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ABSTRACT

We study asymptotically valid confidence intervals (CIs) for steady-state quantiles computed from nonover-
lapping batches. Asymptotic validity of the CIs is established under conditions that are weaker and more
easily verifiable than the usual mixing assumptions. The performance of the CIs is evaluated with a
preliminary experimental study. These results form the basis for developing fully sequential procedures
that yield CI estimators of steady-state quantiles with user-specified absolute or relative precision.

1 INTRODUCTION

Simulation is perhaps the most widely used tool in the fields of industrial engineering, operations research,
and the management sciences. Steady-state simulations play a fundamental role in system design, and
they are particularly appropriate for evaluating long-run system performance or risk. For instance, what
is the steady-state expected return from a certain financial management strategy, or what is the long-term
probability of a default? Although there are now many commercial and public-domain software packages
supporting the development of valid and efficient simulation models for complex systems, rarely have these
packages been equipped with comprehensive facilities for performing rigorous, state-of-the-art statistical
analysis of the outputs arising from steady-state simulation experiments. In many large-scale simulation
applications, most of the effort is devoted to the development and execution of computer-based models,
while relatively little attention is devoted to careful follow-up analysis of the final results. For questions
about risk in the context of steady-state simulation analysis, there is not even much literature on the
supporting theory, not to mention the lack of implementation of that theory in practical problems.

This paper is a step towards the development of sequential procedures for computing valid point
estimators and confidence intervals for steady-state quantiles. While a mean measures central tendency,
quantiles are used to measure risk; furthermore, CIs for means measure estimation error, not future risk
(Nelson 2008). In many applications of simulation to problems of risk analysis, a typical objective is to
estimate quantiles such as the Value at Risk of a portfolio (Glasserman 2004) and the fair value of options.

In the development of effective steady-state simulation analysis procedures, the main obstacle is that
generally the associated output processes do not even approximately satisfy the basic assumptions underlying
conventional statistical methods—in particular, successive outputs are rarely independent and identically
distributed (i.i.d.) normal random variables (e.g., consecutive waiting times in a heavily congested queueing
simulation with the empty-and-idle initial condition). Consider the estimation of the steady-state mean
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µ ≡ limn→∞ E(Xn) of a process {Xi : i ≥ 1} representing successive responses within a single simulation
run. If the simulation is in steady-state operation, then the sample mean Xn ≡ n−1

∑
n
i=1 Xi based on the

observations {X1, . . . ,Xn} is an unbiased estimator of µ . To estimate the precision of Xn as a point estimator
of µ , we seek an estimator V̂ar(Xn) of Var(Xn); and ultimately we build a CI for µ that is typically of
the form Xn±q

[
V̂ar(Xn)

]1/2, where q is an appropriate critical value. The CI’s half-length represents the
precision (“margin for error”) of its midpoint Xn, while the coverage probability represents the likelihood
of achieving that precision in repeated applications.

If the Xi are i.i.d., then the sample variance S2
n ≡ ∑

n
i=1(Xi−Xn)

2
/
(n−1) is an unbiased estimator of

Var(Xi) so that Var(Xn) can be estimated by S2
n/n. Otherwise, Xn and S2

n/n can be biased estimators of µ

and Var(Xn), respectively. In many practical applications, E(S2
n/n)� Var(Xn) (Law 2007); and then CIs

for µ based on Xn and S2
n have such significant undercoverage as to make those CIs grossly misleading.

The estimation of Var(Xn) or, almost equivalently, the asymptotic variance parameter σ2 ≡
limn→∞ nVar(Xn), has been the goal of many techniques, including nonoverlapping batch means (NBM)
(Fishman 2001), overlapping batch means (OBM) (Meketon and Schmeiser 1984), and standardized time
series (STS) (Schruben 1983). Some of these techniques, especially STS, can be used to obtain variance
estimators that possess low bias and variance, and hence low mean squared error (MSE) (Alexopoulos et al.
2007a, 2007b). The literature contains several effective sequential procedures based on NBM that deliver
CIs for µ with user-specified absolute or relative accuracy (Fishman and Yarberry 1997; Lada, Steiger, and
Wilson 2008; Steiger et al. 2005; Tafazzoli et al. 2011a, 2011b, 2011c).

Compared with estimation of the steady-state mean, the development and implementation of automated
sequential procedures for estimating steady-state quantiles is much more difficult. Given p ∈ (0,1) and the
marginal cumulative distribution function (c.d.f.) of the target process, F(x)≡ Pr{X1 ≤ x}, x∈R, we define
the p quantile as xp ≡ F−1(p) ≡ inf{x : F(x) ≥ p}. When the data are identically distributed, the point
estimation of xp is straightforward: sort the observations in order X(1) ≤ ·· · ≤ X(n) to yield the estimator
x̂p = X(dnpe), where d·e denotes the ceiling function. If the Xi are also independent and F(·) is differentiable
at xp with derivative F ′(xp)> 0, then valid large-sample CIs for xp can also be easily computed. The variate√

n(x̂p− xp) is asymptotically normal with mean zero and variance p(1− p)/[F ′(xp)]
2 (Hogg, McKean,

and Craig 2005); thus an asymptotically valid CI for xp has the form x̂p±q
[
V̂ar(x̂p)

]1/2, where V̂ar(x̂p) is
an estimator of Var(x̂p) and q is the associated critical value.

If the Xi are dependent and possibly contaminated by an initial transient, then the quantile xp can be
estimated using the data observed on a single run using any of the methods described in Bekki et al. (2010),
Chen and Kelton (2006, 2008), Iglehart (1976), Jain and Chlamtac (1985), Jin, Fu, and Xiong (2003),
Raatikainen (1987, 1990), and Seila (1982a, 1982b). The relatively sparse simulation literature on this
problem reflects the following difficulties: (a) lack of an adequate theoretical basis for some of the existing
methods; (b) lack of effective guidelines for using the methods in practice; (c) poor performance of the
estimators in industrial-strength applications; and (d) excessive computational or storage requirements.

In Section 3, we focus on the method of nonoverlapping batch quantiles (NBQ), wherein we form
batches and use within-batch sample quantiles as the basic observations. Wood and Schmeiser (1995) study
quantile estimation based on overlapping batches. For extreme quantiles, one can apply the maximum
transformation method (Heidelberger and Lewis 1984) to independently simulated groups of observations
by averaging the within-group quantile estimators across groups to yield point and CI estimators of xp.

The remainder of this article proceeds as follows. Section 2 lays the theoretical foundations of the NBQ
methodology based on assumptions that are more applicable and easier to verify that the mixing conditions
often imposed in the literature. The preliminary comparisons of the NBQ method with existing methods
presented in Section 3 illustrate the potential of the sequential methods under study. Section 4 contains
concluding remarks and outlines the next steps in our endeavor. The slides for the oral presentation of this
article are available online via www.ise.ncsu.edu/jwilson/files/wsc12nbq.pdf [accessed July 15, 2012].
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2 QUANTILE ESTIMATORS BASED ON THE METHOD OF NONOVERLAPPING BATCH
QUANTILES (NBQ)

To lay a sufficiently broad foundation for building point and CI estimators of the steady-state p quantile xp,
we assume the stationary simulation output process {Xi : i = 0,1, . . .} can be expressed as a (measurable,
possibly nonlinear) function of a sequence of “shocks” {εi : i ∈ Z} that are i.i.d. random variables,

Xi = G(. . . ,εi−2,εi−1,εi) for i = 0,1, . . . , (1)

so the {εi} may be regarded as the stream of random numbers driving the simulation, and the function
G(·) represents the operations performed by the simulation model on its probabilistic inputs up to time i so
as to generate the corresponding output response Xi. We assume that in a nonempty open interval D(xp)
containing the desired quantile xp, the random variable Xi has a probability density function (p.d.f.) f (x)
with derivative f ′(x) such that

f (xp)> 0 and sup
{

f (x)+ | f ′(x)| : x ∈D(xp)
}
< ∞. (2)

We also assume that {Xi : i = 0,1, . . .} satisfies the geometric-moment contraction (GMC) condition—i.e.,
there exist constants α > 0, C > 0, and r ∈ (0,1) such that for the independent input processes {ε j : j ∈ Z}
and {ε∗j : j ∈ Z} each consisting of i.i.d. variates, we have

E
[∣∣G(. . . ,ε−2,ε−1,ε0,ε1,ε2, . . . ,εi)−G(. . . ,ε∗−2,ε

∗
−1,ε

∗
0 ,ε1,ε2, . . . ,εi)

∣∣α ]≤Cr i for i≥ 0 . (3)

The GMC condition (3) requires that if two paired replications of the simulation model associated with
the function G(·) are initialized independently but then use common random numbers after the simulation
starting time, then the difference Xi−X∗i between the matching output responses generated by the two
simulations at time i will converge to zero in the mean of order α as the time index i→ ∞. If the GMC
condition (3) holds, then the difference Xi−X∗i also converges in probability to zero as i→ ∞ (Bickel and
Doksum 2007).

As noted by Wu (2005), condition (3) is easier to check than the strong mixing condition (Bradley
2005). The setup (1)–(3) applies to the usual finite-order moving-average and autoregressive processes;
and the latter class of processes forms the basis for the autoregressive method of steady-state simulation
analysis (Law 2007). Moreover, conditions (1)–(3) are satisfied by a rich diversity of widely used linear
and nonlinear processes, including conditional heteroscedastic (ARCH) processes (Engle 1982), random
coefficient autoregressive (RCA) processes (Tsay 1987), and threshold autoregressive (TAR) processes
(Tong 1990), as well as a broad class of Markov chains (Wu and Woodroofe 2000).

Let {X1, . . . ,Xn} denote a data set from which we wish to build point and CI estimators of xp using
the NBQ method with b nonoverlapping batches each of size m. With the definition

Ii(x)≡

{
1 , if Xi ≤ x
0 , otherwise

for x ∈ R and i = 1,2, . . . ,

we see that {Ii(xp) : i = 1,2, . . .} is a stationary process with E[Ii(xp)] = p and Var[Ii(xp)] = p(1− p). The
GMC condition (3) and Theorem 4 of Wu and Shao (2004) imply that the process {Ii(xp)} satisfies the
central limit theorem (CLT) √

n
[

I(xp,n)− p
]/

σ
I(xp)

=⇒n→ ∞
N(0,1) , (4)

where:

I(xp,n)≡ n−1
n

∑
i=1

Ii(xp)
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is the sample mean of the data set {Ii(xp) : i = 1, . . . ,n};

σ
2

I(xp)
= lim

n→∞
nVar

[
I(xp,n)

]
= p(1− p)

∞

∑
`=−∞

ρI(xp)
(`)< ∞ (5)

is the variance parameter for the process {Ii(xp)}; ρI(xp)
(`) ≡ Corr

[
Ii(xp), Ii+`(xp)

]
denotes the lag-`

correlation for ` ∈ Z; and =⇒n→ ∞
denotes weak convergence as n→ ∞.

Next we consider relevant statistics computed from b nonoverlapping batches of the original sequence
of observations {Xi}, where the m is the size of each batch; and we let m→∞ while keeping b fixed. From
the jth batch of observations {X( j−1)m+1, . . . ,X jm} (where j = 1, . . . ,b), we define the associated batch
means,

I j(xp,m)≡ m−1
m

∑
i=1

I( j−1)m+i(xp) for j = 1, . . . ,b .

Moreover we sort the jth batch of observations {X( j−1)m+1, . . . ,X jm} in ascending order to yield the order
statistics

X j,(1) ≤ X j,(2) ≤ ·· · ≤ X j,(m) ;

and the associated quantile estimator based on the jth batch of size m is

x̂p( j,m) = X j,(dmpe) .

From Theorem 4 of Wu (2005), we see that with probability 1 (w.p.1), limm→∞ x̂p( j,m) = xp and
limm→∞ I j(xp,m) = p for j = 1, . . . ,b so that we also have the usual batch means–type results:

lim
m→∞

b−1
b

∑
j=1

x̂p( j,m) = xp and lim
m→∞

b−1
b

∑
j=1

I j(xp,m) = p w.p.1.

Since the far right-hand side of (5) is absolutely convergent, we see that lim|`|→∞ ρI(xp)
(`) = 0; and if we

take
ρ I(xp,m)(`)≡ Corr

[
I j(xp,m), I j+`(xp,m)

]
for all ` ∈ Z ,

then we see that limm→∞ ρ I(xp,m)(`) = limm→∞ m−1
∑

m−1
j=−m+1(1−| j|/m)ρI(xp)

(`m+ j) = 0 for ` ∈ Z. Ex-
ploiting (4) and the continuous mapping theorem (Theorem 2.7 of Billingsley 1999) along the lines of
the proof of Theorem 1 in Steiger and Wilson (2001), we see that the b× 1 vector of batch means[

I1(xp,m), . . . , Ib(xp,m)
]T satisfies the multivariate CLT

√
m
[

I1(xp,m)− p, . . . , Ib(xp,m)− p
]T

=⇒m→ ∞
Nb
[

0b,σ
2

I(xp)
Ib
]
,

where 0b is the b×1 vector of zeros and Ib is the b×b identity matrix.
From Theorem 4 of Wu (2005), we see that

√
m
[

x̂p(1,m)− xp, . . . , x̂p(b,m)− xp
]T

=−
[√

m
/

f (xp)
][

I1(xp,m)− p, . . . , Ib(xp,m)− p
]T

+
[

R1(m), . . . ,Rb(m)
]T

,

where

R j(m) =
[√

m
/

f (xp)
]
·O
[
m−3/4(logm)3/2]= O

[
m−1/4(logm)3/2] −→m→∞

0 for j = 1, . . . ,b w.p.1.

193



Alexopoulos, Goldsman, and Wilson

Combining the multivariate CLT for
[

I1(xp,m), . . . , Ib(xp,m)
]T with the last two displays and applying

Slutsky’s Theorem (Bickel and Doksum 2007), we obtain a multivariate CLT for batch quantiles under the
GMC condition (3):

√
m
[

x̂p(1,m)− xp, . . . , x̂p(b,m)− xp
]T

=⇒m→ ∞
Nb

{
0b,
[

σ
2

I(xp)

/
f 2(xp)

]
Ib

}
. (6)

Muñoz (2010) obtained a comparable result for Markov chains that obey a certain functional CLT.
It follows from (6) that in terms of the sample mean and variance of the nonoverlapping batch quantiles,

x̃p(b,m)≡ b−1
b

∑
j=1

x̂p( j,m) and S2
x̂p
(b,m)≡ (b−1)−1

b

∑
j=1

[
x̂p( j,m)− x̃p(b,m)

]2
,

as m→ ∞ an asymptotically valid 100(1−α)% NBQ CI for xp has the form

x̃p(b,m)± tα/2,b−1Sx̂p(b,m)
/√

b, (7)

where tβ ,ν is the 1−β quantile of Student’s t distribution with ν degrees of freedom.
Paralleling the situation with the classical 100(1−α)% NBM CI for µ , the NBQ CI for xp may require

adjustments to handle the following anomalies that are due to the finite batch size m used in practice:
(a) slowly declining bias in the {x̂p( j,m)} of the form O

[
m−3/4(logm)3/2

]
; (b) residual nonnormality

(specifically, nonzero skewness) of the {x̂p( j,m)}; and (c) residual correlation between the {x̂p( j,m)}. The
skewness and correlation adjustments developed for recent NBM methods (Lada et al. 2008; Tafazzoli et al.
2011a, 2011b, 2011c) may be adapted to resolve issues (b) and (c), but (a) may require the formulation of an
appropriate resampling method for dependent data (Lahiri 2003; Shao and Tu 1995)—e.g., a computationally
efficient version of the jackknife-after-bootstrap method.

3 COMPARISONS WITH EXISTING METHODS

The fixed-sample-size methods of Iglehart (1976), Moore (1980), and Seila (1982a, 1982b) assume that
the underlying process {Xi} is regenerative, and those methods are based on independent sample quantiles
obtained within regenerative cycles. In particular, Seila’s method uses batches of regenerative cycles and
jackknifing within each batch to reduce the bias of the average quantile estimator. The indirect method of
Bekki et al. (2010) estimates the Cornish–Fisher expansion (Cornish and Fisher 1937) for an individual
response Xi based on a standard normal random variable using the first four sample moments of the
observations {Xi : i = 1, . . . ,n}. Hence this method can estimate several quantiles simultaneously without
data sorting. However, sample moments computed from highly correlated data can exhibit slow convergence
to the true moments of the response; this phenomenon is evident from sample sizes of the same order of
magnitude as in Table 1 below.

The first sequential method for estimating the steady-state quantile xp was proposed by Raatikainen
(1990). Within each nonoverlapping batch of observations, quantile estimates are computed by the extended
P2 algorithm (Jain and Chlamtac 1985; Raatikainen 1987), which approximates the marginal c.d.f. F(·)
using a piecewise quadratic curve and then inverts the approximated c.d.f. to obtain a point estimator
of xp. The CI estimator for xp exploits a univariate analogue of (6), spectral estimation of the variance
parameter σ2

I(xp)
based on the method of Heidelberger and Welch (1981), and estimation of f (xp) using the

approximation to F(·). This method has several drawbacks. (a) While the P2 method avoids sorting and
has low storage requirements, no conditions on the {Xi} are established that are sufficient to ensure the
final point estimator of xp is consistent. (b) The CI for xp requires estimating f (xp), which is problematic
because the latter operation is based on a piecewise quadratic approximation to F(·) in a neighborhood
of xp. (c) The P2 algorithm ignores the task of batch size selection, an archetypal problem in this area
of study. (d) Our numerical experiments indicate that recent efficient sorting techniques and inexpensive
storage outweigh the advantages of the P2 algorithm that existed in the early 1990s.
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The sequential algorithms of Chen and Kelton (2006) are based on a small number of replicate runs
(typically set to 3). Loosely speaking, each iteration of the first run of their zoom-in (ZI) algorithm obtains
lower and upper bounds on each quantile estimate and discards data outside the range of the computed
bounds. Thus the run progressively zooms-in towards the unknown quantile. The first run terminates based
on several rules, while the remaining runs use the bounds computed in the first run (though this results in
correlated runs). The quasi-independent (QI) algorithm attempts to create approximately independent data
by progressively spacing observations used to compute a quantile estimate within a replication. Although
the ZI algorithm outperformed the QI algorithm in systems with a high degree of autocorrelation, the ZI
algorithm’s reliance on several user-defined parameters makes it difficult to convert to a fully automated
procedure requiring minimal user intervention.

The following example illustrates the potential of the NBQ method. An ideal sequential procedure
should progressively increase both the batch size and the number of batches in order to achieve the nominal
CI coverage and precision.
Example 1 Consider a stationary M/M/1 queueing system with interarrival rate λ = 0.8 and service rate
ω = 1, and let Xi be the time-in-system of entity i. It is well known that the distribution of Xi is exponential
with rate ω−λ = 0.2; hence the response Xi has mean 5 and p quantile xp =−5ln(1− p), 0 < p < 1.

Table 1 contains experimental results based on 1000 independent replications of the QI algorithm in
Chen and Kelton (2006) with ε = 0.005 such that Pr{x̂p−ε ≤ xp ≤ x̂p+ε} ≥ 0.95, where the p± ε quantile
estimates are based on quasi-independent data. Each replication involves 3 independent runs; and the
number of quasi-independent observations (38,416) required by each run was obtained from the formula
d1.962 p(1− p)/ε2e for p = 0.5. The first row contains point estimates, the second row gives the average CI
half-lengths, and the third row displays the estimated CI coverages. All algorithms were coded in Matlab
and were executed on a Condor Unix cluster.

Table 1: Experimental results for the QI algorithm in Chen and
Kelton (2006) for various quantiles of the time-in-system for an
M/M/1 system with traffic intensity 0.8. The estimates are based
on 1000 independent replications. The sample average number of
observations required per replication was 50,879,967.

p
0.1 0.3 0.5 0.7 0.9 0.95 0.99

Estimate 0.527 1.783 3.466 6.019 11.512 14.980 23.029
Half-length 0.015 0.023 0.045 0.069 0.137 0.199 0.456
Coverage 0.955 0.943 0.942 0.963 0.963 0.946 0.941

To establish a basis for applying the NBQ method to sojourn times in the steady-state M/M/1 queue,
we attempted to verify the GMC condition (3) analytically. Let Xi ≡ G(. . . ,ε−2,ε−1,ε0,ε1,ε2, . . . ,εi) and
X∗i ≡G(. . . ,ε∗−2,ε

∗
−1,ε

∗
0 ,ε1,ε2, . . . ,εi) for i = 1,2, . . . . Although we have been able to establish that there is

a random cutoff time T such that |Xi−X∗i |= 0 for i > T and Pr{0 < T < ∞}= 1 and although this appears
to be a stronger result than the GMC condition (3), unfortunately we have been unable to verify the latter
condition rigorously for the process {Xi}. Instead we attempted to provide some convincing empirical
evidence that the GMC condition is satisfied for the simulation-generated process at hand. Visual evidence
supporting the GMC condition is given in Figure 1.

We do not claim that Figure 1 constitutes definitive evidence of the validity of the GMC condition; but
we believe that it provides good evidence of the phenomenon mentioned in the previous paragraph—namely,
that beyond a certain time random time T that in this case is concentrated in the vicinity of the customer
index i≈ 375, the difference E

[∣∣Xi−X∗i |α
]

drops suddenly to zero; and prior to time T , the decline in the
log-transformed response ln

{
E
[∣∣Xi−X∗i |α

]}
appears to be a nearly linear function of the customer index

i. For the linear regression performed on the latter time series based on 4,000 independent replications
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Figure 1: Empirical verification of GMC condition (3) with α = 1.5 for sojourn times in an M/M/1 queue
with server utilization 0.8. Upper panel is a plot of 99% CIs for E

[∣∣Xi−X∗i
∣∣α ] vs. customer index i, where

i = 0,1, . . . ,800. Lower panel is a plot of ln
{

E
[∣∣Xi−X∗i

∣∣α]} vs. i for i = 0,1, . . . ,375.

of the stationary sojourn-time processes {Xi} and {X∗i }, we obtained a sample squared coefficient of
correlation R2 = 0.979 with the corresponding least squares estimates ln(C)≈ 2.3340 (so that Ĉ = 10.32)
and ln(r)≈−0.0233 (so that r̂ = 0.977). On the basis of this graphical and statistical evidence, we believe
that it is appropriate to apply the NBQ method to sojourn times in the M/M/1 queue. It is also noteworthy
that in a complex, large-scale simulation model, performing a meaningful empirical verification of the GMC
condition is substantially more straightforward than any attempt to verify conditions such as phi-mixing,
strong mixing, or the assumption of a functional central limit theorem for the simulation-generated process
at hand.

Table 2 displays experimental results based on 10,000 independent replications for the NBQ method
with a fixed number of batches b = 32 and progressively increasing batch sizes m. For each value of m,
the first row displays the averages of the point estimates for xp and the CI half-lengths based on (7), while
the second row displays the point estimates mS2

x̂p
(b,m) of the variance parameter σ2

xp
≡ σ2

I(xp)

/
f 2(xp) in (6)

and the estimated coverages of the CIs (in parentheses). When we use batch sizes that are sufficiently large
to yield valid CIs for the steady-state mean µ (namely, m = 4,096 or 8,192 as discussed in Alexopoulos
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and Seila 1998), the quantile-estimation problems outlined at the end of §2 are clearly revealed by the
relatively low coverages of the CI estimators of the selected steady-state quantiles and the relatively large
biases of the associated variance estimators. The boxed entries indicate that for a batch size of m = 16,384,
the variance estimators appear to converge to their (unknown) limits, and the 95% CIs seem to attain the
nominal coverage.

An effective sequential procedure based on the NBQ method should be able to detect that with the
batch size m = 16,384, the batched quantiles for each p under consideration have become approximately
i.i.d. Consider the extreme case of p = 0.99. Since the sample variance of the batched quantiles is roughly
211,338/16,384 = 12.9, an estimate of the number of batches of size 16,384 required to yield a 95% CI
that is as tight as the CI produced by the QI algorithm is d1.962×12.9/0.4562e= 239; this corresponds
to an approximate sample size of 16,384× 239 = 3,195,776, which is almost 13 times smaller than the
average sample size required by the QI algorithm. Indeed, an experiment with 256 batches of size 16,384
yielded 95% NBQ CIs with estimated coverage of 0.945 and average half-length 0.4436. The NBQ method
becomes even more effective for smaller quantiles. For instance, the computation of an estimate for the
median (p = 0.5) with the same absolute precision as the QI-based estimate in Table 1 would require about
76 batches of size 16,834; this corresponds to an approximate sample size of 1,245,184.

Table 2: Experimental evaluation of the NBQ method for various quantiles of the time-in-system for
a stationary M/M/1 system with traffic intensity 0.8. The estimates are based on 10,000 independent
replications with b = 32 batches and increasing batch sizes. For each batch size m, the CI on the
first line has the form x̂p±H, while the second line has the form V̂ar[x̂p] (estimated CI coverage).

p
m 0.1 0.3 0.5 0.7 0.9 0.95 0.99

512 0.585±0.100 1.960±0.302 3.780±0.578 6.462±0.989 11.474±1.652 13.861±1.881 17.272±2.083
39.4 (0.813) 359 (0.844) 1317 (0.873) 3852 (0.915) 10752 (0.917) 13937 (0.691) 17097 (0.010)

1024 0.552±0.050 1.862±0.167 3.614±0.344 6.266±0.662 11.714±1.404 14.637±1.745 19.187±2.101
19.9 (0.875) 220 (0.890) 930 (0.906) 3448 (0.924) 15525 (0.941) 23986 (0.877) 34764 (0.106)

2048 0.539±0.032 1.821±0.107 3.537±0.219 6.143±0.422 11.716±1.049 15.032±1.480 20.836±2.058
16.5 (0.911) 181 (0.917) 753 (0.925) 2802 (0.935) 17339 (0.949) 34529 (0.940) 66709 (0.424)

4096 0.533±0.022 1.802±0.073 3.501±0.148 6.080±0.283 11.627±0.712 15.095±1.114 22.038±1.917
15.3 (0.935) 166 (0.933) 690 (0.939) 2531 (0.944) 15991 (0.953) 39115 (0.951) 115816 (0.752)

8192 0.530±0.015 1.793±0.051 3.484±0.103 6.051±0.197 11.572±0.484 15.052±0.766 22.741±1.675
14.9 (0.941) 161 (0.943) 669 (0.944) 2444 (0.946) 14793 (0.947) 36999 (0.951) 176727 (0.897)

16384 0.528±0.011 1.787±0.035 3.474±0.072 6.034±0.137 11.539±0.335 15.013±0.522 23.001±1.295
14.5 (0.943) 157 (0.946) 651 (0.945) 2365 (0.946) 14116 (0.948) 34375 (0.948) 211338 (0.930)

32768 0.527±0.008 1.785±0.025 3.470±0.051 6.027±0.096 11.526±0.234 14.995±0.363 23.046±0.923
14.3 (0.943) 156 (0.946) 643 (0.943) 2335 (0.945) 13776 (0.947) 33166 (0.941) 214527 (0.950)

65536 0.527±0.005 1.784±0.018 3.468±0.036 6.027±0.068 11.519±0.165 14.987±0.255 23.038±0.634
14.3 (0.951) 155 (0.949) 640 (0.951) 2322 (0.952) 13681 (0.950) 32834 (0.951) 202817 (0.951)

131072 0.527±0.004 1.784±0.012 3.467±0.025 6.022±0.048 11.517±0.116 14.984±0.180 23.033±0.440
14.3 (0.951) 155 (0.952) 640 (0.951) 2322 (0.954) 13653 (0.950) 32639 (0.951) 195643 (0.948)

4 CONCLUSIONS

This paper obtained a central limit theorem for steady-state quantiles based on widely applicable conditions
that are easier to verify than the typical, often-imposed mixing conditions. The preliminary experimental
results in Section 3 illustrated the potential savings of a well-conceived sequential method over methods
in the literature.

The development of effective sequential procedures involves various additional problems we plan to
address. First, we plan to resolve the simulation start-up problem due to the simulation’s initial condition.
In practice, it is usually impossible to start a simulation in steady state; instead users often do the following:
(a) start the simulation in some convenient initial condition that may not be typical of steady-state operation;
and (b) select the warm-up period (whose statistics are discarded) so that beyond the warm-up point, the
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selected parameters (e.g., quantiles) of the observations are sufficiently close to the respective steady-state
values.

In the context of estimating the steady-state p quantile xp via batching, one can employ an approach
based on spaced batches of observations. From each spaced batch, a separate batch quantile estimator is
computed. By (6), the batch quantiles are asymptotically unbiased, normal, and independent as the batch
size and the spacer size increase. The randomness test of von Neumann (1941) can be successively applied
to spaced batch quantiles with progressively increasing batch sizes and interbatch spacer sizes so that when
the randomness test is finally passed, the resulting spaced batch quantiles are approximately independent
of each other and of the simulation’s initial condition. Recall that the bias of the batch quantiles depends
not only on initialization effects but also on the batch size; handling this latter source of bias is discussed
in Section 2.

Second, we are studying theoretical properties of the estimators x̃p(b,m) and S2
x̂p
(b,m) as both the

batch size m and the batch count b increase. It turns out that the sample variance S2
x̂p
(b,m) is not a

consistent estimator of the asymptotic variance parameter σ2
x̂p
≡ σ2

I(xp)

/
f 2(xp). These properties will guide

us towards the derivation of batching sequences that produce estimators of σ2
x̂p

with minimum asymptotic
MSE. While such results have been established for variance estimators relative to the steady-state mean
(Chien, Goldsman, and Melamed 1997; Damerdji 1994, 1995), no such results are known for quantile
estimation.
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