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ABSTRACT

We consider an analyst tasked with using simulation to help a decision-maker choose among several
decision alternatives. Each alternative has several competing attributes, e.g., cost and quality, that are
unknown but can be estimated through simulation. We model this problem in a Bayesian context, where
the decision-maker’s preferences are described by a utility function, but this utility function is unknown to
the analyst. The analyst must choose how to allocate his simulation budget among the alternatives in the
face of uncertainty about both the alternatives’ attributes, and the decision-maker’s preferences. Only after
simulation is complete are the decision-maker’s preferences revealed. In this context, we calculate the value
of the information in simulation samples, and propose a new multi-attribute ranking and selection procedure
based on this value. This procedure is able to incorporate prior information about the decision-maker’s
preferences to improve sampling efficiency.

1 INTRODUCTION

We consider the multi-attribute ranking and selection (R&S) problem, in which we have a number of
alternative systems, each of which must be simulated to determine its underlying performance. In the
single-attribute R&S problem, there is a single attribute of interest (for example, revenue), and the goal is
to find the system for which the expected value of this attribute is largest. In the problem that we consider,
there are multiple criteria of interest, and the simulation analyst has no clear way of combining them into
a single criterion. Thus, our goal as simulation analysts is not to find the single best alternative, but to
allocate the finite simulation budget available to us among the alternatives, in a way that best supports the
multi-attribute selection decision that is to be made based on our simulation’s results.

Although previous work has considered the multi-attribute R&S selection problem, we formulate the
problem in a novel way. In our formulation, we consider two parties: (1) the simulation analyst and his
R&S algorithm; and (2) a decision-maker who will later make a decision about some action to be performed
in the real world based on the results of the simulation. We suppose that the decision-maker’s decisions are
driven by some underlying utility function that does combine the multiple attributes into a single objective
function, but her utility function is unknown to the simulation analyst. The task that has been given to
the simulation analyst is to use simulation to estimate the attributes’ values for each alternative, and then
present the results to the analyst, who will then make a decision according to her previously undisclosed
preferences.

Although the simulation analyst does not know the decision-maker’s preferences, he may have some
prior belief about what they might be, based on previous interaction with the decision-maker or intuition
about what is reasonable in the problem, and he can use this prior belief to focus simulation effort in a way
that will best support her ultimate selection decision. This prior belief on the decision-maker’s preferences
allows us to derive a loss function for estimates of the alternatives’ attribute values — the loss associated
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with an estimate is the expected loss in utility suffered by the decision-maker when using the estimated
attribute values rather than their true values.

The problem we study is which simulations the analyst should perform, taking into account his prior
probability distribution on the values of the attributes, and on the utility function of the decision-maker.
This choice of simulations should best support the decision-maker’s final decision by maximizing the utility
she can obtain by making a decision based on his results.

This formulation is only appropriate when simulation is inexpensive compared to the cost of accurately
eliciting the decision-maker’s utility function. Although researchers have developed methods for eliciting
utility functions over multiple attributes (see, e.g., Borcherding, Eppel, and Von Winterfeldt (1991)), the
successful application of these elicitation methods requires sensitivity and experience on the part of the
experimentalist, as well as an investment of time and energy by the decision-maker who is the subject
of the experiment (and who may be a high-level executive with a busy schedule). Complicating matters,
in some situations the decision-maker is simply unavailable for interview before the decision must be
made. Furthermore, even under excellent experimental conditions, the possibility for inaccuracy still exists
(Froberg and Kane 1989), and residual uncertainty about the decision-maker’s preferences may remain.
(Indeed, if this residual uncertainty is large enough, we would still require methods like those discussed
in this article.) In contrast, if the simulation experiment only requires a few extra hours or days to run
without knowing the decision-maker’s preferences beforehand, then running the simulation experiment in
this way is preferable to requiring her input beforehand.

Our supposition that the decision-maker has an underlying (but unknown) utility function that combines
multiple attributes into one utility holds in only a subset of situations for which multi-attribute R&S is
required. For example, if an estimate of the Pareto frontier over multiple attributes is needed to support a
multi-party negotiation whose parties have conflicting interests, then other models are more appropriate.
We believe, however, our supposition is reasonable when there is only a single decision-maker — previous
research on preferences over multiple attributes shows that preferences satisfying certain consistency
requirements are necessarily consistent with a multi-attribute utility function having a simple functional
form (see, e.g., Keeney and Raiffa (1993)).

We use a Bayesian framework to place a prior distribution on the alternatives’ attribute values, which we
subsequently learn through simulation. Using this Bayesian framework, we calculate the value of sampling
information (Howard 1966) corresponding to the simulation samples that we can take. The simulation
decision that we make is then to sample the alternative with the largest value of sampling information.
This approach of valuing single samples according to the expected (myopic) value of the information they
contain, and then taking the sample with the largest value, has been used by a number of researchers in
other versions of the Bayesian R&S problem (Gupta and Miescke 1996, Frazier, Powell, and Dayanik
2008, Frazier, Powell, and Dayanik 2009, Chick, Branke, and Schmidt 2007, Chick, Branke, and Schmidt
2010), where it has sometimes been called the knowledge-gradient method (Frazier 2009). The value of
information has also been used more broadly in R&S to choose sets of samples to take next (Chick and
Inoue 2001b, Chick and Inoue 2001a, Chick and Gans 2009). This approach has also been used in many
problems outside of simulation (see Frazier (2010) for a review).

A number of other researchers have considered the multi-attribute R&S problem. One related line
of research concerns the multiobjective optimal computing budget allocation (MOCBA), studied in Lee,
Teng, Chew, Lye, Lendermann, Karimi, Chen, and Koh (2005), Lee, Chew, and Teng (2007), Chen and
Lee (2009), Lee, Chew, Teng, and Goldsman (2010). Unlike our work, the measure of the quality of an
estimate of the Pareto frontier used by MOCBA procedures is not based on the interaction between the
simulation analyst and the decision-maker, and does not allow the simulation analyst to incorporate prior
information about the decision-maker’s preference to improve sampling efficiency. This line of papers
resides in a larger body of work on the optimal computing budget allocation (Chen, Lin, Yücesan, and
Chick 2000, Chen and Lee 2010).
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Another related line of research on multi-attribute R&S considers the problem of maximizing one
attribute subject to a constraint on one or more other attributes. This work includes Andradóttir, Goldsman,
and Kim (2005), Andradóttir and Kim (2010). This use of constraints has been considered by Morrice and
Butler (2006), Merrick (2009), which argues that utility functions are a more appropriate way to handle
multiple attributes in many applications.

Within computer science and decision analysis, a number of papers have used prior distribution on a
decision-maker’s unknown utility to construct efficient experimental designs for eliciting utility functions.
This line of research begins with Chajewska, Koller, and Parr (2000), and includes Boutilier (2002), Abbas
(2004). This line of research shares the modeling technique of placing a prior on a decision-maker’s
unknown preferences, but differs in the ultimate goal toward which this modeling technique is used.

2 PROBLEM FORMULATION

We begin by giving, in Section 2.1, a statistical model that describes sampling, as well as our Bayesian
prior and posterior beliefs on the unknown sampling distributions for each alternative. Then, in Section 2.2,
we give a model for the preferences of the decision-maker. In Section 2.3 we discuss how the prior on
decision-maker preferences used by this model may be selected.

The sampling model, which assumes independent normal samples with an independent normal prior on
the sampling means and an independent gamma prior on the sampling precisions, is standard, and similar
models have been used in other research on Bayesian R&S (Chick and Inoue 2001b, Frazier and Powell
2008, Chick, Branke, and Schmidt 2010) as well as more broadly in Bayesian statistics (DeGroot 1970,
Gelman, Carlin, Stern, and Rubin 2004). The model of the decision-maker’s preferences, however, is novel.

2.1 Sampling Model

We suppose that there are a discrete set of alternatives 1, . . . ,k, each with m attributes. Each alternative x and
attribute j has a corresponding sampling distribution that is normal with mean θx j and variance λx j, with
samples that are independent across alternatives, objectives, and time. We let θ = {θx j : x = 1, . . . ,k, j =
1, . . . ,m} and λ = {λx j : x = 1 . . . ,k, j = 1, . . . ,m} be the collections of all sampling means and variances
respectively. At each time n = 1,2, . . . we observe a sample yn j from each attribute j for an alternative xn
of our choice, and thus the distribution of yn j conditioned on xn, θ , and λ is

yn j|xn,θ ,λ ∼ Normal(θxn j,λxn j), j = 1, . . . ,m,

We emphasize that the yn j are conditionally independent of each other across j, because the sampling
distributions are assumed independent across attribute. We let yn = (yn1, ..., ynm).

Neither the sampling means nor the sampling variances are known. We adopt a Bayesian approach,
in which we place a prior distribution on their values, and update this prior using observed data to obtain
posterior distributions. For ease of analysis, we assume a conjugate prior distribution (see, e.g., (DeGroot
1970)), which takes the following form. Under the prior,

θx j | λx j ∼ Normal(µ0x j,λx j/ρ0x j),

1/λx j ∼ Gamma(a0x j,b0x j),

with independence across x and j, where a0x j, b0x j, µ0x j and ρ0x j are given parameters. Here, the gamma
distribution is parameterized in terms of the inverse scale b0x j, and not the scale, so that the mean of the
gamma distribution is a0x j/b0x j and the mode is (a0x j−1)/b0x j when a0x j ≥ 1 and b0x j > 0. In practice,
one common choice is to set these parameters to a0x j =−1

2 , b0x j = 0, ρ0x j = 0, µ0x j = 0, which provides
a non-informative prior that can be interpreted as imposing as little subjective prior belief about θx j and
λx j as possible.
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The posterior distribution on θ and λ at time n, which is the conditional distribution of θ and λ given
observed data x1, . . . ,xn and y1, . . . ,yn, has the same form,

θx j | x1, . . . ,xn,y1, . . . ,yn,λx j ∼ Normal(µnx j,λx j/ρnx j),

1/λx j | x1, . . . ,xn,y1, . . . ,yn ∼ Gamma(anx j,bnx j),

where the posterior distribution remains independent across x and j, and the parameters anx j, bnx j, µnx j and
ρnx j can be calculated recursively. In this recursive calculation, the parameters remain unchanged from n
to n+1 for those x 6= xn+1, and are given by the following expressions for x = xn+1:

an+1,x, j = anx j +1/2, bn+1,x, j = bnx j +(1/2)(yn+1, j−µnx j)
2
ρnx j/(ρnx j +1),

ρn+1,x, j = ρnx j +1, µn+1,x, j = (ρnx jµnx j + yn+1, j)/(ρnx j +1).
(1)

In practice, rather than tracking both anx j and ρnx j, we need only track the number of samples taken from
each alternative x. This is because anx j is a0x j plus half the number of samples taken from x, and ρnx j is
ρ0x j plus the number of samples taken from x.

Given this posterior on θ and λ at time n, the marginal posterior distribution on θx j is independent
across x and j and has the Student-t distribution with 2anx j degrees of freedom, location parameter µnx j,
and precision anx jρnx j/bnx j.

In Section 3, we use the maximum a posterior estimate λ̂nx j of λx j, which is

λ̂nx j = bnx j/(anx j−1). (2)

To ensure that this estimator is well-defined and reasonably accurate, we require anx j ≥ 2 before using its
value. We let λ̂n = {λ̂nx j : x = 1 . . . ,k, j = 1, . . . ,m} be our time-n estimate of all of the sampling variances.

Also in Section 3, we use the conditional distribution of µn+1,x, j given the information available at
time n, xn+1 = x, and λ . We calculate this distribution here. Given this information, the conditional
distribution of yn+1, j is normal with mean µnx j and variance λx j/ρnx j +λx j = λx j(ρnx j +1)/ρxn j. This is
because yn+1, j is the sum of θx j, which is conditionally Normal(µnx j,λx j/ρnx j), with independent unbiased
normally distributed noise with variance λx j. Then, µn+1,x, j = (ρnx jµnx j + yn+1, j)/(ρnx j + 1) is a linear
transformation of a conditionally normal random variable, and is itself conditionally normal. Its mean and
variance is given by

En [µn+1,x, j |xn+1 = x,λ ] =
ρnx jµnx j +µnx j

ρnx j +1
= µnx j,

Varn [µn+1,x, j |xn+1 = x,λ ] =
Varn [yn+1, j |xn+1 = x,λ ]

(ρnx j +1)2 =
λx j

ρnx j(ρnx j +1)
.

where En and Varn indicate the conditional expectation and conditional variance (respectively) with re-
spect to the information available at time n. In the computation of the variance, we have used that
Varn [yn+1, j |xn+1 = x,λ ] = Varn [θx j |λ ]+λx j = (λx j/ρnx j)+λx j = λx j(ρnx j +1)/ρnx j.

2.2 The Decision-Maker’s Preferences

We suppose that there is a decision-maker to whom we will deliver the simulation results, and that she
has a utility function U : Rm 7→ R. We suppose that this utility function is linear, and so is given by
U(θ) = c ·θ = ∑

m
j=1 c jθ j, for some vector of preferences c ∈Rm and any vector of attribute valuesθ ∈Rm.

Here · indicates the dot product. If the preference vector c were known, then we could use a single-objective
ranking & selection strategy, of which several have been developed in the literature (a partial list includes
Chen, Lin, Yücesan, and Chick (2000), Chick and Inoue (2001b), Gupta and Miescke (1996), Frazier,
Powell, and Dayanik (2009)).
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Instead, we suppose that the preference vector c is unknown and we have a prior probability distribution
on its value. When the simulation analyst has little information about the preferences of the decision-maker,
it may be prudent to specify a non-informative prior on c, as described below in Section 2.3. In other
cases, he may have more specific information, and this framework allows incorporating that information
into his simulation sample selection.

Having a prior probability distribution on c can be interpreted as being uncertain about the true
preferences of the decision-maker, but having some reasonable guesses based on conversations with the
decision-maker, experience with the decision-maker’s decisions in previous situations, or intuition about
the current problem. For example, in a staffing problem for a small hospital, an employee charged with
running simulations might guess that a hospital administrator would feel that saving an average of 15
minutes of waiting time for each patient visiting the emergency room might be worth the salary of 1
additional nurse, but is unlikely to be worth the salary of 10 additional nurses. If the employee had a great
deal of previous experience with solving problems for this administrator, or a great deal of experience
working with similar problems, that employee might be able to make more refined guesses. In making
these guesses, the employee would not feel certain that these guesses were correct, but would feel that they
were reasonable.

We will see that these prior distributions allow one to make better use of one’s ability to simulate, in
estimating which alternatives will be closest to optimizing the decision-maker’s true preferences.

After taking a number of samples N (this number of samples can be fixed a priori, or can be chosen
adaptively by the policy), we suppose that the simulation analyst provides to the decision maker a collection
of alternatives and their estimated characteristics. The decision-maker then chooses the best alternative
according to the estimated attribute values and her underlying and previously unobserved preferences
encoded in the preference vector c. The choice that she makes is

argmax
x

EN [U(θx) |U ] = argmax
x

c ·EN [θx] = argmax
x

c ·µNx (3)

where θx = (θx1, . . . ,θxm) is the vector of true attributes of alternative x, and µNx =EN [θx] is the conditional
expectation of θx under our posterior belief at time N.

The linearity of the utility function implies that the variance at the final time N of our posterior belief
about θ plays no role in the choice made by the decision-maker. This corresponds to the decision-maker’s
lack of aversion to the risk in not knowing the true distribution of the chosen alternative. This is risk that
could be addressed by more simulation. Additionally, the decision-maker does not consider the sampling
variances λ when making her decision, which corresponds to a lack of aversion to the risk from the
randomness that will appear when implementing her chosen alternative in the real world. In future work
we plan to consider the role of risk aversion. The posterior and sampling variances at earlier times play a
role in the choice of which alternative to sample.

With the choice (3) by the decision-maker, the value she obtains at the final time is maxx c ·µNx, and
the expected value obtained by a measurement policy π is

Eπ

[
max

x
c ·µNx

]
. (4)

The simulation analyst’s goal is then to use a measurement policy that maximizes the quantity (4).

2.3 The Choice of Prior Distribution

In this section we discuss how the simulation analyst might choose the prior distribution on c.
We first observe that the simulation analyst may often know the sign of the decision-maker’s preference

for each attribute, sign(c j), even if he does not know the preference vector itself. For example, in the
hospital staffing problem, we know that the sign of the attribute corresponding to cost is negative (less
cost is preferred), as is the sign of the attribute corresponding to patient waiting time (less waiting time is
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preferred). In this case, the prior on c can be restricted to that part of Rm that has the correct set of signs.
In the rest of this section, we suppose without loss of generality that the sign of each c j is positive (if not,
we simply flip the sign of samples of attribute j).

Second, we observe that the preference order over alternatives induced by a preference vector c is
identical to that induced by c/a for any scalar a. Thus, for specifying a prior on the order of the decision-
maker’s preference over alternatives, it is enough to specify a prior on the vector with unit magnitude,
c/||c||. One can then make the simplifying assumption that ||c|| = 1. In the case where there are m = 2
attributes, all that is then required is to specify a prior on an angle between 0 and π/2. More generally,
with m≥ 2, one must specify a prior on the intersection of the unit sphere and the positive orthant.

This assumption that ||c||= 1 is not without loss of generality. Even though dividing c by a scalar does
not change the decision-maker’s preference order, choosing a prior that places weight on several different
magnitudes ||c|| affects the value of sampling information discussed in Section 3.1. In m = 2, such a prior
might correspond to the belief that the overall magnitude of the decision-maker’s preferences are large
when the angle of the preferences c/||c|| takes one value, while the overall magnitude is lower when it
takes other values. While this might be occasionally useful, and is allowed by our framework, we feel
that in most situations this additional flexibility is not needed, and we recommend specifying priors with
||c||= 1.

When the simulation analyst has little information about the preferences of the decision-maker, it may
be prudent to specify a non-informative prior on c. One convenient non-informative prior is the one that is
uniform on the intersection of the unit sphere and the positive orthant. When m = 2, this prior is the one
that is uniform on the angles [0,π/2].

In Section 3 we provide exact expressions for the value of information and the knowledge-gradient
policy when the prior on c is discrete. Thus, for computational convenience, we recommend approximating
continuous priors through discretization. When m= 2 and one has a non-informative prior on c, a convenient
discrete prior is c` = (cos(α`),sin(α`)), α` =

π

2 (`−1)/(L−1), for `= 1, . . . ,L, and P{c = c`}= 1/L.

3 KNOWLEDGE-GRADIENT POLICY

The knowledge-gradient (KG) policy is a one-step lookahead method based on a value of information
calculation. It supposes that the current opportunity to sample is the last that will be allowed, and that
immediately afterward the simulation analyst must provide results to the decision-maker. In the KG policy,
we make the decision that would be optimal in this case.

3.1 Derivation of the Knowledge-Gradient Policy

To calculate this KG decision, we calculate the expected incremental value that would be obtained by
showing results to the decision-maker after sampling alternative x, as opposed to showing results to the
decision-maker before sampling x. We call this quantity the KG factor for alternative x. The KG policy
tells us to measure the alternative with the largest KG factor.

To make calculation of the KG factor analytically tractable, we suppose, only for the purposes of this
calculation, that the sampling variances λ are given to us. When using the KG policy in problems with
unknown sampling variance, we take the current maximum a posteriori estimate λ̂nx j of λnx j from (2), and
substitute this for the true sampling variance when calculating KG factors. After each sample we update
these estimates of the sampling variances.

With the assumption that the sampling variances λ are known, the KG factor for sampling alternative
x at time n is denoted νnx(λ ) and is defined to be,

νnx(λ ) = En

[(
max

x′
c ·µn+1,x′

)
−
(

max
x′

c ·µn,x′

)
|xn+1 = x,λ

]
.
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We now calculate this more explicitly. We condition on c and use the tower property of conditional
expectation to obtain

νnx(λ ) = En

[
En

[(
max

x′
c ·µn+1,x′

)
−
(

max
x′

c ·µn,x′

)
|c,xn+1 = x

]
|xn+1 = x,λ

]
= En [νnx(c,λ ) |xn+1 = x,λ ] = En [νnx(c,λ ) |λ ] ,

where νnx(c,λ ) is defined to be νnx(c,λ ) = En
[(

maxx′ c ·µn+1,x′
)
−
(
maxx′ c ·µn,x′

)
|c,xn+1 = x,λ

]
, and

the last equality follows because νnx(c,λ ) does not depend upon xn+1. The last expectation is over our
uncertainty about c. The quantity νnx(c,λ ) is the expected incremental improvement from sampling x that
we would obtain if we also knew the decision-makers preferences c. We do not know these preferences,
and so we must take an expectation over this uncertainty.

The quantity νnx(λ ,c) is computed more explicitly in the following proposition. Its proof may be found
in the appendix.

Proposition 1 νnx(c,λ ) = σ̃nx(c,λ ) f
(
−∆nx(c)
σ̃nx(c,λ )

)
, where

(σ̃nx(c,λ ))
2
=

m

∑
j=1

c2
j

λx j

ρnx j(ρnx j +1)
, f (d) = dΦ(d)+ϕ(d), ∆nx(c) =

∣∣∣∣c ·µnx−max
x′ 6=x

c ·µnx′

∣∣∣∣ ,
Φ is the normal cumulative distribution function, and ϕ is the normal probability density function.

Proposition 1 implies that the KG factor for sampling alternative x is

νnx(λ ) = En

[
σ̃nx(c,λ ) f

(
−∆nx(c)
σ̃nx(c,λ )

)
|λ
]
,

where the expectation is over c.
The posterior on c is the same as the prior because we obtain no information about the decision-

maker’s preferences until the final time. If the prior on c is discrete over a set c1, . . . ,cL, with probabilities
p` = P{c = c`} that c is equal to each of these values, then this expectation may be computed exactly as:

νnx(λ ) = ∑
`

p`σ̃nx(c`,λ ) f
(
−∆nx(c`)
σ̃nx(c`,λ )

)
. (5)

When the sampling variances are known, the KG policy tells us to measure the alternative x with the
largest such value, xn+1 ∈ argmaxx νnx(λ ). When the sampling variances are unknown, we substitute the
maximum a posteriori estimate λ̂n for the sampling variances λ , and the KG policy is

xn+1 ∈ argmax
x

νnx(λ̂n). (6)

Together, (5) and (6) define the KG policy.

3.2 Summary of the Knowledge-Gradient Policy

We now summarize the way in which samples are collected and inference is performed in the KG policy:

1. Initialization: Choose the parameters of the prior distribution, a number of initial samples n0, and
an overall number of samples N > kn0. If we have no strong prior beliefs about the sampling means
and variances, use the non-informative prior: a0x j =−1/2, b0x j = 0, ρ0x j = 0, µ0x j = 0. Choose a
discrete prior on c, p` = P{c = c`} for `= 1, . . . ,L.
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2. Initial Sampling: Choose the number of initial samples n0 satisfying a0x j +n0 ≥ 2 for each x and
j. Collect n0 samples from each alternative and let n = kn0. Calculate the parameters anx j, bnx j,
ρnx j, µnx j for all x, j from the data collected using the recursive expression (1).

3. Calculate KG Factors: For each alternative x,
(a) Calculate λ̂nx j = bnx j/(anx j−1) for j = 1, . . . ,m.

(b) Calculate σ̃(c`, λ̂n) =
(

∑
m
j=1 c2

` jλ̂nx j/(ρnx j(ρnx j +1))
)1/2

for `= 1, . . . ,L.

(c) Calculate ∆nx(c`) =
∣∣∣∣c` ·µnx−max

x′ 6=x
c` ·µnx′

∣∣∣∣ for `= 1, . . . ,L.

(d) Calculate the KG factor using f (d) = dΦ(d)+ϕ(d) and

νnx =
L

∑
`=1

p`σ̃nx(c`,λ ) f
(
−∆nx(c`)
σ̃nx(c`,λ )

)
,

4. Sample: Sample alternative xn+1 ∈ argmaxx νnx(λ̂n) and observe yn+1, j for each j = 1, . . . ,m.
5. Update Posterior: Update the parameters an+1,x, j, bn+1,x, j, ρn+1,x, j, µn+1,x, j of the posterior over

all attributes j and all alternatives x. For x = xn+1, the updated parameters are computed from yn+1, j
via (1), and for x 6= xn+1 the parameters are unchanged from time n.

6. Loop: Let n = n+1. If n = N, stop sampling. Otherwise go to Step 3

4 EMPIRICAL RESULTS

We performed computational experiments to assess the effectiveness of the KG policy and to illustrate how
the prior on decision maker preferences influences its behavior.

In Figure 1, we compared the expected performance of the KG policy against that of the equal allocation
policy, which allocates the same number of samples to each point in round-robin fashion. The problem
considered has k = 20 alternatives, each with m = 2 attributes, with a sampling budget of N = 600, including
the n0 = 5 initial samples per alternative. We assumed a known sampling variance of λx j = 1 across all
alternatives and attributes. The KG policy began with a non-informative prior on the sampling means.
There were L = 5 possible values c` for c, equidistant from each other on the unit quarter circle in the first
quadrant. That is, c` = (cos(α`),sin(α`)) where α` =

π

2 (`−1)/4 with `= 1, . . . ,5. Our prior on c placed
equal probability on each c`, so p` = 1/5.

Performance was averaged over 1000 replications. In each replication, we sampled a new set of
sampling means θ from an independent standard normal distribution. At each iteration n≥ 100 after the
initial stage of sampling, we calculated the expected value the decision-maker would receive if N were
equal to n, based on the true sampling means θ and the prior on c. This value is ∑

L
`=1 p`(c · θx∗(n,c)),

where x∗(n,c) ∈ argmaxx c ·µnx is the alternative that the decision-maker would choose at time n as given
in (3). The expected value of this performance measure is identical to the expected value of a performance
measure calculated by also randomly sampling one hidden true value of c on each replication.

Figure 1 plots this average performance as a function of n for n > kn0, i.e., after KG completes its
initial stage of sampling. During this initial stage, KG uses the equal allocation policy, and the performance
of the two policies is identical. The maximum standard error of the average performance (which is as an
estimate of expected performance), under both KG and equal allocation and over all n, was 0.011.

Figure 1 shows that the KG policy performs well against equal allocation in this experiment. This is not
surprising, since the equal allocation policy is known to underperform more sophisticated adaptive sampling
policies in a number of other R&S problems. It demonstrates, however, that the behavior of the KG policy
is reasonable. In future work, we plan to compare the performance of the KG policy against other more
sophisticated multi-attribute R&S procedures, both using the new measure of quality of a multi-attribute
sampling procedure, and more traditional measures of quality.
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Figure 1: Bayes performance of the KG and equal allocation policies as a function of the number of samples
taken after the initial stage of experiments completes (the iteration, n−kn0). For each value of n and each
policy, an estimate of the expected Bayes reward (equation (4)) is plotted. Here, k = 20, λx j = 1, µ0x j = 0,
n0 = 5. There were five possible values of c, and they were all equiprobable. The maximum standard error
was 0.011.

In Figure 2, we consider k = 50 alternatives with m = 2 attributes each, whose sampling means were
again generated from a standard normal distribution. The KG policy began with a non-informative prior,
with n0 = 5 samples taken from each alternative, and a known sampling variance of λx j = 1. Rather than
averaging over many replications, we display the results from one replication after N = 600 samples, where
each alternative’s true sampling mean θx = (θx1,θx2) is plotted as a filled black square, and the posterior
mean is plotted as an an open diamond. The sampling mean and posterior mean are connected by a line,
and the length of this line illustrates the posterior variance and the number of times that the alternative was
sampled – shorter lines usually correspond to alternatives that were sampled more often. We use the same
L = 5 possible values c` as in Figure 1, but with two different priors on these values. In the left panel, the
prior places more weight on those c` preferring large values of θ1 at the expense of θ2, while in the right
panel the prior places more weight on those c` preferring large values of θ2 at the expense of θ1. This
prior was

p` =
2L−`+1

∑
L
i=1 2L−i+1

(left panel), p` =
2`

∑
L
i=1 2i

(right panel), `= 1, . . . ,L.

In both panels, the KG policy has sampled more often from those alternatives on the Pareto front (those
alternatives up or to the right), and less often from those alternatives away from the Pareto front. Additionally,
the KG policy has sampled more from the alternatives that performed better in the attribute that was considered
more important. The alternatives with a larger value on the horizontal axis show a smaller variance in
Figure 2(a) than in Figure 2(b), while those with a larger value on the vertical axis show a smaller variance
in Figure 2(b) than in Figure 2(a). Although the KG policy spends more effort on the attribute believed
to be more important, it does also spend some effort on the attributes believed to be less important, as
evidenced in Figure 2(a), for example, by the greater number of samples allocated to those alternatives with
larger values on the vertical axis than to those alternatives away from the Pareto frontier. Thus, by altering
the prior, one can encourage the KG policy to spend more time focusing on one attribute at the expense of
the others. At the same time, this encouragement does not preclude the KG policy from spending effort
along the entire Pareto frontier.
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Figure 2: Illustration of the true values θ and posterior estimates µNx under the KG policy after exhausting
the sampling budget, with five different values of c. In the left panel, the horizontal axis is likely to be
more important. In the right panel, the vertical axis is likely to be more important. In each panel, for
each alternative x, lines connect a square at the true sampling mean θx = (θx1,θx2) with its posterior mean
µNx = (µNx1,µNx2). In these figures, k = 50.

5 CONCLUSION

We have considered the multi-attribute Bayesian R&S problem from a new viewpoint, in which the
decision-maker has a single utility function, but this utility function is unknown to the simulation analyst.
Within this framework, we have developed a new procedure for choosing which alternative to sample
next. This procedure myopically maximizes the value of the information obtained. By using the prior on
the preferences of the decision-maker, we can influence the algorithm to spend more time estimating the
attributes of those alternatives that are more important for the decision-maker’s final selection.

A number of possible extensions present themselves for future work. One might extend the model to
allow for correlated samples across criteria for a single alternative, or across alternatives through the use
of common random numbers. One might also explore non-myopic or batch algorithms, which have the
potential for providing better performance within this framework. One might also study the role that the
decision-maker’s risk aversion plays in the decisions that the simulation analyst should make. One might
also consider correlated prior distributions, allowing us to learn about unsampled alternatives from the
sampling results of related alternatives, and enabling us to solve large-scale problems in which the number
of alternatives far exceeds the number of available samples.

Another interesting direction for future work is to enhance the model of interaction between the
simulation analyst and the decision-maker to allow some feedback on preferences during simulation. In this
extension, the simulation analyst could ask the decision-maker for feedback about interim or hypothetical
results in order to reduce the amount of simulation. In this enhanced model, the analyst could show the
decision-maker interim or hypothetical results and ask her which of them she would prefer. This would
allow the decision-maker to obtain some partial information about the decision-maker’s preferences, which
the algorithm could then use to focus its sampling effort. This interaction could be considered a form
of prior elicitation. This interaction would be modeled as bearing some cost (because it occupies the
decision-maker’s time), and so the analyst would be led to to use this interaction only when it would
significantly decrease the amount of simulation effort required to accurately support the decision-maker’s
ultimate decision.

The overarching goal of this work has been to more accurately model the way in which simulation is
used as an aid to human decision-making. We hope that the model described in this paper will contribute
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to the progress being made in the larger literature toward this goal, and that better models will lead to even
more productive use of simulation by society at large.

A PROOF OF PROPOSITION 1

First c ·µn+1,x′ = c ·µn,x′ for x′ 6= x = xn+1. Now consider c ·µn+1,x. We observed in Section 2.1 that, condi-
tional on the information available at time n, xn+1 = x, and λ , µn+1,x, j ∼Normal(µnx j,λx j/(ρnx j(ρnx j +1)))
with independence across j. This shows that the conditional distribution of c ·µnx is

Normal(c ·µnx,
m

∑
j=1

c2
jλx j/(ρnx j(ρnx j +1))).

Observe that (σ̃nx(c,λ ))
2
= ∑

m
j=1 c2

jλx j/(ρnx j(ρnx j + 1)) is the variance of the distribution. Let Z be
an independent standard normal random variable, so max

x′
c ·µn+1,x′ is equal in conditional distribution to

max{maxx′ 6=x c ·µnx′ ,c ·µnx + σ̃nx(c,λ )Z}.
In general we have for a1,a2,b ∈ R that,

E [max{a1,a2 +bZ}] = max(a1,a2)+E [max{0,−|a1−a2|+bZ}]

= max(a1,a2)+bE
[

max{0,−|a1−a2|
b

+Z}
]
= max(a1,a2)+b f

(
−|a1−a2|

b

)

where f (d) = E [max{0,d +Z}] =
∫

∞

−∞

ϕ(z)max{0,d + z}dz

=
∫

∞

−d
ϕ(z)(d + z)dz = d

∫
∞

−d
ϕ(z)dz+

∫
∞

−d
ϕ(z)zdz = dΦ(d)+ϕ(d).

Thus, with a1 = max
x′ 6=x

c ·µnx′ , a2 = c ·µnx, and b = σ̃nx(c,λ ), we have max(a1,a2) = max
x′

c ·µnx′ , and

En

[
max

x′
c ·µn+1,x′

]
= max

x′
c ·µnx + σ̃nx(c,λ ) f

(
−∆nx(c)
σ̃nx(c,λ )

)
,

where ∆nx(c) = |a1−a2|=
∣∣∣∣c ·µnx−max

x′ 6=x
c ·µnx′

∣∣∣∣ and νnx(c,λ ) = σ̃nx(c,λ ) f
(
−∆nx(c)
σ̃nx(c,λ

)
.
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