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ABSTRACT

We propose a two-stage non-linear stochastic formulation for the economic dispatch problem under
renewable-generation uncertainty. Each stage models dispatching and transmission decisions that are
made on subsequent time periods. Certain generation decisions are made only in the first stage and the
second stage realizes the actual renewable generation, where the uncertainty in renewable output is cap-
tured by a finite number of scenarios. Any resulting supply-demand mis-match must then be alleviated
using extra, high marginal-cost power sources that can be tapped in short order. We propose two outer
approximation algorithms to solve this nonconvex optimization problem to optimality. We show that under
certain conditions the sequence of optimal solutions obtained under both alternatives has a limit point that
is a globally-optimal solution to the original two-stage nonconvex program. Numerical experiments for
a variety of parameter settings were carried out to indicate the efficiency and usability of this method of
large practical instances.

1 INTRODUCTION

With the advent of the Smart Grid, the infrastructure for energy supply generation and transmission is
experiencing a transition from the current centralized system to a decentralized one. The responsiveness
and flexibility envisioned for the Smart Grid provides additional advantages in facing the significant new
challenges (Cheung et al. 2010, Li et al. 2007) of integrating distributed and intermittent generation
capability, such as small generators and renewable energy sources (wind, solar, etc.), at a scale that current
grid technology is finding hard to achieve. This is becoming more critical as renewable energy technologies
are playing an increasingly visible role in the portfolio mix of electricity generation.

Current practice does planning for energy supply generation and supply-demand mediation in a power
grid in two steps. The first step takes place in a day-ahead market and decides which bulk generation sources
(typically thermal, nuclear and hydro sources) are awarded contracts to supply energy in the next day.
This base generation capability is augmented by additional smaller capacity “peaker” thermal generators
and external sources of energy (spot markets) connected to a subset of the grid’s nodes, to hedge against
un-planned excess demand. The second planning stage, which is the problem of this paper’s interest, is at
a smaller time-scale, typically five to fifteen minutes. It decides how the active generators are dispatched
(e.g., set the level at which bulk generators produce energy) and how the produced energy is routed through
the grid to consumption (or load) nodes. Transmission occurs across multiple buses (network nodes)
interconnected via electrical transmission lines, and the flow obeys certain non-linear equations that arise
out of Kirchoff’s laws (see e.g. I.P.E. Society (1996) for a review). An economic dispatch (ED) problem
or optimal power flow (OPF) problem is said to have been solved when the dispatch and transmission
decisions are taken to minimize the total cost of generation (Carpentier 1962).
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We consider a stochastic economic dispatch problem where we introduce a renewable resource of
energy to the grid. To keep the discussion tractable, we shall consider only wind generation as the main
renewable resource in this paper, though the methods developed here apply transparently to all renewables.
Wind generation has negligible operational costs (in the hourly time-scale) and thus should be the first
generator to be dispatched. Indeed, regulations in multiple US states require the use of wind power if it is
being generated. However, the intermittent nature of output from wind turbines due to weather conditions
is often seen as a potential obstacle to dispatching wind power in the classical sense. Hence, we model the
wind power as a non-dispatchable, variable generation source that is connected in an always-on state to
the grid. Current levels of penetration of renewable generation makes the scenario of over-supply because
of renewables a very remote possibility.

Forecasting near-term wind availability and velocity is an imperfect science with significant variability
between the forecast and the realized generation. In Dragoon and Milligan (2003), the authors consider
integrating wind power production into existing dispatch models, and analyze the uncertainty of forecast
errors for wind power production and its impact on incremental reserve requirements and imbalance costs.
The agency charged with controlling the smooth operation of the grid will require that this uncertainty
associated with utilizing non-renewable sources be hedged against. This problem is often addressed by
balancing energy provided by non-dispatchable sources (such as wind and photovoltaic units) with quickly
dispatchable, albeit costly, sources (such as small hydro and micro turbine units). This problem has been
studied in various levels of sophistication starting from individual end-users up to local utilities. In particular,
a balancing approach to achieve overall dispatchability in a distributed generation network is presented
in Xue et al. (2007), which consequently converts a group of small distributed generations into a large
logical generation station.

Another stream of research incorporates the uncertainty in setting or adjusting the dispatch and
transmission decisions, which has the effect of dispatching additional capacity to hedge against the risk
of a large unforeseen shortfall in total supply. The study in Brini et al. (2009) considers an economic
environmental dispatching model where wind and solar energy are both included but constrained to be no
more than 30% of the total dispatched capacity. Hatami et al. (2009) propose a stochastic programming
framework to determine the optimal procurement of interruptible load in order to minimize the risk of a
shortfall over multiple periods. The stochastic OPF can be solved by imposing a set of risk constraints,
in the form of chance constraints in Fu and McCalley (2001) or mean-excess constraints in Ghosh et al.
(2011), to balance risk of shortfalls due to uncertain generation against cost of provisioning corrective
generation sources such a peakers.

In this paper, we propose a two-stage stochastic formulation to address the wind-generation uncertainty.
The two stages model dispatching and transmission decisions that are made on subsequent time periods
separated by say fifteen minutes or an hour. Our main point of departure from current literature is in our
consideration of the full non-linear power balance equations in each stage of this program. Certain dispatching
decisions cannot be changed in the subsequent step; for example, mechanical stability considerations require
that large diesel/coal generators change their generation levels more gradually. Hence, these decisions are
made in the first stage and remain fixed at the second stage. (More generally, one may allow these to be
varied in a small interval around their first stage values, and we anticipate our findings will hold in this
case.) The second stage realizes the actual wind generation (or is only minutes away from realizing it and
thus has a much more accurate forecast), where the uncertainty in wind power output is captured by a
finite number of scenarios. Any resulting supply-demand mis-match must then be alleviated using extra,
high marginal-cost power sources that can be tapped in short order. We call this second class of generators
collectively as the spot-market, which can include a) thermal “peakers”, which are active, quick-response
fossil-fuel sources, b) external power sources such as neighboring grids or power aggregators that are willing
to supply extra power at “spot market” prices, and c) sources of virtual generation, such as interruptible
loads of large commercial users, retail operations or consumer homes that can be influenced to shift or
reduce their demand in response to incentives (refer Ghosh et al. (2010) for further details).
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This two-stage stochastic program is non-linear due to the Kirchoff’s law based power transmission
equations, and are generally non-convex. Non-convex two-stage programs are hard to solve using standard
techniques, and the literature has little to offer as a general prescription. The key to solving such problems
seems to be the ability to exploit structural properties of a specific formulation. Lavaei and Low (2010)
give such a strong structural property for the standard economic dispatch problem (i.e., the single stage
deterministic ED problem), where they show that if the problem instance satisfies a certain reasonable
condition then one can obtain provably-global optimal solutions to the problem. We make use of this
property to provide an approach to solving this two-stage problem.

Specifically, our contributions are:

• We show that for problem instances that satisfy the condition given by Lavaei and Low (2010),
an effective, consistent decomposition scheme can be setup for the two-stage problem, much like
the standard decomposition for two-stage linear programs. In particular, this facilitates a parallel
implementation of the solution algorithm.

• The decomposition scheme solves a sequence of lower-approximation problems for the first-stage
minimization problem. Each iteration improves a piecewise-linear outer-approximation for the
recourse function that represents the second stage costs of the first stage decisions.

• We propose two alternatives for the form of the outer-approximation. We show that the sequence
of optimal solutions obtained under both alternatives have a limit point that is a globally-optimal
solution to the original two-stage non-convex program.

• We performed numerical experiments for a variety of parameter settings that indicate the efficiency
and usability of this method of large practical instances.

The remainder of the paper is organized as follows. Section 2 introduces both our model notation
and formulation. Section 3 presents the decomposition and outer-approximation schemes and the proofs
of global-convergence. Section 4 presents the numerical experiments and analysis, followed by some
concluding remarks.

2 MODEL DESCRIPTION

An electric grid management entity controls the dispatching of active generation units and the spot market
over a network of multiple local buses interconnected via transmission lines. Define as B the set of all
buses, or nodes, in the grid network, G as the set of buses that conventional generators connect to, W as
the set of wind-generator buses, D the set of energy demand or load buses, and S as the set of buses with
access to the spot market. To keep the exposition readable, we will assume that the sets G,W,D and S
are pairwise disjoint, and B = G ∪W ∪D ∪ S .

Power at any bus i is represented by a complex number Pi + iQi, where Pi and Qi are the active and
reactive parts, and i is the imaginary unit. Power demand is represented by P di and Qdi , while P gi and
Qgi are the power extracted from conventional generators. In our formulation, the first stage generation
decisions are represented by P qi + iQgi , and the cost of generation is given by the convex quadratic function:

f(P g)
4
=
∑
i∈G

(c0i(P
g
i )2 + c1iP

g
i + c2i),

where c0i, c1i and c2i are nonnegative parameters. We define by P g the vector whose components are P gi ’s,
i ∈ G; similar vectors for related quantities will be considered in the same manner. The generators are
limited to producing within [Pmin, Pmax] and [Qmin, Qmax], the active and reactive limits respectively.
Scenario s ∈ P of the second stage realizes Pw,si + iQw,si of power extraction from wind generator at bus
i. Each scenario s has a probability of occurrence ps. The second stage recourse variables are the extra
power (P in,si , Qin,si ) that may be purchased from the spot market at bus i under scenario s, allowing for the
possibility that surplus power (P out,si , Qout,si ) may also be sold to the spot market. Cost curve gs(P in,s)
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gives the total cost of purchasing from the spot market under scenario s, while hs(P out,s) represents the
total revenue generated by selling to the spot market. In our numerical experiments, we assume gs is convex
and quadratic and hs is linear. We allow these options to be exercised in the first-stage too; typical costs f ,
gs, hs, and available generation capacity are such that the first-stage should never result in a spot-market
purchase.

Power transmission over a network of transmission lines that connect all the buses is determined by
the voltages set at each bus. Let V be the vector of voltages Vi at all buses. Then, various physical and
safety considerations require that |V | ∈ [V min, V max]. Current flow between any two connected nodes i
and j is determined by the voltage difference between them as Iij = Yij(Vj − Vi), where the admittance
Yij between nodes i and j is a physical characteristic of the network. In short, we have I = Y ·V , where
Y is the admittance matrix. Net power flow between nodes i and j is then determined as V · I∗, where
I∗ is the complex conjugate of I . Collectively represent all the net active and reactive power flows into
node i by PFi(V ) and QFi(V ) respectively. Each function is quadratic in the real and imaginary parts of
the base transmission variables V , and in general is non-convex. With a small abuse of notation, let s = 0
represent the first stage. Then the following balance equations are implied for active and reactive power
(for all s ∈ 0 ∪ P):

PF si (V s) =


P in,si − P out,si ∀ i ∈ S
P gi ∀ i ∈ G
Pw,si ∀ i ∈ W
−P di ∀ i ∈ D

QF si (V s) =


Qin,si −Qout,si ∀ i ∈ S
Qgi ∀ i ∈ G
Qw,si ∀ i ∈ W
−Qdi ∀ i ∈ D

(1)

The objective of the two-stage optimal power flow problem is to minimize, over the variables P gi , Qgi , V s
i ,

P in,si , P out,si , Qin,si and Qout,si , the total aggregated expected costs:

min f(P g) +
∑
s∈P

ps (gs(P in,s)− hs(P out,s)) (2)

s.t. power flow constraints (1)

Pmini ≤ P gi ≤ Pmaxi ∀ i ∈ G
Qmini ≤ Qgi ≤ Qmaxi ∀ i ∈ G
V min
i ≤ |V s

i | ≤ V max
i ∀ i ∈ B

(3)

3 ALGORITHMS

For notational simplicity, all real-imaginary pairs (P,Q) ∈ IR2n of the complex value P + iQ will be
denoted by the shorthand PQ ∈ IR2n for the rest of the paper. For example, PQg should be read as
P g + iQg. The nonconvex optimization (2-3) can be compactly cast in the classical two-stage form:

min Ψ(PQg) = f(P g) +
∑
s∈P

ps ωs(PQg)

subject to (PQg, V 0, PQin,0, PQout,0, PQw,0) ∈ X,
(M)

where the feasible region X of the first-stage decision variables is defined by the constraints (1) and (3)
associated with the first-stage (s = 0). Note that we assumed PQin,0 = PQout,0 = 0. The second stage
cost ωs for all s ∈ P:

ωs(PQg) = min gs(P in,s)− hs(P out,s)
subject to Es(V s) = (PQg)

Rs(V s, PQin,s, PQout,s, PQw,s) ≤ 0.

(Ss)

4230



Phan and Ghosh

The equalities Es(·) arise from power balance equations (1), while the constraints Rs(·) include all other
second-stage constraints from the original problem (2-3) that do not include PQg. In particular, we define

Es(V s) = (PF si (V s) + iQF si (V s) : i ∈ G).

We will present two outer approximation algorithms to solve the master problem (M) to optimality.
The key idea is that, under certain reasonable assumptions, the recourse function ωs(PQg) is convex in
PQg even though the subproblems (Ss) are non-convex. The epigraph of ωs(PQg) will be iteratively
approximated by a number of affine inequalities that are sub-gradients of the function generated from the
second stage problems (Ss). The spirit of our algorithms is closely related to the methods that solve
convex non-linear programming problems (Geoffrion 1972, Grothey et al. 1999, Ruszczýnski 2003) or
mixed-integer non-linear programs (Duran and Grossmann 1986, Fletcher and Leyffer 1994, Bonami et al.
2008). The outer approximation algorithms we present is in line with the generalized Benders decomposition
approach of Geoffrion (1972), and differs in the method that is utilized to construct the outer linearizations
of ωs(PQg). We use the optimal dual solution of the (Ss) to obtain a sub-gradient to ωs(PQg), while the
earlier approach merely obtains an outer cover from the optimal primal values (PQg). The epigraph of
the nonlinear function is approximated by the intersection of a collection of sets with a simpler structure,
e.g, polyhedra in our case.

Our proposed algorithms rely on the following two properties that have been shown to be widely shared
in practical power grid balance problems (Lavaei and Low 2010, Phan 2010).
Property 1 For every PQg ∈ [Pmin, Pmax]× [Qmin, Qmax], the subproblem (Ss) is feasible.
Property 1 says that any value of the generation power output (PQg) chosen in the first-stage admits a
feasible solution for each (Ss) by buying (or selling) the deficiency (or surplus) of energy from (to) the spot
market. In effect, the spot market has limitless capacity, either to import or export energy. This property
is a reasonable assumption, for instance the “spot market” typically consists of more than one source. Our
method uses this assumption to side-step the usual second-stage feasibility checking and cut-generation part
of decomposition-based algorithms. We will thus not cut off any feasible sub-regions in the algorithm’s
iterations. For cutting-plane based approaches to solving non-linear problems, feasibility cuts (especially
linear cuts) could prune sub-regions of the (non-convex) feasible domain containing the global optimum,
yielding only a locally optimal solution (see, for example, Sahinidis and Grossmann 1991), and extra
machinery is required to prevent this eventuality.

Define the function

l(λ, γ) = inf
V s,PQin,s,PQout,s

gs(P in,s)− hs(P out,s) + λTRs(V s, . . .) + γTEs(V s).

The parameters γ and λ are the Lagrangian coefficients of the constraint-sets Es and Rs respectively. Then,
the standard Lagrangian dual formulation associated with the subproblem (Ss) is:

max
λ≥0,γ

l(λ, γ)− γTPQg. (4)

Property 2 For every PQg ∈ [Pmin, Pmax] × [Qmin, Qmax], the optimal solution of the Lagrangian
dual (4) of subproblem (Ss) has a zero duality gap with the associated primal solution.
By exploiting the physical properties of transmission lines, Lavaei and Low (2010) showed that the classical
OPF problem corresponding to a practical power system has an equivalent form that easily satisfies the
zero-duality-gap condition, and a globally optimal solution for the classical OPF problem can be recovered
from this equivalent form. This condition is satisfied for a range of power grid test instances including
all IEEE benchmark systems (see Lavaei and Low 2010, Phan 2010), and is expected to hold for every
practical power system. For more details, please refer to Theorem 1 and the algebraic and geometric studies
provided in Lavaei and Low (2010). Property 2 says that the subproblem (Ss) in the standard OPF form thus
inherits this property. We now characterize the recourse function ωs(PQg) associated with second-stage
scenario s ∈ P .
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Theorem 1 If Property 2 holds, then ωs(PQg) is convex. Furthermore, if γ̂ is the Lagrangian multiplier
corresponding to the constraint Es(·) from the subproblem (Ss), then −γ̂ is a subgradient of ωs at (PQg).

Proof. The subproblem (Ss) is a standard optimal power flow problem with the generation decisions
limited to PQin,s and PQout,s. As shown in (Lavaei and Low 2010), the standard OPF has an equivalent
form that has its dual as a semidefinite program:

ωs(PQg) = max
u,v

uTPQg + vTc+ r

s.t.
∑

uiAi +
∑

viBi � C,
(SDP)

where problem data (vectors c, r and matrices Ai, Bi, C) are defined by the system parameters Pmin,Pmax,
Qmin, Qmax, V min, V max, Y, PQw,s and the coefficients of (convex quadratic) cost functions gs and hs.
The equality ofωs(PQs) to the problem (SDP) utilizes the Property 2. From Boyd and Vandenberghe (2004),

p.67, it suffices for the first part to show that the function α(t)
4
= ωs(PQg + td̄), is convex with respect

to t for all PQg and d̄. Indeed, let t1, t2 ∈ dom(α), β ∈ [0, 1] and Ω = {(u, v) :
∑
uiAi +

∑
viBi � C}.

We have

α(βt1 + (1− β)t2) = max
(u,v)∈Ω

uT(PQg + (βt1 + (1− β)t2)d̄) + vTc+ r

= max
(u,v)∈Ω

β(uT(PQg + t1d̄) + vTc+ r) + (1− β)(uT(PQg + t2d̄) + vTc+ r)

≤ βα(t1) + (1− β)α(t2),

which leads to the convexity of α(t). For the second part, suppose the strong duality posited by Property 2
holds for (Ss) and (4) at the primal optimum (P̂Q

g
, V̂ s, P̂Q

in,s
, P̂Q

out,s
) and dual optimum (λ̂, γ̂)

respectively. We have

ωs(P̂Q
g
) + γ̂TP̂Q

g
= l(λ̂, γ̂)

= gs(P̂ in,s)− hs(P̂ out,s) + λ̂TRs(V̂ s, . . .) + γ̂TEs(V̂ s)

≤ gs(P in,s)− hs(P out,s) + λ̂TRs(V s, . . .) + γ̂TEs(V s)

≤ ωs(PQg) + γ̂TPQg.

This completes the proof, since

ωs(PQg) ≥ ωs(P̂Qg)− γ̂T(PQg − P̂Qg).

Theorem 1 tells us that the recourse function ωs(·) associated with the s−th subproblem (Ss) is convex,
and its dual optimal solution at a specific master-problem value PQg provides a sub-gradient to the function
ωs(·). This suggests that given a set of sub-gradients {πs,k, k = 1, . . . ,K} of ωs, a piece-wise linear
lower-approximation function ηs can be constructed for ωs that obeys a set of linear constraints of the form

ωs(PQg,k) + (πs,k)T(PQg − PQg,k) ≤ ηs, ∀k = 1, . . . ,K. (5)

We exploit (5) to iteratively solve a sequence lower-approximation of the master problem (M) :

min Ψk(PQg) = f(P g) +
∑

ps ηs

subject to (PQg, V 0, PQin,0, PQout,0, PQw,0) ∈ X
and ηs satisfies constraints of form (5),

(Mk)

where the k−th iteration yields sub-gradients πs,k centered around PGg,k. The algorithm is as follows:
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OUTER APPROXIMATION ALGORITHM 1

1. Set ηs,1 = 0 ∀s ∈ P. Solve the following to set PQg,1 = P g,1 + iQg,1

min f(P g)

s.t. (PQg, V 0, PQin,0, PQout,0, PQw,0) ∈ X.

2. For k = 1, 2, . . .
(a) For s = 1, . . . , |P|:

Solve the subproblem (Ss) associated with PQg,k = P g,k + iQg,k

to get the optimal value ωs(PQg,k) and a subgradient πs,k.
(b) Terminate the algorithm if∑

s

ps ηs,k =
∑
s

ps ωs(PQg,k).

(c) Solve the k−th lower-approximation (Mk) master problem to obtain an
optimal solution PQg,k+1 = P g,k+1 + iQg,k+1 and ηs,k+1.

In this algorithm, we add |P| new linear constraints per outer iteration. Notice that ηs,k is the
approximation of ωs(PQg,k) given by the k−th piecewise-linear lower approximation from (5), and so∑

s p
s ηs,k =

∑
s p

s ωs(PQg,k) for every k. Thus, the algorithm terminates when the k−th master-problem
finds an optimal PGg where the lower-approximation matches the true function ωs. Each master-problem
iteration (Mk) solves a classical optimal power flow problem augmented with a set of linear inequalities.
Thus, |P|+ 1 OPF problems are being solved per outer iteration each of which can be solved efficiently
using the Lagrangian-dual-based algorithms presented in Phan (2010) or Lavaei and Low (2010). Under
some mild conditions, we are also able to give a convergence analysis for this algorithm:
Theorem 2 Suppose that {πs,k} is uniformly bounded, i.e., there exists a constant C such that ‖πs,k‖ ≤
C for every s, k, where ‖ · ‖ indicates the Euclidean norm. Then the Algorithm 1 either reaches an
optimal solution in a finite number of iterations, or generates a sequence {(PQg,k)}k=0,... such that

lim
k→∞

Ψ(PQg,k) = Ψ∗,

where Ψ∗ is the optimal value of (M).

Proof. If the algorithm terminates in a finite number of iterations, this implies that it stops at Step 2.b.
We now show that Ψ(PQg,k+1) = Ψ∗ if Step 2.b is satisfied by (PQg,k+1). We have

f(P g,k+1) +
∑
s∈P

ωs(PQg,k+1)ps

= f(P g,k+1) +
∑
s∈P

ηs,(k+1)ps

≤ f(P g) +
∑
s∈P

max
j=1,...,k

{
ωs(PQg,j) + (πs,j)T(PQg − PQg,j)

}
ps

≤ f(P g) +
∑
s∈P

ωs(PQg)ps,

for every feasible point (PQg) of problem (M). The first inequality is due to the solution property of the
master problem and the fact that

ηs,k+1 = max
j=1,...,k

{
ωs(PQg,j) + (πs,j)T(PQg − PQg,j)

}
.
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The last inequality is because `j(PQg) = ωs(PQg,j) + (πs,j)T(PQg − PQg,j) is an underestimate of
ωs(PQg) for every j = 1, . . . , k. The above relation concludes that PQg,k+1 is an optimal solution of
(M).

Now suppose that {(P g,k, Qg,k)} is an infinite sequence. We show that for any ε > 0, the set
Iε = {k : Ψ∗ < Ψ(P g,k, Qg,k)− ε} is finite. Let k1, k2 ∈ Iε and k2 > k1. At k1-th iteration, the optimality
cut is defined by

ωs(PQg,k1) + (πs,k1)T(PQg − PQg,k1) ≤ ηs. (6)

Since k2 > k1, plugging (PQg,k2 , ηs,k2) into (6) yields∑
s∈P

ωs(PQg,k1)ps +
∑
s∈P

(πs,k1)T(PQg,k2 − PQg,k1)ps ≤
∑
s∈P

ηs,k2ps,

⇒ Ψ(PQg,k1) +
∑
s∈P

(πs,k1)T(PQg,k2 − PQg,k1)ps + f(P g,k2)

≤
∑
s∈P

ηs,k2ps + f(P g,k1) + f(P g,k2)

≤ f(P g,k1) + Ψ∗,

since the optimal value of the master is a lower bound of Ψ∗. Hence

−Ψ(PQg,k1)−
∑
s∈P

(πs,k1)T(PQg,k2 − PQg,k1)ps − f(P g,k2) + f(P g,k1)

≥ Ψ∗ > ε−Ψ(PQg,k2), since k2 ∈ Iε.

It follows that ∑
s∈P

(
ωs(PQg,k2)− ωs(PQg,k1)− (πs,k1)T(PQg,k2 − PQg,k1)

)
ps > ε.

Note that |ωs(PQg,k2)− ωs(PQg,k1)| ≤ ‖πs,k2‖‖PQg,k2 − PQg,k1‖. Combining these, we get

‖PQg,k2 − PQg,k1‖ > 2C

maxs∈P ps
ε

for all k1, k2 ∈ Iε. Since {PQg,k}k=1,... is contained in a compact set, Iε is finite.

By the aggregation of optimality cuts (5) for all scenarios, we can derive another cut

η
4
=
∑
s

ps ηs ≥
∑
s∈P

ωs(PQg,k)ps +
∑
s∈P

(πs,k)T(PQg − PQg,k)ps. (7)

A variant (Mk′
) of the lower-approximation problem (Mk) where the variables {ηs} are replaced

by η and the constraints (5) are replaced by constraints (7) is also a lower-approximation of the master
problem (M). An alternate algorithm can be constructed by replacing {ηs} and the lower-approximation
problems (Mk) with the variable η and the variant (Mk′

). The algorithm is structured:

OUTER APPROXIMATION ALGORITHM 2
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1. Set η1 = 0 ∀s ∈ P. Solve the following to set PQg,1 = P g,1 + iQg,1

min f(P g)

(PQg, V 0, PQin,0, PQout,0, PQw,0) ∈ X.

2. For k = 1, 2, . . .
(a) For s = 1, . . . , |P|:

Solve the subproblem (Ss) associated with PQg,k = P g,k + iQg,k

to get the optimal value ωs(PQg,k) and a subgradient πs,k.
(b) Terminate the algorithm if

ηk =
∑
s

ps ωs(PQg,k).

(c) Solve the k−th lower-approximation (Mk′
) master problem to obtain an

optimal solution PQg,k+1 = P g,k+1 + iQg,k+1 and ηk+1.

The approximating master problem from this algorithm is slightly different from the previous one. We
add only one cut per major iteration, so its size is smaller. With a little modification of the arguments from
the above proof, we can obtain a similar convergence theorem for this algorithm.

4 NUMERICAL EXPERIMENTS

We use the following test power systems to demonstrate the usefulness of our proposed algorithms. Their
characteristics are summarized in Table 1.

- CH9: the 9 bus example from (Chow, Frederick, and Chbat 2002, p.70)
- NE39: the New England system (Pai 1989)
- IEEE14, IEEE30, IEEE57, IEEE118 and IEEE300: the five IEEE systems, they can be found at

http://www.ee.washington.edu/research/pstca/

Table 1: Test systems characteristics.

Test system Buses Generators Lines Wind generators Export Import
CH9 9 3 9 4, 6 5 2, 3
IEEE14 14 5 20 4, 6 5 2, 3
IEEE30 30 6 41 4, 6 5 2, 3
IEEE57 57 7 80 5, 45 7 3, 4
IEEE118 118 54 186 89, 100 60, 75 25, 65
IEEE300 300 69 411 89, 100 60, 75 2, 89, 150

The first column in Table 1 shows the abbreviations of the systems, while the second and third columns
show the total number of buses and the number of generators in each system. The fourth column reports
the number of lines interconnecting the buses. We added two sources of renewable generation, and chose
their associated nodes, and those of the spot market locations, as presented in the remaining columns. The
algorithms were coded in Matlab and experiments were carried out on a PC using Matlab 7.10 with an Intel
Xeon X5570 2.93 GHz under the Linux operating system. We terminated the algorithms when (ε = 10−3)∑

s∈P
ωs(PQg,k+1)ps −

∑
s∈P

ηs,k+1ps ≤ ε (Algorithm 1) (8)
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and ∑
s∈P

ωs(PQg,k+1)ps − ηk+1 ≤ ε (Algorithm 2). (9)

We set the mean power output of the first wind generator at 70% of the average of the upper limits
Pmax, Qmax of the capacity of all conventional generators for the first wind generator. We sampled the
second generator’s mean uniformly around the first’s mean within up to a 30% change. The cost coefficients
for the imported cost function gs were randomly chosen from 1.5 to 2.0 times higher than the largest
coefficients of the generation cost function f , i.e., we have to incur higher prices than our own generation
cost if the energy has to be purchased from the spot market. Meanwhile, the coefficients of the exported
cost function hs were taken by 0.5 to 0.7 times related to the smallest linear coefficients of f . Here, we
assumed that gs and hs do not depend on s. The second stage scenarios were sampled uniformly with
renewable generation varying up to 20% from their mean, which also represents their first-stage realized
generation. In this manner, 20 scenarios of wind power outputs were chosen for each experimental run.

Table 2: The performance of algorithms. CPU time in seconds.

Algorithm 1 Algorithm 2
Test system Expected cost Gen. cost iter time iter time
CH9 2084.9 2053.8 2 0.426 2 0.418
IEEE14 5872.4 5785.9 2 0.481 2 0.475
IEEE30 6788.3 6695.7 4 1.706 4 1.657
NE39 32786.1 32794.1 2 0.798 2 0.708
IEEE57 37501.4 37331.7 5 0.469 7 0.675
IEEE118 128321.9 128115.8 4 3.659 4 3.306
IEEE300 714300.2 714030.3 3 5.048 3 4.932

Table 2 shows that our proposed algorithms converge quickly to the optima, requiring from 2 to 7
iterations to satisfy the error tolerance. In most cases, the two algorithms used the same number of iterations
to solve the problem. For these cases, the running time for Algorithm 2 is observed to be less than those
of Algorithm 1. The sole exception is the IEEE 57 bus test system, for which Algorithm 2 requires
more iterations, and as a result more computational time. Since the outer-approximation provided by the
individual linear cuts from Algorithm 1 provides a tighter bound to ωs(.), the required iterations never
exceed those of Algorithm 2. On the other hand, Algorithm 2 uses fewer linear functions to provide the
outer-approximation, and hence solvers take less time solving them.

We report in Figure 1(a) the effect of varying the maximum deviation allowed for the uncertainty of
wind outputs on the total expected cost for the 57 bus test case. We use the average of 100 runs for each
deviation. Figure 1(a) shows that as the deviation increases, so does the cost. Figure 1(b) plots the errors
as defined on the left-hand side of (8) and (9) versus the number of iterations for two algorithms to solve
the 57 bus test case.

5 CONCLUSIONS

This article proposes the first algorithms to solve a two-stage non-linear stochastic formulation for the
economic dispatch problem faced by power transmission authorities under renewable-generation uncertainty.
The structure of the formulation hews to standard two-stage problems, in that certain generation decisions
are made only in the first stage and the second stage realizes the actual renewable generation, and the
uncertainty is captured by a finite number of scenarios. Recourse for alleviating supply-demand mis-matches
in the second stage is provided by high marginal-cost power sources that can be tapped in short order.

Our contributions to the literature lie in the novel outer approximation algorithms we propose to solve
this non-convex optimization problem to optimality. We show that for problem instances that satisfy certain
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Figure 1: Total expected cost and performance progress for IEEE57.
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conditions, an effective decomposition scheme can be used, just like in two-stage linear programs, to
obtain a sequence of approximate solutions that has a limit point that is a globally-optimal solution to
the two-stage non-convex program. In particular, this facilitates a parallel implementation of the solution
algorithm, which we have not explored in the numerical experiments provide here. Our experiments for
a variety of parameter settings indicate that the two approximation schemes we describe are efficient and
usable even in large practical instances.
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