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ABSTRACT

Mathematical programming representation has been recently used to describe the behavior of discrete event
systems as well as their formal properties. This paper proposes approximate mathematical programming
models for the simulation–optimization of flow lines with finite buffer capacities. The approximation
exploits the concept of time buffer, modeled as a constraint that put into a temporal relationship the
completion times of two jobs in a sample path. The main advantage of the proposed formulation is that it
preserves its linearity even when used for buffer optimization in multistage flow lines. The solution of the
approximate model can be used to obtain bounds on the variables of the exact model, to reduce its feasible
region and hence the computation time to find the optimal buffer allocation for the line.

1 INTRODUCTION

Simulation is one of the most popular techniques to study the behavior of production systems in situations in
which it is not possible to define mathematical expressions for describing the system behavior. Simulation
allows to predict the behavior of production systems, given some defined working conditions and system
parameters. Optimization, instead, allows to determine the best working conditions or system parameters,
but it can be used only when a mathematical representation of the system behavior is available and does not
allow to directly predict system performance. Optimization via simulation consists in applying iteratively
two detached models until an optimality condition is reached: a simulation model for predicting the system
performance and an optimization model for generating and selecting potential optimal solutions (Fu 2002)
(Fu, Glover, and April 2005).

The recent works (Chan and Schruben 2003) (Chan and Schruben 2008) on mathematical programming
for modeling discrete event systems pave the way to the development of new formulations that can be used
for optimization while the system performance measures are calculated at the same time. In (Matta 2008)
the buffer allocation problem in flow lines has been modeled with both exact and approximate sim–opt
models. The exact optimization model is a MILP model whose complexity increases as the number of
simulated parts and the length of the line also increase. Thus, such a model has no practical application in
complex real cases due to the computational effort it would require. The approximate optimization model,
instead, is an LP model with a computational complexity affordable even if long lines are considered.
In fact, the usage of the approximate model can allow the analysts to work mainly in the linear domain,
thus taking the computational effort low. However, it is not described what the approximate formulation
effectively represents and its relation with the exact one.

This paper deals with approximate modeling of queuing systems by mathematical programming for-
mulations, exactly with the goal of finding the relations between the proposed approximate model and the
exact model proposed in (Chan and Schruben 2008). In particular, we develop two formulations for the
simulation–optimization of a specific class of queuing systems: flow lines with finite buffer capacity. The
first model is based on the standard concept of space buffer. The second model is an LP that exploits the

4262978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Alfieri and Matta

concept of time buffer as an alternative way of modeling queues in discrete event systems. The relations
between exact and approximate LP formulation are formally studied in the paper. An interesting result
is that it is possible to move from the approximate model with time buffers to the exact one with space
buffer. When the model is used for system optimization, the relations between exact and approximate LP
formulations allow the analysts to identify the most interesting subset of feasible buffer capacity for each
stage of the line. This result is particularly important since the exact model for the buffer allocation problem
is, differently from performance evaluation exact models, a MILP model. In fact, the buffer capacity subsets
identified by the approximate LP model can be used to reduce the feasible region (and hence reducing the
computational burden) in solving the problem to find the optimal buffer space allocation in transfer lines.

The contribution of the paper resides in the strong characterization of a new concept of buffer (the
time buffer concept) and in the definition of formal relations between exact and approximate formulations
that are exploited to develop an effective bounding procedure. In the literature related to optimization of
flow lines there is no method to derive the bounds for the optimal buffer capacities in flow lines composed
of machines with generally distributed processing times.

The plan for this paper is the following. In Section 2 we formally define the analyzed system and the
used notation. Section 3 and Section 4, respectively, present the exact and approximate LP formulation to
simulate and optimize the flow line. The time buffer concept is also introduced in Section 4. In Section
5 the relations between exact and approximate formulations are discussed while the bounding procedure
is described in Section 6. Numerical results on randomly generated instances are reported in Section 7.
Section 8 concludes the paper.

2 ASSUMPTIONS AND NOTATION

We consider a flow line with J single-machine stages, on which N identical items have to be processed.
The processing sequence is known in advance, i.e., no scheduling problem needs to be solved. In particular,
item i is processed before item i+1 on each machine of the line. The arrival time of each item, denoted by
ai, and the processing times of each item on each machine j, denoted by ti j, are assumed known in advance
from a random sampling or from a specific sample path. Since no scheduling decision is considered,
ai ≤ ai+1 for all items i. After having been processed by the first machine, parts proceed to the second
machine, then to the third and so forth until the last operation is performed at the last machine; finally
parts leave the system. Starting and completion times of part i at machine j are denoted with xi j and yi j
respectively.

Each machine j, excluding the first, has an incoming buffer B j−1. The capacity of buffer B j is denoted
with c j, and this includes also the part under processing at the machine j+1. Part i has to wait in buffer
B j−1 if machine j is busy in processing another part k (with k < i). The blocking before service control
rule is assumed for machines (Dallery and Gershwin 1992). Machines are perfectly reliable, i.e., no failure
possibility is considered (which is the same as assuming failure possibilities with negligible repair times).
Transportation times are considered negligible or already included in machining times. Finally, for sake
of simplicity, the last machine is never blocked, thus parts completing their processing can always leave
the system.

The performance measure considered in this paper is the mean production rate of the line (denoted
with θ ), defined as the average number of parts produced by the line in a time window.

3 EXACT REPRESENTATIONS

3.1 Formulation for Exact Simulation of Flow Lines

A linear programming (LP) model is now described to simulate a generic open flow line with J machines
separated by buffers with finite capacity. This simplified version of LP model can be obtained from (Chan
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and Schruben 2003):

min
N

∑
i=1

J

∑
j=1

yi j (1)

s.t.
yi1 ≥ ai + ti1 ∀i (2)

yi+1, j− yi j ≥ ti+1, j ∀ j, i = 1, . . . ,N−1 (3)
yi, j+1− yi j ≥ ti, j+1 ∀i, j = 1, . . . ,J−1 (4)

yi+c j, j− yi, j+1 ≥ ti+c j, j i = 1, . . . ,N− c j,

j = 1, . . . ,J−1 (5)

Constraints (2) simply impose that the service at the first machine cannot start before the arrival time of
the same part at the system plus its processing time on the first machine. Constraints (3) mean that a
machine cannot process two consecutive parts at the same time. Constraints (4) state that a part cannot be
contemporary processed by two different machines at the same time. Constraints (5) impose that a part
cannot leave a machine if the immediate downstream buffer is full. The solution of the linear problem
provides the optimal values for decision variables y. Finishing times can assume only positive values in
the real domain because the arrival times are nonnegative input parameters.

The problem solution corresponds to the dynamic behavior of the discrete event system, i.e., the optimal
values are exactly the finishing time events of machining operations in a real or simulated system that has
the same sequence of parts, the same arrival events and the same processing times. See the work of Chan
and Schruben for more details (Chan and Schruben 2008).

A simulated sample path of the exact model is unequivocally determined by the tuple P = (S,E), where
S and E represent the flow line configuration and the part characteristics respectively. In detail, S is a
J−1-dimensional vector containing the space buffer capacities, E is a tuple containing the vector of arrival
times and the matrix of processing times at each machine for each part in the analyzed sample path. The
mean production rate related to the sample path can be calculated after the LP model has been solved:

θ =
N

yNJ
. (6)
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3.2 Formulation for Exact Buffer Capacity Optimization of Flow Lines

The optimization problem (i.e., the problem of choosing the optimal capacity for each buffer) is represented
by the following MILP model (Matta 2008):

min
J−1

∑
j=1

e j

U j

∑
k=L j

z jkk (7)

s.t.
(2)− (4)

yi+k, j− yi, j+1 ≥ ti+k, jz jk− (1− z jk)M j = 1, . . . ,J−1,
i = 1, . . . ,N− k,

∀k (8)
U j

∑
k=L j

z jk = 1 ∀ j (9)

yNJ− ydJ ≤
N−d

θ ∗
(10)

where z jk is a binary variable equal to one if capacity k (with k = L j, ...,U j) is assigned to queue B j and e j
is the weight (i.e., cost) of unit capacity at queue B j; values L j and U j are the bounds defined by the analyst
of the optimization problem for the j− th buffer. The objective function is to minimize the weighted sum
of the buffer capacities. Constraint (10) imposes that the mean throughput must be greater than or equal to
a minimum value θ ∗. If z jk = 1, then all the constraints related to queue B j with assigned capacity equal
to k are activated; otherwise, the constraint is made redundant by subtracting from the right-hand side the
big M (8). Index d represents the end of the system warm-up, identifiable with well-known techniques.
Finally, only one capacity k must be chosen for each buffer B j as imposed by equation (9).

Notice that the only differences between the simulation and the optimization model are the objective
function and the constraints (8) and (9) that substitute constraints (5).
All these constraints refer to the buffer capacity. While in the simulation model, buffer capacity is a
parameter (c j), in the optimization model it is a decision variable (z jk). Moreover, in the optimization
model it is required a constraint on the minimum level of throughput, otherwise the system would select
zero buffer capacity for each stage.
Finally, notice that the larger is the number of available buffer capacity (i.e., the larger the difference
U j− L j), the larger is the number of constraints (8) and hence the more difficult will be to optimally
solve the problem. Without any knowledge about the system, the only possibility not to “cut” the optimal
solution out from the feasible region is to set L j = 1 and U j = N, but in real cases this choice results in a
computationally infeasible problem.
The approximate models presented in the next section will help to reduce the feasible region.

4 APPROXIMATE REPRESENTATIONS

4.1 Time Buffer

The exact formulation uses the concept of space buffer to simulate the behavior of the system. The space
buffer is what is commonly thought of when speaking of buffer capacity, i.e., an available space, between
two adjacent machines, where items can wait to be processed.

An alternative way of modeling the possibility for items to wait in a queue, before being processed on
a machine, is the use of the time buffer. A time buffer can be considered as the time length an item can be
started “in advance” on a machine before the successive machine is available for processing. Given two

4265



Alfieri and Matta

parts a and b to be processed in the sequence a→ b (i.e., a precedes b), a time buffer of capacity s j in
front of machine j+1 forces the starting time of job b at machine j (denoted with xb j) and finishing time
of job a on machine j+1 (denoted with ya, j+1) in the following way:

xb j ≥ ya, j+1− s j

The above equation simply says that job b at machine j can start s j time units before the completion of job
a at machine j+1. When the time buffer is null, the two adjacent machines are perfectly synchronized.
On the other hand, two machines are decoupled when there is an infinite time buffer between them. The
main difference between space and time buffer is the fact that a space buffer of capacity m is always able
to accommodate m items, independently from the system conditions. Also, the time spent by parts stored
in the space buffer is not limited. On the contrary, the number of parts that, for instance, time buffer B j
can store is not known a priori; in fact, it depends on the part flow arriving from machine j−1 in a certain
time window (equal to the time buffer) just before machine j ends its processing. Obviously, the time
spent by parts in the time buffer is limited by its capacity.

Finally, notice that the time buffer concept introduced in this section is different from that adopted in
manual assembly lines, which is mainly related to dimensioning the speed of the conveyor between two
adjacent machines. The proposed time buffer is also different from the slack time in PERT graphs, which
can be defined as the time available between the estimated completion time of the job and its due date.

4.2 Formulation for Approximate Simulation of Flow Lines

The approximate mathematical representation of a flow line that considers the time buffer concept is now
introduced.

min
N

∑
i=1

J

∑
j=1

yi j

s.t.
(2)− (4)

yi+k, j− yi, j+1 ≥ ti+k, j− sk j i = 1, . . . ,N−1,
j = 1, . . . ,J−1, k = 1, . . . ,c j (11)

In equations (11) parameter sk j ∈ ℜ represents the time buffer capacity between machines j and j + 1
constraining the finishing times of parts i+k and i. Such formulation presents a specific time buffer capacity
between two completion times at two adjacent machines. Time buffers constrain completion times distant
at maximum lag c j.

The only set of constraints that differs from the exact formulation is the one related with the buffer
capacity. Indeed, the space buffer constraints (5) are replaced by the time buffer constraints (11).

A simulated sample path of the approximate model is unequivocally determined by the tuple P′= (S′,E ′),
where S′ and E ′ represent the flow line configuration and the part characteristics respectively. Specifically,
S′ is the matrix s containing time buffer capacities sk j; E ′ is a tuple containing the vector of arrival times
and the matrix of processing times at each machine for each part in the analyzed sample path. After this LP
model has been solved, an approximation of the mean production rate of the sample path can be calculated
using equation (6).

It is well known in the literature that the throughput is a monotonic function of the space buffer. The
same result holds for the time buffer model, as defined in the following property.
Property 1 Let P′ = (S′,E ′) be an approximate formulation of a flow line sample path. The resulting
throughput of the approximate model is a monotonic function of sk j, i.e., if the values of sk j increase for
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all k and j, the throughput cannot decrease and if the values of sk j decrease for all k and j, the throughput
cannot increase.

Proof. In the approximate model, if sk j increases for all k and j, constraints (11) allow finishing times
yi, j+1 to decrease. Since this is applicable to each j and k, also yNJ is allowed to decrease. Hence, by
equation (6), throughput θ cannot decrease.
On the other way around, if sk j decrease for all k and j, constraints (11) force finishing times yi, j+1 to
increase. Since this is applicable to each j and k, also yNJ is forced to increase. Hence, by equation (6),
throughput θ cannot increase. Hence, the throughput is a monotonic function of the time buffer.

4.3 Formulation for Approximate Buffer Capacity Optimization of Flow Lines

As in the case of the space buffer formulation, by changing the approximate simulation model devised
above, it is possible to obtain the approximate model for the optimization problem:

min
J−1

∑
j=1

e j ∑
k

sk j (12)

s.t.
(2)− (4)

yi+k, j− yi, j+1 ≥ ti+k, j− sk j i = 1, . . . ,N−1,
j = 1, . . . ,J−1, k = 1, . . . ,K j (13)

yNJ− ydJ ≤
N−d

θ ∗

Equation (12) is the objective function, i.e., the minimization of the overall buffer costs. Again, the objective
function is to minimize the weighted sum of the time buffer capacities. Constraints (13) prevent a part
from leaving a machine if the immediate downstream time buffer is full. Index k is defined between 1 and
an upper value K j defined by the analyst. Parameter K j cannot be larger than N obviously. As in the case
of the exact optimization model, a throughput constraint is necessary to prevent the model to reach the
“optimal” solution with zero cost, i.e., in which s variables are all null. The solution of this model is the
array of time buffer capacities that minimize the total cost in equation (12) under the throughput constraint.
Notice that if sk j is positive for some k, it means that a buffer B j, of some capacity, is needed. Starting
from this observation, we will show in the next section how it is possible to obtain from the approximate
optimal solution bounds L j and U j to reduce the feasible region in the space buffer domain.

5 RELATIONS BETWEEN SPACE AND TIME BUFFER MODELS

The aim of this section is to present some structural results that allow the analyst to map an approximate
formulation to a set of exact formulations. Before illustrating the relations between exact and approximate
formulations, notice that the performance measure θ cannot decrease if the feasible region of the problem
is enlarged. This is proved in the following lemma.
Lemma 1 Let P = (S,E) be an exact (or approximate) LP formulation of a flow line sample path. If the
feasible region Ω, defined by constraints (1) - (5) (or by constraints (1) - (4), (11)) is enlarged to Ω′ by
removing some of the constraints, the mean production rate θ ′ on Ω′ is such that θ ′ ≥ θ .

Proof. If some constraints are removed, variables y are able to reach smaller values (we are dealing
with a minimization problem). Since yNJ is the finishing time of the last part on the last machine, even if
it does not directly decrease, it cannot increase if other y have reached possibly smaller values. Hence y′NJ
on Ω′ cannot be bigger than yNJ on Ω, which implies that θ ′ ≥ θ .
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Analogously, it can be proved that, if Ω is reduced to Ω′ by adding some constraints, the mean
production rate cannot increase, i.e., θ ′ ≤ θ .
Theorem 1 Let P = (S,E) be an exact formulation of a flow line sample path, and let P′ = (S′,E ′) be an
approximate formulation of the same flow line, with E = E ′. If the following inequalities are valid:

sk j > xi+c j, j− xi+k, j k = 1, . . . ,c j, i = 1, . . . ,N− c j,

j = 1, . . . ,J−1 (14)

then θ ′ ≥ θ .
Analogously, if the following inequalities are valid:

sk j < xi+c j, j− xi+k, j k = 1, . . . ,c j, i = 1, . . . ,N− c j,

j = 1, . . . ,J−1 (15)

then θ ′ ≤ θ .

Proof. It is easy to demonstrate that when the inequalities (14) are valid, the feasible region of the
approximate formulation is larger than and contains that of the exact model. Constraints (5) and (11) can
be rewritten as:

yi, j+1 ≤ xi+c j, j (16)
yi, j+1 ≤ xi+k, j + sk j. (17)

If the condition in (14) is true for all the possible values of k and j:

sk j + xi+k, j > xi+c j, j.

Using the above inequality, it is easy to demonstrate that equation (16) constrains more than equation (17).
Thus, by Lemma 1 we can conclude that the production rate estimated by the approximate model is greater
than or equal to that estimated by the exact model.
The second part of the theorem can be proved in a similar way, hence we omit its demonstration.

The following theorem allows us to relate an approximate model having a certain time buffer configuration
with an exact model having some defined performance.
Theorem 2 Let P′ = (S′,E ′) be an approximate formulation of a flow line sample path, and s = [sk j] be
the matrix of the k–lag time buffer capacities between machines j and j+1. Let also yi j, xi j and θ ′ be
the result of the approximate model. If there exists a value of cu

j = 1, . . . ,N−1 for which the following
inequalities are satisfied:

sk j < xi+c j, j− xi+k, j i = 1, . . . ,N− cu
j ,

j = 1, . . . ,J−1,1 < k ≤ cu
j (18)

and a value of cl
j = 1, . . . ,N−1 for which the following inequalities are satisfied:

sk j > xi+c j, j− xi+k, j i = 1, . . . ,N− cl
j,

j = 1, . . . ,J−1,1 < k ≤ cl
j (19)

then there is at least one space buffer configuration c j in the set cl
j ≤ c j ≤ cu

j having a throughput θ such
that θ l ≤ θ ≤ θ u.
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Proof. Given a value of c j, if condition (18) or condition (19) are valid then Theorem 1 can be applied
to derive θ ≤ θ ′ or θ ≥ θ ′.

This result simply states that the approximate formulation of a flow line with a certain time buffer
configuration overestimates or underestimate the throughput of a flow line modeled with space buffers
having capacities equal to c j, being invariant arrival and processing times (i.e., E = E ′). Notice that the
conditions in (18) and (19) can be true for different values of c j.

Once sk j have been fixed, also the mean production rate of the approximate flow line is given. By
applying Theorem 2, the bounding space buffer capacities to have the same performance, cl

j and cu
j , can

be then determined. These values can be used in the space buffer MILP optimization model to reduce the
problem search domain, i.e., to help the computational efficiency of solution algorithms. Notice, in fact,
that cl

j and cu
j represent the bounds L j and U j used in Section 3.2.

6 BOUNDING PROCEDURE

In this section we describe a general procedure for the optimization of buffer capacities in flow lines.

1. Initialization: generate randomly arrival (ai) and processing (ti j) times for all the N parts of the
sample path. Set the time buffer capacities to the upper feasible value (K j, with j = 1, . . . ,J−1).

2. Approximate optimization: solve the approximate optimization model (Section 4.3) on the sample
path generated at step 1. Collect the time buffer capacity s∗ from the optimal solution.

3. Approximate simulation: solve the approximate simulation model (Section 4.2) using s∗ as an input
parameter on the sample path generated at step 1. Collect variables xi j from the model solution
(i = 1, . . . ,N; j = 1, . . . ,J−1).

4. Bounding: apply equations (18) and (19) to calculate lower and upper bounds cl
j and cu

j for each
buffer capacity ( j = 1, . . . ,J−1). In details, for each j, the parameter c j in equation (18) is fixed to
1 and inequality sk j < xi+1, j−xi+k, j is checked for each feasible i and k. If the inequality is verified
for each i and k, hence cu

j = 1. Otherwise, if it is not verified for some i or k, c j is increased by 1 and
inequality sk j < xi+2, j−xi+k, j is checked, and so on until a value of c j for which sk j < xi+c j, j−xi+k, j

is verified for each feasible i and k is found. The same is done to find the lower bound cl
j, with the

only difference that equation (19) is used for each j and each value of c j.

At the end of this procedure an optimization algorithm can be applied to the exact optimization model
(Section 3.2) for finding out the optimal solution in the feasible area restricted by the calculated bounds.
The use of the bounds should lead to a reduction of the computational time necessary to solve the optimal
buffer capacity allocation problem.

7 NUMERICAL TESTS

Numerical tests on randomly generated instances were carried out to evaluate the strength of the bounds
developed in the previous section. We executed three sets of experiments, considering different simulation
settings in terms of number of machines in the line, saturation of the line and simulation type (terminating
or steady-state).

The first set of experiments deals with a terminating simulation in a three machine flow line. We
simulated the processing of 500 parts all available at time zero (i.e. saturated line with ai = 0, ∀i). Notice
that the availability at time zero assumption does not reduce the generality of the experiment; similar results
can be obtained by generating arrivals so that ai > 0. The computational times on the three machines have
been assumed exponentially distributed with average values of 0.4, 0.5 and 0.2 time units respectively
on the first, second and third machine of the line. The bottleneck is clearly the second machine and the
maximum achievable throughput θ is therefore 2 parts per time unit. Using the approximate optimization
model we found the optimal time buffers s∗k j that allow to reach an a priori given value of θ ∗ = 1.7 (Step
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2 of the bounding procedure).
The values of s∗k j have been used in the approximate simulation model presented in Section 4.2 (Step 3
of the bounding procedure). Theorem 2 has then been applied to find cl

j and cu
j from the model solution

(Step 4 of the bounding procedure). Finally, the exact simulation model presented in Section 3.1 is solved
first with cl

j for each j and then with cu
j for each j, computing the respective throughput θ l and θ u. The

above described experiment has been repeated after having changed the values of sk j in the approximate
simulation model, i.e., by repeating Step 3 of the bounding procedure with different values of time buffer
capacities. In particular, we decreased all s∗k j to 0.5s∗k j and increased to 2s∗k j.

We experimented with 10 different sample paths randomly generated. The results are reported in Table
1. In such tables, Run refers to the sample path. Columns s1 and s2 contain the total time buffer of buffer
B1 (between the first and the second machine) and B2 (between the second and the third machine). The
total time buffer is defined as ∑k sk j. Columns cl

1 and cu
1 correspond to the values of cl and cu for buffer B1,

while cl
2 and cu

2 have the same meaning for buffer B2. The last two columns, θ l and θ u, are the throughput
given by the exact simulation model when instantiated with the same sample path as the approximate
simulation model and the c j of both buffers respectively at the lower and upper bound values.
The range on space buffer values, i.e., cu

j − cl
j, seem to be not so tight. Notice, however, that the possible

space buffer values range between 1 (no buffer) till N (buffer able to accommodate all the parts at the same
time). Hence, the bounds determined by using Theorem 2 allow, in the worst case (Table 1, Run 5, Buffer
B1) a reduction of the feasible values of about 87%.

The second set of experiments considers also a three machine flow line, with exponentially distributed
processing time and all parts available at time zero, with a steady–state simulation. In particular, we simulated
10,000 parts, with the first 2,000 parts corresponding to the warm-up period. The average processing time
of the three machines are respectively 0.1429, 0.1429 and 0.1667 time units. The maximum achievable
throughput is therefore 6 parts per time unit.
We applied the bounding procedure using a desired throughput θ ∗ = 5.4 (i.e., 90% of the maximum
achievable) and, also in this case, we considered 10 different random sample paths.
The results of the second set of experiments are reported in Tables 2 and 3. Table 2 reports the total time
buffer capacities and the throughput corresponding to the solution of the exact simulation model instantiated
with the same sample path as the approximate one and with c j values to the upper bound for both buffers
(column θ u), to the lower bound for both buffers (column θ l), the first buffer to the upper and the second
to the lower (column θ ul), the first buffer to the lower and the second to the upper (column θ lu). Table 3
reports the calculated bounds and the optimal space buffer configuration that minimizes the total allocated
buffer capacity under the constraint θ ≥ 5.4. Optimal solutions were obtained by solving the MILP model
in Section 3.2. These optimal values, by Theorem 2, are always between the values cl and cu identified
from the solution of the approximate model.

In the last set of experiments we considered a two–stage system to show how the quality of the bounds
changes as a function of the system throughput. The two stages have the same exponential distribution with
mean equal to 0.1 time units. Experiments were executed on a fixed sample path using different values of
the corresponding total time buffer. The results are reported in Figure 1. Also in this case, it is possible
to notice that increasing the time buffer allows to reach higher values of throughput, as stated by Property
1. Moreover, the range of throughput given by the solution of the exact model instantiated with cl and
cu, computed as (θ u−θ l), first increases and hence decreases, being quite tight for high level of system
saturation. This behavior is the same as observed in the three machine case. Indeed, the first increase in
the throughput range is due to the fact that, when the saturation level is low, increasing sk j leads to an
increase of cu

j , while cl
j tends to remain fixed. Increasing the saturation level further towards the 100%,

not only cu
j increases, but also cl

j does, thus reducing the throughput range.
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Figure 1: Lower and upper bound on two-machine flow line throughput.

Therefore, we can conclude that the approximation seems to improve in the high saturated areas, i.e., in
those areas in which flow lines generally operate.

The time for solving the approximate simulation and optimization models in Steps 2 and 3 is in the
order of seconds (first end third experiment) or minutes (second experiment) on an Intel CoreTM2 Duo
2.53GHz 2.99 GB RAM.

8 CONCLUSION

In this paper we considered approximate and exact models to evaluate and optimize the performance of
a flow line with finite buffer capacity. The exact model has been developed based on the well–know
concept of space buffer, while in the approximate model we introduced the new concept of time buffer as
an alternative way of modeling space buffer.

The relations between the two models have been formally studied to allow the analyst to move from
one model to the other, i.e., to optimize the model in the approximate domain and use the optimization
results to identify the most promising areas in the exact domain in which to intensify the search of the
optimal solution to buffer allocation problem.

The results of numerical tests on random generated instances show the efficacy of the bounds given by
the approximate model to reduce the feasible region for the space buffer capacity in the exact optimization
model. A further step will be the assessment of the computational time saving that derives from the
application of the bounding procedure in simulation–optimization algorithms such as OPTQUEST and
COMPASS (Hong and Nelson 2006). Furthermore, in this paper only a sample path is considered, however
the proposed approximate model can be exploited to define bounds that take into account several replications
under the stochastic programming framework. This subject is an ongoing research.
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Table 1: Results for terminating simulation (θ ∗ = 1.7).

Run s1 s2 cl
1 cu

1 cl
2 cu

2 θ l θ u

1 2.290 0.805 2 6 1 4 1.2247 1.8220
4.580 1.610 2 7 1 6 1.2247 1.8687
9.160 3.220 3 12 1 9 1.3197 1.8952

2 2.140 0.740 2 5 1 3 1.2373 1.7388
4.280 1.480 2 8 1 6 1.2373 1.8593
8.560 2.960 2 12 1 8 1.2373 1.8772

3 0.875 0.350 1 4 1 3 1.0920 1.8474
1.750 0.700 1 6 1 4 1.0920 1.9675
3.500 1.400 1 10 1 7 1.0920 2.0200

4 1.355 0.645 1 6 1 4 1.0552 1.8488
2.710 1.290 1 8 1 5 1.0552 1.9070
5.420 2.580 2 12 1 11 1.2755 1.9490

5 1.425 0.390 1 6 1 3 1.0361 1.8575
2.850 0.780 1 9 1 5 1.0361 1.9734
5.700 1.560 1 13 1 7 1.0361 2.0100

6 2.845 0.990 1 7 1 6 0.9682 1.7497
5.690 1.980 1 10 1 7 0.9682 1.7904
11.380 3.960 3 14 1 10 1.2724 1.8112

7 1.935 0.745 1 6 1 5 1.0062 1.8166
3.870 1.490 1 8 1 6 1.0062 1.8615
7.740 2.980 2 15 1 10 1.2456 1.9364

8 1.285 0.445 1 6 1 4 1.0535 1.9287
2.570 0.890 1 8 1 5 1.0535 1.9982
5.140 1.780 1 12 1 7 1.0535 2.0400

9 2.540 0.675 1 6 1 5 1.0114 1.7152
5.080 1.350 1 10 1 7 1.0114 1.8855
10.160 2.700 3 15 1 9 1.3227 1.9271

10 2.000 0.845 1 8 1 5 1.0146 1.8095
4.000 1.690 1 10 1 9 1.0146 1.8328
8.000 3.380 1 12 1 11 1.0146 1.8415

Table 2: Results for steady-state simulation: time buffers and performance.

Run s1 s2 θ l θ ul θ lu θ u

1 4.1210 6.2251 2.6353 3.1794 3.4955 5.7852
2 3.1028 4.1729 2.6706 3.2364 3.4992 5.9170
3 3.6635 5.2830 2.6346 3.1844 3.4588 5.8771
4 3.5194 5.0957 2.6450 3.1967 3.4971 5.8034
5 2.9703 4.2171 2.6799 3.2385 3.5120 5.9098
6 2.5699 3.9818 2.6897 3.2533 3.5249 5.8273
7 3.3947 4.2498 2.6629 3.2405 3.5144 5.8600
8 3.1628 3.9666 2.6537 3.2521 3.4659 5.9779
9 3.3936 5.2277 2.6440 3.2190 3.4986 5.8327
10 2.8097 3.9853 2.6791 3.2659 3.5142 5.9729
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Table 3: Results for steady-state simulation: bounds and optimal values.

Run cl
1 cu

1 cl
2 cu

2 c∗1 c∗2
1 1 17 1 20 6 9
2 1 14 1 15 6 7
3 1 17 1 17 6 9
4 1 17 1 17 6 8
5 1 17 1 16 5 8
6 1 14 1 9 5 7
7 1 15 1 16 6 8
8 1 15 1 16 6 7
9 1 16 1 17 6 8

10 1 13 1 15 6 7

REFERENCES

Chan, W., and L. Schruben. 2008. “Optimization models of Discrete–Event System Dynamics”. Operations
Research 56 (5): 1218–1237.

Chan, W. K., and L. W. Schruben. 2003, December. “Properties of Discrete Event Systems from their
Mathematical Programming Representations”. In Proceedings of the 2003 Winter Simulation Conference,
edited by S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, 496–502. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Dallery, Y., and S. B. Gershwin. 1992. “Manufacturing Flow Line Systems: A Review of Models and
Analytical Results”. Queueing Systems Theory and Applications, Special Issue on Queueing Models
of Manufacturing Systems 12 (1-2): 3–94.

Fu, M. 2002. “Optimization for Simulation: Theory vs. Practice”. Journal on Computing 14 (3): 192–215.
Fu, M., F. Glover, and J. April. 2005, December. “Simulation optimization: a review, new developments,

and applications”. In Proceedings of the 2005 Winter Simulation Conference, edited by M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, and J. A. Joines, 83–95. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Hong, L. J., and B. L. Nelson. 2006. “Discrete optimization via simulation using COMPASS”. Operations
Research 54:115–129.

Matta, A. 2008, December. “Simulation Optimization with Mathematical Programming Representation Of
Discrete Event Systems”. In Proceedings of the 2008 Winter Simulation Conference, edited by S. J.
Mason, R. R. Hill, L. Moench, O. Rose, T. Jefferson, and J. W. Fowler, 1393–1400. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc.

AUTHOR BIOGRAPHIES

ARIANNA ALFIERI is Assistant Professor at Politecnico di Torino, where she currently teaches pro-
duction planning and control and logistic system simulation. Her research area includes scheduling and
planning in production and transportation systems. Her email address is arianna.alfieri@polito.it.

ANDREA MATTA is Associate Professor at Politecnico di Milano, where he currently teaches manufac-
turing and integrated production systems. His research area includes analysis, design and management of
production and service systems. His email address is andrea.matta@polimi.it.

4273


