They are intelligent because they can learn by comparing the re-
sults of their actions with their objectives. As a result, they may change their beliefs, plans or actions.
They can also learn by analysing the information they receive from other agents and their environment.
To an observer, the behaviour of these agents is shown by their actions, including their interactions with
other agents and their environment over time. Each agent has its own unique identity and set of attributes
(characteristics). These attributes can be static (such as birth date), relatively static (such as an organiza-
tion’s vision, mission and type of individual decision-making) or dynamic (such as memory and wealth).
The attributes of an agent can have a significant influence on its behaviour. To demonstrate that BPMN
can be used to represent ABS models, BPMN must be able to represent an agent, its behaviour, its envi-
ronment and the interactions.

The concept of participants in the BPMN collaboration diagram is similar to the concept of agents in
ABS. Hence, a BPMN pool that is used to represent a participant can be used to represent an agent. The
use of a BPMN pool has at least three advantages. First, the pool creates a clear visual boundary around
an agent which encapsulates its attributes and behaviour. A BPMN pool can be divided into a number of
lanes. This leads to the second advantage. It allows us to implement an agent which has multiple roles.
Since the lanes within a pool can be organized into a hierarchical structure, we can represent the role hier-
archy that an agent may have, such as departments within a division and divisions within a firm. Finally, a
BPMN pool implies the existence of domain control within the pool, which is in line with the notion of
agent autonomy in ABS.

An agent has attributes and behaviour. The attributes of an agent can be represented using BPMN da-
ta annotation. This data annotation allows us to show how the attributes are used (e.g. input or output) and
which activities use the attributes. The behaviour of an agent can be represented using a combination of
flow objects (events, activities and gateways) and connecting objects encapsulated within the pool that
represents the agent. A BPMN event can be used to represent (1) an event that triggers an agent to act, (2)
an event raised by the action of an agent, or (3) a final event that ends a certain process. In addition,
BPMN allows us to specify whether an event will pause, resume or interrupt (and redirect) an action. A
BPMN activity can be used to represent an action performed by an agent. It represents a step or action
(not a state) in the process. A BPMN gateway can be used to represent various types of decisions, such as
branching, selection and merging. The BPMN connecting objects are used to connect the BPMN flow ob-

3660

Onggo

jects. Experienced modellers may appreciate that the combinations of flow objects and connecting objects
in BPMN have the potential to represent various complex agent behaviours.

Depending on its behaviour, the environment in an ABS model can be passive or active. The envi-
ronment is passive if it reacts only as a response to an action performed by an agent. In the absence of ac-
tions from agents, the environment will remain the same. An active environment can change its state,
even in the absence of any actions by agents. This shows that the environment behaves very much like an
agent. Therefore, we can apply the same BPMN constructs we use for the agent to the environment.

Finally, BPMN imposes that the communications between participants must be conducted via mes-
sages and signals. Messages are sent to specific recipients and signals are broadcast (and it is up to the
participants to decide whether they are interested in those signals). This is consistent with the interactions
between agents in ABS. Hence, this section has shown that BPMN has the ability to represent the core
components of an ABS model, i.e. agents and their attributes, behaviour, environment and interactions.

3 ABS MODEL REPRESENTATION USING A BPMN-PATTERN

To help modellers use BPMN to represent an ABS model, this paper proposes a BPMN pattern that is
built based on DEVS’s internal and external functions and which provides visual representation of them.
DEVS is one of the most elegant formal specification languages that has been used to represent ABS
models (Dávila and Uzcátegui 2000, Zaft and Zeigler 2002). Therefore, we can tap into the significant
body of knowledge that proves the general computing power of DEVS. We use an internal function and
an external function to represent an action performed by an agent based on a condition internal to the
agent and an action performed in response to an action performed by another agent, respectively. Figure 3
shows the BPMN pattern that provides a visual representation of the internal and external functions of an
agent.

Figure 3: BPMN pattern for a generic agent

 The pattern shows that a start event (leftmost circle) activates an agent. A start event is represented as
a circle with a single thin line boundary. Once activated, the agent will perform a self-initialization action.
This is followed by the main actions that will be performed by the agent throughout its lifetime. This is
represented by a sub-process called Activate agent in the diagram. The sub-process is used to en-

3661

Onggo

capsulate the two types of actions (or functions) that an agent can perform: internal and external. The in-
ternal function is repeated until the simulation ends. This is indicated by the loop icon at the bottom of the
internal function sub-process. If necessary, modellers can add logical rules to specify the conditions for
the execution of certain internal functions. The external functions are represented differently. Each exter-
nal function is represented as a non-interrupting BPMN event sub-process, i.e. a sub-process that is acti-
vated as a response to an event external to the agent, and its execution will not terminate the execution of
the currently active internal and other external functions. A non-interrupting event sub-process and the
event that triggers it are represented by a dashed-line boundary in the diagram. If the agent needs to inter-
rupt the execution of its internal function, the modeller needs to specify this explicitly in the BPMN dia-
gram. When the simulation ends, the agent will wait until all actively running internal and external func-
tions end before executing the activity Finalise agent. When this task is complete an end event is
raised and the agent dies. An end event is represented as a circle with a single thick line boundary.

Figure 4: A grid in a SugarScape model represented using a BPMN pattern

3.1 Example: SugarScape

A variant of the SugarScape (Epstein and Axtell 1996) model is used to demonstrate how a BPMN
pattern is used to represent an ABS model. The SugarScape model is chosen because it is one of the

3662

Onggo

most widely known ABS models. Unlike the rumour model used in Onggo and Karpat (2011), this model
shows more complex behaviour and interactions between agents. The SugarScape model has one type
of agent, i.e. SugarPerson, and each of them lives in a grid, i.e. SugarGrid. The agents can move
to different grids in a two-dimensional world that is divided into n×n grids during their lifetime.

Each grid contains some sugar. The amount of sugar varies from grid to grid and grows over time un-
til it reaches a pre-determined maximum amount. Since each grid is active, i.e. it behaves even in the ab-
sence of any action from any SugarPerson, each grid is represented as an agent. The representation of
each SugarGrid using the BPMN pattern is shown in Figure 4. The growth of sugar in a grid is repre-
sented as an internal function (see the top sub-process in Activate grid), because its execution is not
triggered by any external event. The model specifies that each iteration takes one unit of simulation time.
We can choose to implement the loop explicitly, as shown in the figure, or implicitly by using a BPMN
loop symbol (see Figure 3). The model specifies three external functions. The first external function re-
sponds to any sugar enquiry message sent by a SugarPerson. This message is sent when a Sugar-
Person is looking for a grid with the highest amount of sugar. A non-shaded icon in BPMN denotes ad-
jective “catching” (or receiving), and a shaded icon denotes adjective “throwing” (or sending). In this
example, when the external function receives the “sugar enquiry” message, it will send a “sugar info”
message to the sender. The second external function is executed when a SugarPerson sends a message
to indicate its intention to enter the grid. If the grid has been occupied by another SugarPerson, the re-
quest will be declined. Otherwise, the grid will send a message to grant permission and set its status to
“occupied”. Subsequently, the grid will wait for a harvest request from the SugarPerson. When the
harvest request is received, the grid will send the amount of harvested sugar requested and reset its sugar
level to zero. The last external function is executed when the current occupier leaves the grid. The grid
will check whether the sender is the current occupier. If the sender is not the current occupier, the request
will be ignored. Otherwise, the status of the grid will be set to “available”.

Figure 5: A person in a SugarScape model represented using a BPMN pattern

3663

Onggo

The agents (i.e., instances of SugarPerson) are created with different amounts of sugar in their

possession. They have varying levels of vision quality and metabolic rates. Each agent will move to a grid
with the highest amount of sugar and harvest all the sugar in the grid. If there is a tie, a grid is chosen at
random. An agent can only move to any unoccupied grid within its range of vision. Each time, every
agent consumes some of its sugar. The amount of sugar consumption depends on the metabolic rate of the
agent. If the amount of sugar in its possession is not enough, the agent will die. Each agent will eventually
die when it reaches its maximum age. When an agent dies, a new agent is created somewhere in the world
to keep the population level constant but the sugar will not be passed on to the new agent (no sugar inher-
itance). The BPMN representation for a SugarPerson is shown in Figure 5. Since a SugarPerson
has an internal function without any external function, we can remove one sub-process layer in the dia-
gram. The internal function starts with a SugarPerson sending enquiries to grids within its visibility
region. The parallel bar at the bottom of the activity indicates that the activity is performed a few times on
a list of items, in this case a list of visible grids. The next steps follow the behaviour explained earlier.
The whole process will be repeated until the simulation ends, as indicated by the loop icon at the bottom
of the sub-process Activate person.

Inter-agent communications and the interaction between an agent and its environment can be repre-
sented using message flows. The interaction between two agents can be represented simply by connecting
the relevant flow object (except for a gateway) in one agent to another flow object (except for a gateway)
in the other agent. The same applies for the interaction between an agent and its environment. In the ex-
amples given in Figures 4 and 5, we simply connect each throwing event to its corresponding catching
event. BPMN also allows us to view the interactions at the higher abstraction level using a conversation
diagram, as shown in Figure 6.

Figure 6: Conversation diagram showing a high-level view of interactions in a SugarScape model

4 CONCLUSION

Although BPMN is designed as a process-oriented modelling language, we have shown that BPMN can
be also used as an agent-oriented modelling language. To help modellers use BPMN to represent an ABS
model, we have proposed a BPMN pattern. The BPMN pattern provides a visual representation of ABS
models where agents and their environment are specified as a set of internal functions, external functions
and attributes. This paper does not claim that the proposed BPMN pattern can be used to represent all
ABS models. However, the proposed pattern provides a visual representation equivalent to DEVS’ inter-
nal and external functions which have been used in a number of studies to represent ABS models.

BPMN has some limitations in representing ABS models which need to be addressed in future re-
search to make it applicable to a wider range of ABS models. First, representation of the environment is
limited. It is difficult to model an environment that cannot be easily represented as a set of internal and
external functions. Secondly, BPMN assumes an implicit queuing for each activity. Hence, it is lacking in
the representation of the resources needed for an activity to start. Thirdly, the structure of agents repre-
sented in BPMN is static. Hence, it is difficult to represent changes of structure in the model, such as add-
ing new BPMN activities or removing existing activities while the model is running. Finally, historically,
BPMN does not provide detailed representation of data. Hence, the representation of complex attributes
of an agent (such as memory, perceptions, beliefs and desires) is not adequate.

SugarPerson SugarGrid

3664

Onggo

ACKNOWLEDGMENT

The author is grateful to Professor Mike Pidd (Lancaster University) for summarizing the feedback from
the audience on the paper presented at the last Winter Simulation Conference (i.e., Onggo and Karpat
2011).

REFERENCES

Alan, R.J. 2010. “Survey of Agent-Based Modelling and Simulation Tools.” Science and Technology Fa-
cilities Council, UK. http://epubs.stfc.ac.uk (Accessed April 3, 2012).

Bauer, B., J. P. Müller, and J. Odell. 2001. “Agent UML: A Formalism for Specifying Multiagent Interac-
tion.” In Agent-Oriented Software Engineering, Edited by P. Ciancarini, and M. Wooldridge, 91–103.
Berlin: Springer-Verlag.

Bonabeau, E. 2002. “Agent-Based Modeling: Methods and Techniques for Simulating Human Systems.”
In Proceedings of the National Academy of Sciences of the United States of America, 99 (Suppl 3),
7280–7287.

Dávila, J., and M. Uzcátegui. 2000. “GALATEA: A Multiagent Simulation Platform.” In Proceedings of
the International Conference on Modeling, Simulation and Neural Networks.
http://iies.faces.ula.ve/Amse2000/papers/simulation/MSNN-JDMU00.pdf (Accessed April 3, 2011).

Epstein, J. M., and R. Axtell. 1996. Growing Artificial Societies: Social Science from the Bottom Up.
Washington, D.C.: Brookings Institution Press.

Holvoet, T. 1995. “Agents and Petri Nets.” In Petri Nets Newsletters, Edited by O. Herzog, W. Reisig,
and R. Valk, 49, 3–8.

Macal, C. M., and M. J. North. 2010. “Tutorial on agent-based modelling and simulation.” Journal of
Simulation 4:151–162.

Moldt, D., and F. Wienberg. 1997. “Multi-Agent Systems Based on Coloured Petri Nets.” In LNCS 1248:
Application and Theory of Petri Nets, Edited by P. Azéma, and G. Balbo, 82–101. Berlin: Springer-
Heidelberg.

North, M. J., and C. M. Macal. 2007. Managing Business Complexity: Discovering Strategic Solutions
with Agent-Based Modeling and Simulation. Oxford, UK: Oxford University Press.

Object Management Group. 2010. “Business Process Model and Notation (BPMN) version 2.0.”
http://www.bpmn.org (Accessed April 3, 2012).

Odell, J., H. Parunak, and B. Bauer. 2000. “Extending UML for Agents.” In Proceedings of the Agent-
Oriented Information Systems Workshop, 3–17.

Onggo, B. S. S. 2010. “Running Agent-Based Models on a Discrete-Event Simulator.” In Proceedings of
the 24th European Simulation and Modelling Conference, 51–55. Ostend, Belgium: Eurosis-ETI.

Onggo, B. S. S. and O. Karpat. 2011. “Agent-Based Conceptual Model Representation using BPMN.” In
Proceedings of the 2010 Winter Simulation Conference, Edited by S. Jain, R.R. Creasey, J. Himmel-
spach, K.P. White, and M. Fu, 671–682. Los Alamitos, California: IEEE Computer Society Press.

Saple, A., and L. Yilmaz. 2006. “Agent-Based Simulation Study of Behavioral Anticipation: Anticipatory
Fault Management in Computer Networks.” In Proceedings of the 44th annual Southeast regional
conference, 383–388. New York, NY: ACM Press.

Van der Zee, D. J. 2009. “Building Insightful Simulation Models using Formal Approaches – A Case
Study on Petri Nets.” In Proceedings of the 2009 Winter Simulation Conference, Edited by M. D.
Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, 886–898. Los Alamitos, California:
IEEE Computer Society Press.

Zaft, G., and B. P. Zeigler. 2002. “Discrete Event Simulation of Social Sciences: The XeriScape Artificial
Society.” In Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informat-
ics.

Zeigler, B.P. 1976. Theory of modeling and simulation. New York, NY: John Wiley.

3665

Onggo

AUTHOR BIOGRAPHY

BHAKTI STEPHAN ONGGO is a lecturer in Business Process Modeling and Simulation at the De-
partment of Management Science at the Lancaster University Management School, Lancaster, United
Kingdom. He completed his PhD in Computer Science from the National University of Singapore and his
MSc in Management Science from the Lancaster University. His research interests are in the areas of
simulation methodology (modeling paradigms and conceptual modeling), simulation technology (parallel
and distributed simulation) and business process modeling and simulation applications. His email address
is s.onggo@lancaster.ac.uk.

3666

