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ABSTRACT 

The paper introduces a discrete-event simulation-based decision supporting system aiming at 
automatically mirroring the current state of a large-scale material handling system of a production system 
in a digital model and supporting the analysis of diverse control settings and rules. The discrete-event 
digital model is built in an automated way and all the data necessary for the model are taken from a 
manufacturing execution system (MES) and additionally directly from programmable logic controllers 
(PLC). Main focus is given to present the results of the PLC program code processing method (code 
mapping) generating a structured dataset, as well as the model-reconstruction method for the simulation 
software. The easy-of-use support tool is intended to be used both in planning and operation phases of an 
automotive manufacturing company, thus the capabilities of model reconstruction and simulation are 
tested on real-world data. 

1 INTRODUCTION 

1.1 Simulation-based Support of Production Systems 

Simulation technologies are often used in supporting production control decisions and this is also 
particular for large-scale manufacturing systems. Several different applications of discrete-event 
simulation (DES) models in the control of manufacturing systems were presented in the two well-known 
text books Banks (1998) and Law and Kelton (2000). The simulation models used for supporting or 
evaluating production control decisions, generally, represent the flow of materials to and from processing 
machines and also the operations of machines themselves (Rabelo et al. 2003).  

Simulation models may capture the relevant aspects of a production system which cannot be 
represented in a deterministic optimization model. The most important topics in this respect are the 
uncertain availability of resources, uncertain processing times, quality of the raw material, unpredictable 
human behavior and insertion of conditional operations into technological routings (e.g. rework). 
Moreover, in case of a simulation model is used for supporting short-term or real-time decisions, it is 
particularly important to have quick response time. For instance, regarding production control, the closer 
we are to the short-term plans the more detailed simulation model is needed to accurately support factory 
control and planning decisions (Scherer 1998). However, detailed models will have lengthy, unacceptable 
response times. Consequently, special modeling logics are required to resolve this contradiction. 

A further issue related to the usage of the simulation in real-time control decision-making is the 
ability to map the exact state of the physical system into the digital world. This means that before each 
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simulation run, the simulation model has to be parameterized at runtime in a way to represent the state of 
the manufacturing system under analysis (i.e., the products under process on each machine tool, the state 
of each machine tool, the buffers queued with the products waiting for the process, batch sizes, allocated 
operators to machine tools and their calendar settings, etc.) 

Summing up the related issues of closely connecting simulation with the physical world in large-scale 
manufacturing systems, it can be stated that the three key issues of simulation are as follows 

1. Data acquisition and validation for simulation input, 
2. Quick response time of simulation runs and analysis, 
3. The ability of creating the snapshot of the physical system status in the simulation model by 

instantaneous feedback (Monostori at al. 2007). 

1.2 Automated Simulation Model Building 

Discrete event simulation is one of the most widely spread techniques to evaluate various aspects of a 
manufacturing or logistics system (O’Rielly and Lilegdon 1999). However, the design phase of a 
simulation project needs great resource expenditures. On the other hand, simulation is applied to long-
term planning, design and analysis of manufacturing systems. These models are termed “throw away” or 
“stand-alone” models because they are seldom used after the initial plans or designs have been finalized. 
As stated by Ryan and Heavey (2006) the most commonly used rule of a simulation project is the so 
called “40-20-40 rule”. The rule states that time spent developing a simulation project can be divided as 
follows: 40% to requirements and data gathering, 20% to model translation and 40% to experimentation. 

Time-consuming requirements gathering phase contains input data collection and preparation. 
Significant planning time reduction can be achieved by automating data gathering and preparation.  

Several approaches have been used for automating simulation model buildup by automatic input data 
gathering and processing. As opposed to the “traditional” use of simulation, Son and Wysk (2001) 
proposed that once the system design has been finalized, the simulation that was used for evaluation could 
be used as the basis for system control. In their concept simulation is created by using neutral system 
components, i.e., they made efforts to build simulation models for shop floor control system, generated 
automatically. Park et al. (2010) suggest a naming rule in programmable logic controllers (PLC) program 
codes to automatically identify objects and control logic in code giving a basic data set to build simulation 
model. This approach needs a renaming process on PLC codes if naming rule suggested is not applied. 
Bagchi et al. (2008) describe a discrete event simulator developed for daily prediction of WIP position in 
an operational wafer fabrication factory to support tactical decision-making. Model parameters are 
automatically updated using statistical analysis performed on historical event logs generated by the 
factory, while “snapshot” of current status of production is generated by using the manufacturing 
execution system (i.e., aggregated info of PLC). 

The most widely spread applications of using PLC codes for generating simulation models aims of 
verifying PLC codes themselves. Han et al. (2010) propose a prototyping to improve limitations of 
existing control logic verification methods and ladder programming. The technique proposed by them 
supports functionality verification of PLC code on low control level. Contrarily, PLC code process 
method proposed by the authors is for evaluating the effects of changing PLC codes on the overall 
system. 

Several previous studies aimed at reducing the time needed by the development phase of a simulation 
project of a manufacturing system highlights the importance of this topic. Wya et al. (2011) proposed a 
generic simulation modeling framework to reduce the simulation model building time. The proposed 
framework composed several software that contained information of layout and control logic of the 
modeled objects. According to this approach layout and control logic of the manufacturing system must 
be designed by the appropriate software. 

Data needed to build simulation model of a manufacturing system are available in production 
database or can be gathered. Nowadays majority of the enterprises are installing automated manufacturing 
system consisting of PLCs. Subsequently, the topology and the control logic of the manufacturing system 
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needed for a simulation model are inherently kept in these PLCs. Consequently, building of simulation 
models can be supported by data and control logic extracted from PLC codes. 

The paper introduces an ongoing research of PLC program code and historical data processing 
method that generates a structured dataset that can be used by manufacturing simulation software to 
automatically create and parameterize a model. 

2 NOVEL SOLUTION FOR SIMULATION-BASED SUPPORT OF PRODUCTION 
SYSTEMS 

2.1 Self-Building Simulation 

The main goal of development is the enhancement of the simulation-based analysis and control system by 
eliminating the manual data collection through automatic interfaces, creating a more realistic model of a 
real production system. Furthermore, the self-building production simulation should provide both, 
prospective (e.g. locate anticipated disturbances, identify trends of designated performance measures), 
and retrospective (e.g. gathering statistics on resources) simulation functionalities. Self-building 
simulation means that the simulation model is built up by means of the combination of the MES data as 
well as the knowledge extracted from the MES data (e.g. resource and execution model). In addition to 
the automatic model building feature, main requirement of the solution is to minimize the response time 
of the experiments and to enable the quasi “real-time” applicability of the simulation. 

Regarding the main operation modes of the simulator in the proposed architecture (Figure 1) are as 
follows: 

 Off-line validation, sensitivity analysis of the system. Evaluation of the robustness of system 
against uncertainties (e.g., different control settings, thresholds and system load levels). 
Consequently, this scenario analysis can point out the resources or settings which can endanger 
the normal operation conditions. 

 On-line, anticipatory recognition of deviations from the planned operation conditions by running 
the simulation parallel to the plant activities; and by using a look ahead function, support of 
situation recognition (proactive operation mode, Figure 1). 

 On-line analysis of the possible actions and minimization of the losses after a disturbance already 
occurred (reactive operation mode, Figure 1), e.g., what-if scenario analysis. 

 

 
Figure 1: Plant-level active disturbance handling realized by using reactive/proactive operation modes for 
simulation (Monostori et al. 2007). 
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timestamp of state change events (“Production system DB” in Figure 2). Possible states and parameters of 
elements, as well as global settings can be retrieved by statistical evaluation accomplished on these data 
as highlighted by “parameters, system status” in Figure 2. 

Data preparation is carried out before the overall simulation. MES production system data is refreshed 
on a real-time, formalizing the factory snap-shot, while PLC program codes are refreshed only if changes 
are made on the real physical system. The redundant data (applying “Simulation DB”, Figure 2) storage in 
the simulation model is compensated by the advantage of the shorter response time. Modeling real 
production systems frequently brings up the problem of handling hundreds of resources in a simulation 
model. Having the modeling objects in hand, which were created on the base of the conceptual model, in 
our architecture the simulation model is created automatically based on the pre-processed data 
(highlighted as “DES” in Figure 2).  

The automatic generation of the model is followed by initialization. There, besides classical 
parameter settings, the procedure involves the generation of input parameter specific model components 
(entities such as products, tools, machines and the snapshot of the system to be modeled, more detailed 
description can be found in (Pfeiffer et al. 2009)). Contrary to the previous phase, this one is carried out 
for each replication. The simulation model incorporates a number of control settings (e.g., thresholds 
values for buffer elements or dispatching rules for alternative machines) with which the simulation runs 
can be manually initialized by simulation experts (“Dashboard” and “Results&settings” in Figure 2). The 
simulation is started on the base of these statistics by generating random production orders which cover 
the product type distribution calculated from the MES database. Naturally, instead of randomly generated 
orders, the users of the simulation can also provide the input for the simulation model on the base of e.g., 
real customer order data. The simulation runs are repeated until the required number of replications is 
obtained. Each replication is a terminating, non-transient simulation run.  

In the last phase, the results are evaluated (critical values for defined KPI-s) and the results of the 
evaluation process are interpreted by the decision-maker (e.g. in form of reports, highlighted as 
“Dashboard” in Figure 2) who is responsible for taking the necessary actions. Several simulation results 
and statistics are calculated inside the simulation model and a graphical user interface (GUI) is provided 
for the visualization via a web browser of both, input settings, and statistical results (“Reports” in Figure 2). 

2.3 Model-Reconstruction Method using Program Code Exploration 

As mentioned above, several types of data are needed to build up a simulation model. In this section the 
PLC program code mapping procedure is explained more in the details, as the most important part of the 
automated input data preparation method, described previously in section 2.2. 

2.3.1 Variable and Value Identification of the PLC Code 

The PLC based data acquisition was carried out after a detailed inspection of the PLC program code, in 
order to determine the blocks of the code, which are essential for the model building. During the 
exportation of these blocks a suitable data format has to be chosen, which offers high level of data 
consistency and simple accessibility to the data stored. Considering these requirements Instruction List (or 
AWL) programming language was chosen as a textual export format. Since it is a low level programming 
language, it has a strict syntax which allows less difference in the code, which is desirable for further 
processing of the code. 

However, the file format of the exported data is plain text, which contains no markup information 
about the structure of the code and therefore it has to be included. This was accomplished by applying 
grammar analysis. The grammar analysis is based on a grammar which comprises the rules and class 
definitions concerning with the PLC code. An appropriate grammar is closely related to the IEC 61131-3 
standard (IEC) and the analyzed PLC code therefore, it can be used to parse the PLC code and to create a 
structured set of data, which highlights the desired information for model building. Grammar analysis can 
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2.3.2 Program Code Mapping 

Automatic model reconstruction,  in this context, can be considered as a mapping, which assigns the 
corresponding information – extracted from the PLC program – to properties of the simulation object 
instances. Properties such as identifier, type, physical and logical connections and other additional 
parameters of the instances are extracted from the PLC program during the parsing process (Figure 4). 
However, not all of the required information is accessible for the parser. This is mainly because of the 
large number of device level connections, which are therefore not represented explicitly in the relatively 
higher level PLC program. Including this missing information into the simulation model requests the 
application of alternative methods. 

 

 
Figure 4: Basic concept of PLC program code mapping 

 
The most important property of a model element instance is its type, because it essentially determines 

the behavior of the object. In the PLC program each element is referenced by a unique identifier number. 
In the declaration part of the program, the identifiers and the element types are matched. Based on this 
assignment a map structure can be created, where the type of each element can be looked up. However, 
there are certain references in the PLC program, where the elements cannot be identified unequivocally. 
The lack of the identifier refuses using the map structure to obtain the type of the element and causes the 
appearance of disconnected sequences of elements in the model. 

Analyzing the system in consideration in details shows that the occurrence of these “unidentified 
elements” are closely related to their neighbor elements, which together form a straight sequence of 
elements, a so called pattern. These patterns also contain the previously unidentified elements hence, they 
can provide the missing links between separated sequences of the model. Since the recognition of these 
patterns is based on a priori knowledge about the system, defining them is an input parameter of the 
reconstruction. 

Extending the model with the data gained from patterns has disadvantages as a pattern contains no 
information regarding the direction of the connections between the elements comprised. To avoid 
collision with already reconstructed sequences, each pattern is assumed as bidirectional.  Hence, except 
the case when a pattern is in fact bidirectional, it is leading to including non-existing connections, which 
can be confusing. Therefore, removing these unused connections is desirable. 

Analyzing the graph of connections it turned out that in most cases one end of the pattern is 
connected to a “regular” sequence of elements, which contains proper directional data. Therefore, it is 
possible to determine the valid direction inside a pattern of elements by using the available directional 
data of the surrounding elements. Figure 5 shows the basic idea of removing unnecessary connections. 
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4 CONCLUSIONS 

The paper revealed a discrete-event simulation approach applied for decision support of control related 
production applications. Design phase is a significant part of a simulation activity; hence reducing time of 
it significantly affects the effectiveness of the whole simulation. Automated data gathering supporting the 
buildup of simulation models is a possible solution to achieve this goal and is also a solution to create 
reusable models. Thus, self-building simulation has been introduced with three main operation modes to 
be applied for decision support. Moreover, several approaches were studied in the topic and revealed that 
PLC codes store information needed to build up a simulation model. A new procedure for extracting 
topology and control logic data of system from PLC codes has been introduced. Data stored in production 
database were used to parameterize objects of the model and generating input for simulation experiments. 

The results introduced in the paper is intended to be applied on a real-world, automated intra-plant 
logistics system of a manufacturing company in the near future. Two levels of application are considered, 
planning and execution level.  

At the planning level the proposed simulation-based system supports the decisions related to a 
planning activities, by analyzing possible effects of changes in some part of PLC code of the control 
system, by critical situation analysis of the overall material handling system, as well as by the evaluation 
of throughput, bottlenecks, waiting times, number of pallets needed. Contrary, at the execution level the 
main goal is to support decisions related to the anticipatory recognition of disturbances and to estimate 
their influences (runtime simulation, monitoring KPI-s). This means testing predefined methods or 
scenarios for resolving problems and deviations (e.g., buffer settings, routing of pallets). 
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