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ABSTRACT

We consider a repeated newsvendor setting where the parameters of the demand distribution are unknown,
and we study the problem of setting inventory targets using only a limited amount of historical demand data.
We assume that the demand process is autocorrelated and represented by an Autoregressive-To-Anything
time series. We represent the marginal demand distribution with the highly flexible Johnson translation
system that captures a wide variety of distributional shapes. Using a simulation-based sampling algorithm,
we quantify the expected cost due to parameter uncertainty as a function of the length of the historical
demand data, the critical fractile, the parameters of the marginal demand distribution, and the autocorrelation
of the demand process. We determine the improved inventory-target estimate accounting for this parameter
uncertainty via sample-path optimization.

1 INTRODUCTION

The common practice in production and inventory management is to estimate the unknown parameters of
the demand distribution using a finite (and sometimes, very limited) amount of real-world data, and then
to replace the unknown parameters in the inventory model with these estimates. This practice, however,
ignores the uncertainty around the estimated demand parameters (i.e., parameter uncertainty), and accounts
only for stochastic uncertainty (i.e., the uncertainty due to stochastic demand before the stocking decision).
Consequently, the inventory manager often obtains inaccurate estimates that do not necessarily minimize the
expected cost, which arises from the mismatch between demand and inventory. Hayes (1969), Liyanage and
Shanthikumar (2005), and Akcay, Biller, and Tayur (2011a) discuss the shortcomings of ignoring demand
parameter uncertainty (i.e., plugging the estimates of the demand parameters into the critical fractile solution
formula) in a newsvendor setting when the demand process is independent over time. For the first time
we study this problem considering an autocorrelated demand process.

While parameter uncertainty is a considerable concern in effective management of inventories, it is
indeed a general problem to be addressed in manufacturing and service settings when a finite amount of data
is used to estimate the unknown parameters of a model. For example, Chick (2001) shows that accounting
for parameter uncertainty in the simulation of an M/M/1 queueing system improves the estimates of the
mean queue length and the expected percent availability of the server. Similarly, Zouaoui and Wilson (2004)
demonstrate that the parameter uncertainty amounts up to 80% of the total uncertainty around the mean
waiting time estimate of an M/G/1 queuing system. Our paper contributes to this literature by demonstrating
the importance of parameter uncertainty in an inventory control setting and by minimizing the total cost
function including not only the expected cost due to stochastic demand uncertainty but also the expected
cost arising from the parameter uncertainty. However, this approach can be challenging as it is often not
possible to express the total cost function in closed form unless the demand process is independent over
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time. We overcome this challenge by approximating the total cost function via simulation when the demand
process is autocorrelated, and achieve the following objectives: (i) We quantify the impact of parameter
uncertainty on inventory-target estimation, and (ii) we determine the inventory-target estimate by hedging
against not only the stochastic uncertainty but also the uncertainty around the parameters estimated from
historical data. Furthermore, we achieve these goals under a fairly flexible demand (input) model that
captures real-world demand characteristics. Proofs of the results presented in this paper are available in
Akcay, Biller, and Tayur (2011b).

There exists a well-established stream of research to represent input-model parameter uncertainty,
especially in discrete-event stochastic simulation outputs. We refer the reader to Barton, Nelson, and Xie
(2010) and the references therein for a recent review. A widely used approach is based on Bayesian
resampling methods; see Chick (2001), Zouaoui and Wilson (2003), Ng and Chick (2006), and Biller and
Corlu (2011) for example studies. In this paper, we make no assumptions regarding the availability of prior
information about unknown demand parameters nor assume a demand distribution that learns from historical
demand data in a Bayesian fashion. Instead, we capture the uncertainty around the parameter estimates
by their sampling distributions. That is, we take the view that the inventory manager is a frequentist and
estimates the unknown parameters based only on a flexible input model that has been adopted for the
observable demand data. Our solution method is applicable not only in inventory management but also in
general manufacturing settings where a simulationist makes decisions using models with inputs obtained
from observed data.

The flexibility in the demand model is important to generate new insights about the role of parameter
uncertainty in inventory-target estimation, which has been only studied for independent and identically
demand processes. The first-order autoregressive (AR(1)) process is often used to represent the autocorrelated
demand in inventory management; e.g., Lee, So, and Tang (2000) and Luong (2007). However, the linearity
of the AR(1) model in normally distributed random shocks implies a normal marginal demand distribution
(Mallows 1967). Since the demand in practice exhibits varying levels of variability, asymmetry, and tail
weight (Akcay, Biller, and Tayur 2011a), it is important to model the temporal dependency while being
flexible enough to capture a wide variety of distributional shapes. Indeed, there exists a considerable
body of literature on modeling time series with marginal distributions from specific distribution families
(Lewis, McKenzie, and Hugus 1989). Nevertheless, these models often allow only limited control of the
dependence structure, and a different model is required for each type of marginal distribution. To overcome
these limitations, we represent the autocorrelated demand with the Autoregressive-To-Anything (ARTA)
process introduced by Cario and Nelson (1996) for modeling and generating a stationary time series with
an arbitrary marginal distribution. Furthermore, we allow the inventory manager to avoid any assumptions
about the first four moments (i.e., mean, variance, coefficient of skewness, and coefficient of kurtosis) of
the demand random variable. We do this by representing the demand with the Johnson translation system
(JTS); i.e., a parameterized family of distributions that has the ability of matching any finite first four
moments of a random variable (Johnson 1949). The use of the JTS for demand modeling provides the
flexibility of capturing (unimodal and bimodal) distributional shapes with different levels of asymmetry,
peakedness, and tail weights. We refer the reader to Kuhl et al. (2010) for details on the JTS within the
framework of simulation input modeling.

The paper is organized as follows. In Section 2 we present the demand and inventory models. We
describe the quantification of the expected cost due to ARTA parameter uncertainty in Section 3 and the
determination of the inventory target considering ARTA parameter uncertainty in Section 4. We conclude
with a summary of the paper in Section 5.

2 MODEL DEVELOPMENT

In Section 2.1, we present the ARTA time series for modeling the autocorrelation in the demand process. We
describe the JTS to represent the marginal demand distribution in Section 2.2, and discuss the newsvendor
inventory model in Section 2.3.
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2.1 ARTA Time Series

We use the first-order ARTA time series (ARTA(1)) to allow our autocorrelated demand process to assume
an arbitrary marginal distribution. Although it is straightforward to extend the ARTA demand model to
capture high orders of autocorrelation, we only focus on the first-order demand autocorrelation due to the
difficulty in obtaining accurate estimates of high-order autocorrelations from limited historical data (Wei
1990). Specifically, ARTA(1) models the stationary demand process {Xt ; t = 1,2, . . .} with the marginal
distribution parameter vector Ψ, the marginal cumulative distribution function (cdf) F(·;Ψ), and the first-
order autocorrelation ρ as the transformation of a base process {Zt ; t = 1,2, . . .}, which is a stationary AR(1)
process of the form Zt = rZt−1 +Yt with a standard normal marginal distribution. In this representation,
r ∈ (−1,1) is the lag-one autocorrelation of the base process; i.e., r = E [ZtZt+1] with E the expectation
operator. It further determines the autocorrelations at higher lags; i.e., E [ZtZt+l] = rl for l ≥ 1. The lag-one
autocorrelation ρ of the demand process {Xt ; t = 1,2, . . .} (i.e., ρ = (E[XtXt+1]−E[Xt ]

2)/Var[Xt ]) can be
easily obtained from the lag-one autocorrelation r of the base process {Zt ; t = 1,2, . . .} via

ρ =

∫
∞

−∞

∫
∞

−∞
F−1

(
Φ(zt) ;Ψ

)
F−1

(
Φ(zt+1) ;Ψ

)
ϑr (zt ,zt+1)dztdzt+1−E[Xt ]

2

Var[Xt ]
, (1)

where Φ is the standard normal cdf and ϑr denotes the standard bivariate normal probability density
function (pdf) with correlation r. The quantities Yt , t = 2,3, . . . are, on the other hand, independent and
identically distributed normal random variables with mean zero and variance 1−r2. Thus, the transformation
F−1

(
Φ(Zt) ;Ψ

)
ensures that Xt has the marginal distribution function F(·;Ψ). This modeling approach

works for any marginal distribution, although F−1(·;Ψ) may have to be evaluated numerically when there
is no exact closed-form expression.

Next, we characterize the distribution of the demand in two consecutive time periods for the ARTA(1)
process. This bivariate demand distribution, denoted by H, is used to obtain the conditional demand
distribution for identifying the inventory target that minimizes the expected cost in the newsvendor model:
Proposition 1. The dependence structure of the ARTA(1) demand process {Xt ; t = 1,2, . . .} is uniquely
captured in the two-dimensional normal copula

H (xt ,xt+1;Ψ,r) = Φ2
(
Φ
−1 (F(xt ;Ψ)) ,Φ−1 (F(xt+1;Ψ)) ;r

)
,

where Φ−1 is the functional inverse of Φ and Φ2(·, ·;r) is the two-dimensional standard normal cdf with
the correlation r satisfying (1) for ρ .

This result is an implication of the Sklar’s theorem (Sklar 1959), which allows us to link the (common)
marginal distributions of Xt and Xt+1 in order to construct a valid bivariate distribution for the ARTA(1)
process. Consequently, for a differentiable marginal cdf F(·;Ψ) and the normal copula function Φ2(·, ·;r),
the joint pdf of Xt and Xt+1 is given by

h(xt ,xt+1;Ψ,r) = f (xt ;Ψ) f (xt+1;Ψ)cr (F (xt ;Ψ) ,F (xt+1;Ψ) ;r) ,

where f (·;Ψ) is the pdf associated with cdf F(·;Ψ) and cr is the copula density function defined by
∂ 2Φ2(Φ

−1(u),Φ−1(v))/(∂u∂v). In other words, the joint pdf h(·;Ψ,r) can be written as the product of the
marginal pdfs of Xt and Xt+1 and their copula density function that encodes all the information about the
temporal dependence structure of the demand process. This characterization allows us to write the transition
density function h(xt+1|Xt = xt ;Ψ,r) as the product of the marginal pdf f (xt+1;Ψ) and the normal copula
density function cr (F(xt ;Ψ),F(xt+1;Ψ);r) given by

ϑr
(
Φ−1 (F (xt ;Ψ)) ,Φ−1 (F (xt+1;Ψ))

)
φ
(
Φ−1(F (xt ;Ψ))

)
φ
(
Φ−1(F (xt+1;Ψ))

)
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with φ the standard normal pdf. Thus, we obtain the cdf of Xt+1 conditional on Xt = xt as

H(xt+1|Xt = xt ;Ψ,r) =
∫ xt+1

−∞

f (xt+1;Ψ)cr (F (xt ;Ψ) ,F (v;Ψ) ;r)dv,

= Φ

(
Φ−1

(
F(xt+1;Ψ)

)
− r Φ−1

(
F(xt ;Ψ)

)
√

1− r2

)
. (2)

Section 2.3 uses this distribution function to identify the critical fractile solution that minimizes the
newsvendor’s expected cost when the ARTA demand parameters Ψ and r are known.

2.2 Johnson Translation System

The JTS for random demand Xt is defined by a cdf of the form

F(xt ;γ,δ ,ξ ,λ ) = Φ

(
γ +δη

(
xt −ξ

λ

))
with (γ,δ ,ξ ,λ )′ ≡Ψ, where γ and δ are shape parameters, ξ is a location parameter, λ is a scale parameter,
and η(·) is one of the following transformations:

η(y) =


log(y) for the SL (lognormal) family

log
(

y+
√

y2 +1
)

for the SU (unbounded) family

log(y/(1− y)) for the SB (bounded) family

y for the SN (normal) family.

There is a unique family (choice of η) for each feasible combination of the coefficient of skewness and
the coefficient of kurtosis that determine the shape parameters γ and δ . Furthermore, the JTS provides a
close approximation for many of the standard distributions. For example, the Johnson SU family captures
the Student’s t distribution, logistic distribution, and Laplace distribution, while the Johnson SB family
captures the exponential distribution, gamma distribution, uniform distribution, and Weibull distribution.
In general, the JTS can represent any set of (finite) first four moments, and hence the distributional shapes
represented by the JTS are not limited to the shapes of standard distributions. The use of the JTS for demand
modeling, therefore, enables us to solve the inventory problem of interest for any pair of coefficient of
skewness and coefficient of kurtosis that a continuous demand can have. Any mean and variance can also
be attained by any one of the Johnson families. Within each family, a distribution is completely specified
by the values of γ , δ , λ , and ξ , and the range of Xt depends on the family: Xt > ξ and λ = 1 for the SL
family; ξ < Xt < ξ +λ for the SB family; −∞ < Xt < ∞ for the SU family; and −∞ < Xt < ∞, ξ = 0, and
λ = 1 for the SN family. Examples of the pdfs captured by the JTS can be found in Johnson (1987).

2.3 Inventory Model

In this section, we discuss the newsvendor model to determine the stocking quantity of a single item before
the realization of the demand. We assume that the length of the historical demand data is n, and there is
no inventory on hand at the beginning of period n+1. The order of I items arrives instantaneously, and all
remaining units, if any, are disposed and the shortages are written off at the end of the period n+1. All the
relevant revenues and costs associated with the decision to order I units for period n+1 are incorporated
into the loss function L(I,Xn+1) that is piecewise linear in I−Xn+1. Specifically, we take

L(I,Xn+1) =

{
λh(I−Xn+1) for I ≥ Xn+1,

λs(Xn+1− I) for I < Xn+1,
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where λh is the unit inventory holding cost and λs is the unit cost of shortage. Without loss of generality,
we take λh as 1, denote the critical fractile λs/(λs +λh) by ϕ , and use ϕ/(1−ϕ) for λs. We write the
expected loss function, conditional on the most-recent demand realization, as follows:

L̄(I|Xn = xn;Ψ,r) =
∫

∞

−∞

L(I,xn+1)dH(xn+1|Xn = xn;Ψ,r).

Since the expected loss function L̄ is convex in I, the optimal inventory target I∗ (i.e., the value of I that
minimizes L̄(I|Xn = xn;Ψ,r) with known Ψ and r) is given by H−1(ϕ|Xn = xn;Ψ,r). The use of the JTS for
the marginal demand distribution and the normal copula for the joint distribution of the ARTA(1) demand
process enables the characterization of this unique critical fractile solution by

Φ

γ +δη

(
I∗−ξ

λ

)
− r
(

γ +δη

(
xn−ξ

λ

))
√

1− r2

= ϕ.

Denoting the ϕth quantile of the standard normal distribution function by τϕ , we represent the optimal
inventory target, also called critical fractile solution, by

I∗ = ξ +λη
−1

r
(

γ +δη

(
xn−ξ

λ

))
+ τϕ

√
1− r2− γ

δ

 .

3 INVENTORY-TARGET ESTIMATION

In Section 3.1, we discuss the estimation of the ARTA demand parameters and the critical fractile solution.
We introduce the notion of inaccuracy in inventory-target estimation and present an algorithm for its
approximation in Section 3.2.

3.1 Two-Stage Maximum Likelihood Estimation

The likelihood function of the demand data x1,x2, . . . ,xn is given by f (x1;Ψ)∏
n−1
t=1 h(xt+1|Xt = xt ;Ψ,r)

by iteratively conditioning on the demand value of the preceding period for periods 2,3, . . . ,n. Since
h(xt+1|Xt = xt ;Ψ,r) is given by the product of the marginal pdf f (xt+1;Ψ) and the normal copula density
function cr (F(xt ;Ψ),F(xt+1;Ψ);r) (Section 2.1), the likelihood function can be alternatively written as

n

∏
t=1

f (xt ;Ψ)
n−1

∏
t=1

cr (F(xt ;Ψ),F(xt+1;Ψ);r) .

Taking the logarithm of this likelihood function leads to the log-likelihood function

`(Ψ,r) =
n

∑
t=1

log f (xt ;Ψ)+
n−1

∑
t=1

log cr (F(xt ;Ψ),F(xt+1;Ψ);r) (3)

in terms of the unknown ARTA demand parameters Ψ = (γ,δ ,ξ ,λ )′ and r. What is important to recognize
is that the first term on the right-hand side in (3) is the log-likelihood function if the demand process were
independent; thus, it does not depend on the autocorrelation r. That is, the copula representation of the ARTA
demand process (Proposition 1) allows us to separate the estimation of the marginal distribution parameters
from the estimation of the demand autocorrelation and perform the following two-stage estimation: (1)
Estimate the marginal distribution parameter vector Ψ by Ψ̃ = argmaxΨ {`1(Ψ) = ∑

n
t=1 log f (xt ;Ψ)}. Since

the Johnson pdf is given by

f (xt ;γ,δ ,ξ ,λ ) =
δ

λ (2π)1/2 η
′
(

xt −ξ

λ

)
exp

{
−1

2

(
γ +δη

(
xt −ξ

λ

))2
}
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with η ′ the first-order derivative of the transformation function, we obtain (γ̃, δ̃ , ξ̃ , λ̃ )′ ≡ Ψ̃ from the
maximization of

`1(γ,δ ,ξ ,λ ) = n logδ −n logλ +
n

∑
t=1

logη
′
(

xt −ξ

λ

)
− 1

2

n

∑
t=1

(
γ +δη

(
xt −ξ

λ

))2

− n
2

log(2π).

(2) Estimate the autocorrelation r via r̃ = argmaxr {`2(r) = ∑
n−1
t=1 log cr

(
F(xt ;Ψ̃),F(xt+1;Ψ̃);r

)
} with Ψ̃

obtained in the first stage. Using the functional form of the copula density cr and the cdf of the JTS, we
reduce the log-likelihood function `2(r) to

`2(r) =−
n−1

2
log(1− r2)− 1

2(1− r2)

n−1

∑
t=1

{
z̃2

t + z̃2
t+1−2rz̃t z̃t+1

}
with z̃t = γ̃ + δ̃η((xt − ξ̃ )/λ̃ ). This estimation method is known as the method of inference functions
for margins (Joe 1997), and it is computationally easier than the full maximum likelihood method as it
exploits the attractive feature of the copulas, that the dependence structure is characterized independently
of the marginal distributions. Furthermore, Joe (1997) establishes the strong consistency and asymptotic
normality of these two-stage estimators.

3.2 Quantifying the Impact of Parameter Uncertainty on Inventory-Target Estimation

The optimal inventory target is often estimated by replacing Ψ and r with their estimates Ψ̃ and r̃ in the
theoretically correct formula for the critical fractile solution under complete information (i.e., maximum
likelihood policy). Specifically, the inventory-target estimate is obtained as

Ĩ = ξ̃ + λ̃η
−1

 r̃
(

γ̃ + δ̃η

(
xn−ξ̃

λ̃

))
+ τϕ

√
1− r̃2− γ̃

δ̃

 . (4)

It is important to note that the inventory-target estimate Ĩ is a function of the historical data x1,x2, . . . ,xn,
and it is one particular way of estimating the critical fractile solution. By using I(x1,x2, . . . ,xn) : Rn→ R
for the general form of an inventory-target estimate, we represent the total expected cost (i.e., the sum
of expected costs due the stochastic demand uncertainty and the parameter uncertainty) associated with
I(x1,x2, . . . ,xn), which has Ĩ as a special case, by

∫
X

L̄(I(x1,x2, . . . ,xn)|Xn = xn;Ψ,r)
n

∏
t=1

f (xt ;Ψ)
n−1

∏
t=1

cr (F(xt ;Ψ),F(xt+1;Ψ);r)dx1dx2 . . . ,dxn, (5)

where X is the domain of the demand vector in Rn. Hayes (1969) introduced a total expected cost function
of a similar form under the name of Expected Total Operating Cost (ETOC) but for an independent and
identically distributed demand process. We factor the autocorrelation in the demand process into the ETOC
function by the product of the copula densities. Although this makes it impossible to analytically evaluate
the ETOC function, we are able to evaluate the n-dimensional integral in (5) via Monte-Carlo integration
(Robert and Casella 1999). The convenience of generating autocorrelated samples from ARTA distribution
also lends itself to a simulation-based approximation.

Hayes (1969) defined the difference between the ETOC associated with the inventory-target estimate
I(x1,x2, . . . ,xn) and the cost of the optimal inventory target under complete certainty as the inaccuracy in
inventory-target estimation. We let Ω be the cost attributable to the incorrect estimation of the inventory
target; i.e., Ω ≡ L̄(I(x1,x2, . . . ,xn)|Xn = xn;Ψ,r)− L̄(I∗|Xn = xn;Ψ,r). The inaccuracy is then given by
E[Ω], representing the impact of parameter uncertainty on inventory-target estimation. We interpret this
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expectation as the limit of a sequence of random variables that are obtained by randomly sampling from
the joint density function of the demand random variables X1,X2, . . . ,Xn. This results in the following
algorithm approximating E[Ω]:
Algorithm 1. Approximation of the inaccuracy in inventory-target estimation

Initialization. Let b = 1 and B = ∞, and initialize the confidence level α and the tolerance ε .
while b≤ B

Step 1. Construct the bth ARTA sample path {xb
t ; t = 1,2, . . . ,n}:

Generate a standard uniform random number ub and set zb
0 = Φ−1(ub). Let t← 1.

while t ≤ n
Generate yb

t from the normal distribution with mean 0 and variance 1− r2.
Set zb

t ← rzb
t−1 + yb

t and xb
t ← ξ +λη−1

(
(zb

t − γ)/δ
)
.

Set t← t +1.
end

Step 2. Obtain the two-stage maximum likelihood estimates γ̃b, δ̃b, ξ̃b, λ̃b, and r̃b from the sample
path {xb

t ; t = 1,2, . . . ,n}, and identify the maximum likelihood inventory-target estimate:

Ĩb = ξ̃b + λ̃bη−1
({

r̃b

(
γ̃b + δ̃bη

(
(xb

n− ξ̃b)/λ̃b

))
+ τϕ

√
1− r̃2

b− γ̃b

}
/δ̃b

)
Step 3. Obtain the critical fractile solution under known ARTA parameters:

I∗b = ξ +λη−1
({

r
(
γ +δη

(
(xb

n−ξ )/λ
))

+ τϕ

√
1− r2− γ

}
/δ

)
Step 4. Set ωb← L̄(Ĩb|Xn = xn;γ,δ ,ξ ,λ ,r)− L̄(I∗b |Xn = xn;γ,δ ,ξ ,λ ,r);

Ω̄b← ∑
b
i=1 ωi/b;

vb← ∑
b
i=1(ωi− Ω̄i)

2/(b−1) (set vB← ∞ for b = 1).
Step 5. Update B and b by B← τ2

1−α/2vb/(Ω̄bε)2 and b← b+1, where τ1−α/2 ≡Φ−1(1−α/2).
end
Return Ω̄B as the approximation to E[Ω].

The random variable (E[Ω]− Ω̄B)/
√

vB/B is approximately standard normal for large values of B,
the number of independent sample paths used for approximating the inaccuracy in the inventory-target
estimation. This leads to the identification of the confidence bounds:

lim
B→∞

P

(∣∣∣∣∣E[Ω]− Ω̄B√
vB/B

∣∣∣∣∣≤ τ1−α/2

)
= 1−α.

Thus, a 100(1−α)% confidence interval for E[Ω] is obtained as[
Ω̄B− τ1− α

2

√
vB

B
, Ω̄B + τ1− α

2

√
vB

B

]
;

i.e., choosing B≥ τ2
1− α

2
vB/(ε Ω̄B)

2 guarantees the half-length of the confidence interval on the inaccuracy

in the inventory-target estimation to be less than or equal to ε100% of Ω̄B with probability approximately
(1−α)100%. In addition, the convergence speed for approximating the inaccuracy in the inventory-target
estimation is OP(B−1/2), which is independent of the length of the historical demand data.

4 CAPTURING PARAMETER UNCERTAINTY IN INVENTORY-TARGET ESTIMATION

In Section 4.1, we introduce a bias parameter into the maximum-likelihood inventory-target estimate (4) and
discuss the minimization of the ETOC function, including both stochastic and parameter uncertainties, over
this bias parameter. We provide a numerical analysis that investigates the inaccuracy reduction achieved
by our policy in Section 4.2.
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4.1 Minimizing the Expected Total Operating Cost via Sample-Path Optimization

The objective of this section is to reduce the inaccuracy quantified in Section 3.2 by accounting for the
demand parameter uncertainty in inventory-target estimation. We address this problem by generalizing the
class of estimators implied by the maximum likelihood policy. Specifically, we replace τϕ in the functional
formula (4) with a bias parameter k, set the inventory-target estimator to

Ĩ(k) = ξ̃ + λ̃η
−1

 r̃
(

γ̃ + δ̃η

(
xn−ξ̃

λ̃

))
+ k
√

1− r̃2− γ̃

δ̃

 ,

and combine parameter estimation with inventory-target optimization by solving the problem

min
k∈R

{
ETOC[Ĩ(k)]− L̄(I∗|Xn = xn;Ψ,r)

}
.

Since L̄(I∗|Xn = xn;Ψ,r) does not depend on k, the problem of interest reduces to the determination of
the optimal bias parameter k∗ = argmin{ETOC[Ĩ(k)] : k ∈R} so as to obtain an improved inventory-target
estimator Ĩ(k∗). Since Ĩ(k) is strictly increasing in k, it is possible to conveniently determine k∗ even though
the function ETOC[Ĩ(k)] is not necessarily convex in k:
Proposition 2. ETOC[Ĩ(k)] is strictly increasing in k for k > k∗ and strictly decreasing in k for k < k∗.
Consequently, the optimal bias parameter k∗ is unique and satisfies

E

∂ Ĩ(k)
∂k

Φ

γ +δη

(
Ĩ(k)−ξ

λ

)
− r
(

γ +δη

(
Xn−ξ

λ

))
√

1− r2

−ϕ

= 0. (6)

The challenge in the identification of k∗ is that ETOC[Ĩ(k∗)] cannot be directly computed as the inventory
manager does not know the true demand parameters γ,δ ,ξ ,λ and r that appear in (6). We overcome this
challenge by replacing the unknown demand parameters with their maximum likelihood estimates in the
ETOC minimization problem. It is worth pointing out that we do not simply use the parameter estimates to
obtain the inventory-target estimate as in the maximum likelihood policy; instead, we use these parameter
estimates in the minimization of the ETOC function. Our numerical analysis shows that the additional
inaccuracy introduced by using the estimates of the parameters but not their true values is not statistically
significant.

In the remainder of the section, we describe how to solve the root-finding problem in (6). For notational
convenience, we let g(k) denote E[G(k;X1,X2, . . . ,Xn)] with

G(k;X1,X2, . . . ,Xn) =
∂ Ĩ(k)

∂k

Φ

γ +δη

(
Ĩ(k)−ξ

λ

)
− r
(

γ +δη

(
Xn−ξ

λ

))
√

1− r2

−ϕ

 .

Since the expectation in (6) does not have a closed-form representation, we cannot find the value of k that
solves the equation g(k) = 0 by using standard root-finding procedures. Therefore, we treat our ETOC
minimization problem as a stochastic root-finding problem (SRFP) (see Pasupathy and Kim (2011) for
a recent review) and determine a value for the bias parameter k by using a consistent estimator of g(k).
We solve the SRFP on hand by the sample-path optimization technique, also known as Sample Average
Approximation (SAA) (Shapiro 2004). That is, we generate an appropriately chosen number of sample
paths (i.e., ARTA demand vectors of dimension n) and use these sample paths to turn the SRFP into a
deterministic root-finding problem that is solved to a predetermined precision. More specifically, we solve
the sample-path problem GN(k) = 0, where GN(k) = ∑

N
b=1 G(k;Xb

1 ,X
b
2 , . . . ,X

b
n )/N is a consistent estimator
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of g(k) and {Xb
1 ,X

b
2 , . . . ,X

b
n }, b = 1,2, . . . ,N, are the N independent and identically distributed ARTA

demand vectors. If we let kN denote the solution of this sample-path problem, then kN converges to k∗

almost surely as N approaches infinity.
In this paper, however, we use a refinement of the generic SAA technique to gain overall efficiency.

Instead of solving a single problem constructed with a large number of sample paths, we first generate a
sequence of problems by progressively increasing the number of sample paths, and then solve the resulting
deterministic root-finding problems with progressively decreasing error tolerances. This method, which is
known as Retrospective Approximation (RA), was originally designed by Chen and Schmeiser (2001) in
the context of one-dimensional SRFPs. The key to achieve computational efficiency via the RA technique
is that early retrospective iterations, based upon a small number of sample paths, provide information
for later iterations. Since the ARTA parameter estimation is the most computationally demanding part of
our inventory-target estimation procedure, keeping the number of sample paths small in early iterations
takes us quickly to close proximity of k∗. Because we choose the initial solution of the deterministic
root-finding algorithm within close proximity to k∗, not much computational effort is expended for solving
the sample-path problems in later iterations. Furthermore, as the number of sample paths increases, the
standard error of the retrospective estimate of k∗ decreases quickly, and the solutions obtained in the latter
retrospective iterations converge quickly to k∗.
Algorithm 2. Approximation of k∗ to obtain improved inventory-target estimates

Step 1. Initialization:
(1.1) Set the initial sample-path size to N1 = 100 with the sample-path increase rule as
Ni = b1.1Ni−1c for the retrospective iterations i = 2,3, . . . and the error tolerance decrease
as εi = 0.1/

√
Ni for i = 1,2, . . .;

(1.2) Define the initial solution k̄0 as τϕ and set i← 1;
Step 2. Generate Ni independent n-dimensional ARTA demand vectors and construct the

deterministic root finding problem GNi(k) = 0;
Step 3. Use the Newton-Raphson method to solve GNi(k) = 0 with the starting solution k̄i and the

error tolerance εi to obtain the ith root estimate kNi; i.e., return kNi if |kNi− k̃∗i |< εi with k̃∗i
the solution of GNi(k) = 0;

Step 4. Calculate the root estimate k̄i as the weighted sum of the solutions {kN j}i
j=1;

i.e., k̄i = (∑i
j=1 N j)

−1
∑

i
j=1 N jkN j ;

Step 5. If i≥ 10 and k̄i− k̄i−1 < 0.001, then return k∗ = k̄i; if not, set i← i+1 and go to Step 2.
The selection of the sample-path increase rule as well as the error-tolerance decrease rule in Step (1.1)

has a critical effect on the solution quality as a function of the computational time. We address this
issue by choosing the sample-path increase and error tolerance decrease rules from the classes suggested
by Pasupathy (2010) to achieve overall efficiency. We terminate the algorithm by requiring at least 10
retrospective iterations because the termination criterion in Step 5 can lead to premature stopping when
the number of retrospective iterations is small. The retrospective solutions {k̄i; i = 1,2, . . .} obtained in
Algorithm 2 converge to k∗ with probability one; see Theorem 2 in Pasupathy (2010). The numerical
analysis in Section 4.2 shows that the finite-sample convergence of the retrospective solutions to k∗ is
also very fast; i.e., the number of iterations to achieve the stopping criterion does not exceed 39 in our
experiments.

4.2 Results

This section presents the results of our numerical analysis with the following objectives: (i) To quantify the
inaccuracy (i.e., the expected cost due to parameter uncertainty) associated with the maximum-likelihood
inventory-target estimate Ĩ; (ii) To investigate the reduction in inaccuracy by using the improved inventory-
target estimate Ĩ(k∗) instead of Ĩ. We assume that the marginal demand distribution is from the Johnson
SN and SL families with mean 100 and varying levels of coefficient of variation. To be specific, Table 1
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Table 1: Demand is Johnson SN with mean 100 and coefficient of variation 0.1.

r
−0.9 −0.8 −0.7 −0.6 0.6 0.7 0.8 0.9

Minimum Expected Cost 11.6 16.0 19.0 21.3 21.3 19.0 16.0 11.6
Inaccuracy with Ĩ 6.2 9.2 11.3 12.8 16.2 14.2 12.4 9.4

Inaccuracy with Ĩ(k∗) 3.5 4.6 5.6 6.2 7.3 6.7 5.6 4.1
k∗ 3.075 3.071 3.079 3.083 3.188 3.232 3.257 3.340

Table 2: Demand is Johnson SL with mean 100 and coefficient of variation 0.5.

r
−0.9 −0.8 −0.7 −0.6 −0.5 0.5 0.6 0.7 0.8 0.9

Min. Exp. Cost 69.7 105.6 134.5 156.1 175.2 176.5 156.6 133.6 105.0 70.2
Inacc. with Ĩ 39.8 55.5 72.2 86.4 102.3 110.6 102.4 92.4 72.8 51.7

Inacc. with Ĩ(k∗) 25.4 37.1 51.9 64.2 77.4 81.9 75.1 63.6 47.2 31.0
k∗ 2.934 2.897 2.851 2.802 2.792 2.824 2.871 2.937 2.978 3.095

Table 3: Demand is Johnson SL with mean 100 and coefficient of variation 5.

r
−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3

Minimum Expected Cost 512.2 944.8 1408.7 1786.7 2101.8 2401.0 2620.5
Inaccuracy with Ĩ 235.3 447.8 740.9 956.1 1103.7 1316.8 1642.6

Inaccuracy with Ĩ(k∗) 226.0 447.9 732.7 924.6 1034.7 1185.7 1401.7
k∗ 2.480 2.341 2.261 2.198 2.155 2.121 2.077

0.9 0.8 0.7 0.6 0.5 0.4 0.3
Minimum Expected Cost 526.6 940.1 1404.0 1822.5 2086.3 2430.7 2616.0

Inaccuracy with Ĩ 264.7 514.8 814.2 1194.0 1244.8 1426.5 1688.6
Inaccuracy with Ĩ(k∗) 254.6 513.2 775.3 1086.1 1115.3 1266.2 1397.6

k∗ 2.513 2.298 2.211 2.138 2.120 2.059 2.067

presents the minimum expected cost under complete knowledge of demand parameters, the inaccuracy
values associated with Ĩ and Ĩ(k∗), and the value of the bias parameter k∗ returned by Algorithm 2 when
the demand is from the Johnson SN family with a coefficient of variation that is equal to 0.1. Table 2
and Table 3 present these results for the Johnson SL demand with coefficient of variations equal to 0.5
and 5. Since the inaccuracy in inventory-target estimation is most problematic when the asymmetry of the
newsvendor’s loss function is high and the length of the historical data is limited, we let ϕ = 0.99 and
n = 10. We report the inaccuracy results by setting the relative error of the inaccuracy to be ≤ 1% with at
least 95% probability; i.e., α = 0.95 and ε = 0.01 in Algorithm 1. It is important to note that while we
provide Algorithm 1 to approximate the inaccuracy associated with Ĩ, it is straightforward to approximate
the inaccuracy of the inventory-target estimate Ĩ(k∗) by replacing τϕ with k∗ in Step 2.

We observe that the inaccuracy in inventory-target estimation can be largely compared to the minimum
expected cost with complete knowledge of demand parameters; and our improved inventory-target estimates
leads to considerable reduction in this inaccuracy. For example, an inventory manager who builds the
inventory target by simply using the estimates of the demand parameters as if they were the true values
may end up with 81% (i.e., 9.4/11.6) greater expected cost than the optimal inventory target when the
autocorrelation is 0.9 (Table 1). In this particular case, we further see that the use of improved inventory-
target estimate eliminates 56% (i.e., (9.4−4.1)/9.4) of the inaccuracy. The use of bias parameter k∗ instead
of τϕ provides similar improvements for all other demand distributions and autocorrelation values in our
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experiments. It is important to notice in Table 3 that the bias parameter returned by Algorithm 2 is not
always greater than τϕ depending on the marginal demand distribution and the value of autocorrelation.
That is, the improved inventory-target estimate Ĩ(k∗) can be not only greater but also less than Ĩ while
hedging against demand parameter uncertainty.

5 CONCLUSION

This paper studies the problem of estimating inventory targets in a newsvendor setting when the demand
process is autocorrelated and only a limited amount of historical data is available. Specifically, we represent
the autocorrelated demand process with the highly flexible ARTA model that allows us to capture the
autocorrelation in the demand process and a wide variety of distributional shapes for the marginal demand.
We approximate the expected cost due to demand parameter uncertainty using a simulation-based sampling
algorithm. Finally, we use sample-path optimization to obtain the value of the bias parameter to reduce
the impact of parameter uncertainty in inventory-target estimation. Numerical analysis demonstrates the
effectiveness of the resulting procedure in eliminating the inaccuracy in inventory-target estimation.
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