
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

DISCRETE-VALUED, STOCHASTIC-CONSTRAINED
SIMULATION OPTIMIZATION WITH COMPASS

Hélcio Vieira, Junior
Karl Heinz Kienitz

Mischel Carmen Neyra Belderrain

Technological Institute of Aeronautics
Praça Marechal Eduardo Gomes, 50

12228-900, São José dos Campos, BRAZIL

ABSTRACT

We propose an improvement in the random search algorithm called COMPASS to allow it to deal with a
single stochastic constraint.

Our algorithm builds on two ideas: (a) a novel simulation allocation rule and (b) the proof that this new
simulation allocation rule does not affect the asymptotic local convergence of the COMPASS algorithm.

It is shown that the stochastic-constrained COMPASS has a competitive performance in relation to
other well known algorithms found in the literature for discrete-valued, stochastic-constrained simulation
problems.

1 INTRODUCTION

“Simulation can be used to design a system to yield optimal expected performance” (Andradóttir 1998).
The tools that allow the above statement to be true are known as simulation optimization. What

makes simulation optimization hard is the allocation of the computational budget between the search for
a better solution versus a better estimation of the expected value of the candidate solutions. As we have
estimates, it cannot be possible to determine if one system or alternative is better than another, hindering
optimization algorithms based on hill-climbing movements (Banks et al. 2000).

Most of the work in simulation optimization has been in continuous-valued, single-performance-measure
problems, i.e., problems in which the decision maker (DM) is concerned with only one performance measure
and the variables are continuous. If the DM is interested in two performance measures, then the traditional
approach, copied from mathematical programming, is to optimize one of the performance measures while
constraining the other to be smaller/greater than some threshold. If we restrict our focus to discrete-valued
variables, the problem is put mathematically as:

Min hx = Eω [H (x,ω)]
s.t.
gx = Eω [G(x,ω)]≤ γ

x ∈Θ

(1)

Here, x is the decision vector; H(·) is the primary real-valued performance measure; G(·) is the secondary
performance measure; ω represents the stochastic input to the simulation; and Θ =

{
x
∣∣x ∈ Zd , lb 6 x 6 ub

}
is the finite feasible space. We assume that both H (x,ω) and G(x,ω) are measurable and integrable with
respect to the distribution of ω . In addition, we assume that hx and gx are difficult (or impossible) to
evaluate.
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As the inequality constraint of (1) is also a stochastic outcome of the simulation, we are going to refer
to it as a stochastic constraint as opposed to classical deterministic constraints (as is the second constraint
of (1)). One example of stochastic outcomes (either objective functions or constraints) is found in a call
center with several classes (types) of customers: there “are cost components associated with service level
performance measures such as waiting times (most commonly the mean or the probability of waiting more
than a certain amount of time, possibly weighted by class type) and operational costs associated with
agent wages and network usage (trunk utilization). Abandonment rates of waiting customers, percentage
of blocked calls (those customers that receive a busy signal), and agent utilization are other factors that are
considered” (Fu 2002). One example of a deterministic constraint in the same environment (call center) is
the number of telephone operator workstations being less than a threshold (due to a physical limitation).

The literature in stochastic-constrained, discrete-valued simulation optimization is not vast, but it has
received some attention in the last years: Abspoel et al. (2001), Cezik and L‘Ecuyer (2008), Atlason et al.
(2008), Davis and Ierapetritou (2009), Andradóttir and Kim (2010) and Kleijnen et al. (2010).

The purpose of this paper is to propose an improvement in the random search algorithm called COMPASS
to allow it to deal with a single stochastic constraint.

The organization of the rest of this paper is the following. We describe the original COMPASS algorithm
in Section 2. In Section 3, we present our proposal. Numerical examples of our proposal utilization are
given in Section 4, and we summarize our conclusions in Section 5.

2 COMPASS

2.1 Initial Considerations

COMPASS (Hong and Nelson 2006, Hong and Nelson 2007) stands for “Convergent Optimization via
Most-Promising-Area Stochastic Search” and can be classified as a random search algorithm. Its main
advantage is the novel neighborhood structure, which is large at the beginning of the search and gets smaller
in the following iterations. The algorithm was designed to find local optimal solutions of discrete-valued
simulation problems that are (a) fully deterministic-constrained or (b) partially deterministic-constrained
or unconstrained.

We describe the basic algorithm (fully deterministic-constrained) in the next subsection. For more
details of the other version, readers are referred to Hong and Nelson (2006).

2.2 COMPASS for Fully Deterministic-Constrained, Discrete-Valued Simulation Problems

2.2.1 Notation

• Hl(x) is the lth observation of H(x,ω);
• hx is the sample mean of Nk(x) observations of H(x,ω);
• x0 is the starting solution;
• Θ is the search space (a d-dimensional set with integer elements);
• S(k) =

⋃k
i=0 Si is the set of solutions sampled through iteration k;

• x̂∗k is the estimated optimal solution of iteration k;
• ak(x) is the additional number of simulation observations allocated to x on iteration k;
• SAR stands for simulation-allocation rule;
• Nk(x) is the total number of simulation observations allocated to x on iteration k;
• Mk =

{
x
∣∣x ∈Θ and

∥∥x− x̂∗k
∥∥ 6 ‖x− y‖∀y ∈ εk and y 6= x̂∗k

}
is the most promising area on iteration

k;
• εk is the set which includes all solutions that could be estimated (simulated) on iteration k;
• ‖i− j‖ represents the Euclidean distance between i and j; and
• Sk is the set of unique solutions (i.e, with the duplicate solutions removed) sampled on iteration k.
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2.2.2 Assumptions

1. lim
n→∞

1
n

n
∑

i=1
Hi(x) = hx with probability 1.

This assumption is always valid with IID outcomes of terminating simulations or when, under
certain conditions, the outcomes are observations from a long-run, steady-state simulation (Law
and Kelton 2000).

2. There exists a positive constant δ0 such that the level set Γ = {x ∈Θ |hx 6 hx0 +δ0 } is finite.
When Θ is finite (which is true for (1)), Assumption 2 always holds.

2.2.3 Algorithm

1. Set iteration counter k = 0. Find x0 ∈Θ, set S(0) = {x0} and x̂∗k = x0. Determine a0(x0) according
to the SAR. Take a0(x0) observations from x0, set N0(x0) = a0(x0) and calculate hx0 . Let M0 = Θ.

2. Let k = k + 1. Sample xk1, xk2, . . . , xkm uniformly and independently from Mk−1. Let Sk =
{xk1, xk2, . . . , xkm} and S(k) = S(k− 1)∪ Sk. Determine ak(x) according to the SAR for every
x in S(k). For all x ∈ S(k), take ak(x) observations, and update Nk(x) and hx.

3. Let x̂∗k = argmin
x∈S(k)

hx. Construct Mk and go to step 2.

The simplest SAR proposed by COMPASS’ authors is: Nk(x) = Nk for all x ∈ S(k) and Nk → ∞ as
k→ ∞.

3 OUR PROPOSAL

Our proposal is built on two ideas that are described here in subsections 3.2 and 3.3.

3.1 Notation

• ε(k) =
⋃k

i=0 εi is the set of solutions estimated through iteration k;
• η (x) = {y |y ∈Θ and ‖x− y‖ ≤ 1} is the local neighborhood of x;
• |·| denotes the cardinality of a set;
• σhx is the standard deviation of Nk(x) observations of H(x,ω);
• gx is the sample mean of Nk(x) observations of G(x,ω);
• Gk(x) is the kth observation of G(x,ω); and
• σgx is the standard deviation of Nk(x) observations of G(x,ω).

3.2 Locally Convergent Algorithms

Besides revising their original algorithm, Hong and Nelson (2007) offer two conditions that, under observation
of 2.2.2, guarantee the local convergence of any random-search algorithm. They proved that the COMPASS
algorithm obeys these two conditions. Condition 2 is of especial interest to our proposal, so we reproduce
it below.

Condition 2. The estimation scheme satisfies the following requirements:

1. εk is a subset of S(k);
2. εk contains x0, η

(
x̂∗k−1

)
∩ ε (k−1) and Sk;

3. ak(x) is allocated such that min
x∈εk

Nk(x)≥ 1 for all k = 1, 2, . . . and min
x∈εk

Nk(x)→∞ w.p. 1 as k→∞;

and
4. |ε (∞)|< ∞ with probability 1.
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The first two requirements are (a) that εk contains only solutions that have already been sampled and
(b) that it contains, at least, x0, the neighbors of x̂∗k−1 that have been estimated through iteration k−1, and
the newly sampled solutions. The third requirement assures that the solution can be estimated by allocating
at least one observation to it and also that, asymptotically, the estimation will have no noise. The fourth
requirement is that only a finite number of solutions are estimated in the limit.

3.3 Probability of False Selection

Hunter and Pasupathy (2010) propose a sampling allocation rule for stochastic-constrained simulation
optimization that asymptotically minimizes the probability of false selection. In their framework, the DM
chooses 0 < α1 < 1 and the values of other αk have to obey (2), where αk is the percentage of the allowed
budget that will be spent with system k; I(·) is the indicator function; and the index 1 is associated with
the best system so far (x̂∗k).

α∗i
α∗j
≈

(
h1−h j

σh j

)2

I(h1 < h j)+
(

γ−g j
σg j

)2
I(g j > γ)(

h1−hi
σhi

)2
I(h1 < hi)+

(
γ−gi
σgi

)2
I(gi > γ)

, i, j 6= 1 (2)

Observe that the sampling allocation rule (2) takes into consideration both the objective function and
the stochastic constraint. Formula (2) minimizes the asymptotic probability of false selection as long as
the objective function and the constraint are mutually independent and normally distributed. As seen at
2.2.2, IID normality can be expected when the observations are either within-replication averages or a batch
means of, respectively, a transient or steady-state simulation (Law and Kelton 2000).

3.4 Our Estimate of the Best

The estimate of the best made in step 3 of 2.2.3 should be modified to (3) in order to allow a feasibility
check.

x̂∗k = argmin
x∈S(k), gx6γ

hx (3)

3.5 Our SAR Proposal

As our goal is to find the system with the smallest expected objective-function value that is also feasible,
the simulation allocation rule should somehow take these facts into consideration. We also want the new
SAR to obey condition 2 of Hong and Nelson (2007), so the stochastic-constrained COMPASS algorithm
should maintain its desirable characteristic of asymptotic convergence to a local optimum.

The SAR we propose is described by (4) .

ak(x) =

{
n0, i f x ∈ Sk = {xk1, xk2, . . . , xkm}
λαi, i f x ∈ S(k−1)

(4)

Here, λ +n0m is the computational budget allocated to each iteration of the stochastic-constrained COMPASS
algorithm; n0 > 0 is the initial sample size; 0 < α1 < 1 is defined by the DM; and α j,∀ j 6= 1, is calculated
through (2).
Theorem 1 The sampling allocation rule (4) obeys condition 2 of Hong and Nelson (2007).

Proof. Requirements 1 and 2 are satisfied because εk = S(k) in (4).
The first part of requirement 3 is true because n0 > 0 by construction.
As h1 is, by definition, the smallest value of the objective function among all systems that are feasible,

I(h1 < hk) forms a subset that contains all feasible systems but the best. On the other side, I(gk > γ)
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forms a subset that contains all infeasible systems. Because (a) the union of these two subsets contains all
systems evaluated so far but the best system; (b) these subsets do not intersect each other; and (c) α1 > 0
by construction; then αk > 0,∀k. These facts, together with the allowed budget λ +n0m getting arbitrarily
large, fulfill the second part of requirement 3.

Requirement 4 is accomplished because |Θ|< ∞ by construction (vide (1)).

4 EXPERIMENTAL RESULTS

4.1 First Experiment

When it is desired to select the best alternative among a (small) finite number of alternatives, it is usual
to use a Ranking & Selection (R&S) procedure. The R&S was “developed to compensate for the limited
inference provided by hypothesis test for the homogeneity of k population parameters (usually means). In
many experiments, rejecting the hypothesis H0 : µ1 = µ2 = · · ·= µk, where µi is the parameter associated
with the ith population, leads naturally to questions about which one has the largest or smallest parameter.
R&S tries to answer such questions” (Kim and Nelson 2006, p. 503).

We compare the efficiency of our SAR proposal with two constrained R&S algorithms proposed by
Andradóttir and Kim (2010) in the ∆ (difficult means) configuration. This comparison is only between the
SAR rule and the other proposals, and not between the stochastic-constrained COMPASS and the proposals,
because we did not use the search part of COMPASS (all the 25 candidate solutions were considered in
all iterations). The results of this comparison are given by Table 1. The ∆ configuration is listed by (5)
and is one in which “it is difficult to distinguish between feasible and infeasible systems. In addition, all
desirable and acceptable systems have hi very close to that of the true best desirable system, which makes
it difficult to eliminate inferior systems. On the other hand, all unacceptable systems have much smaller
hi than that of the true best desirable system” (Andradóttir and Kim 2010, p. 414).

Hi(x) =


N(−20−0.5,1), x = 1, 2, . . . , b

N(0,1), x = b+1, b+2, . . . , b+a

N(20−0.5,1), x = b+a+1, b+a+2, . . . , 25

(5)

Gi(x) =


N(0,1), x = 1, 2, . . . , b−1

N(−20−0.5,1), x = b

N(0,1), x = b+1, b+2, . . . , b+a

N(−(x−1)20−0.5,1), x = b+a+1, b+a+2, . . . ,25

(6)

Where N(µ,σ2) means normally distributed with mean µ and variance σ2.
Table 1 shows that the SAR rule we adopt in the stochastic-constrained COMPASS algorithm needs

fewer replications than the two rival proposals to achieve the same desirable probability of correct selection
(PCS). The number of macroreplications used to compute the estimated PCS in table 1 was 20,000 and
the PCS was calculated as the observed proportion of correct selections in the 20,000 replications.

4.2 Second Experiment

We also compare the performance of the stochastic-constrained COMPASS with the proposal of Kleijnen
et al. (2010) for an optimization of an infinite-horizon, stochastic-constrained, periodic-review (s,S)
inventory system with full back-logging. The assumptions used in the model are:

• Demand: exponentially distributed with an average λ−1 = 100 units;
• Check: the inventory is checked at the end of every time period. A replenishment order is placed

if the inventory position is smaller than or equal to s. The size of the order is S− s−β , where
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Table 1: Performance comparison of the SAR strategy in the ∆ configuration. Desirable PCS=0.95.

b 13 12 10 7 3 1
a 0 1 3 6 10 12

AK
* REP 4063 4109 4184 4319 4502 4604

PCS 0.973 0.973 0.973 0.974 0.975 0.975

AK+
* REP 3763 3749 3726 3686 3615 3581

PCS 0.960 0.962 0.963 0.963 0.966 0.968

SAR
REP 3500 3500 3500 3500 3500 3500
PCS 0.958 0.953 0.958 0.967 0.974 0.977

* Source: Andradóttir and Kim (2010).

β (outstanding orders) is the total size of the orders that have already been placed but have not
arrived;

• Lead-time: Poisson distributed with an average of 6 units. Observe that this distribution of the
replenishment lead-time allows orders to cross in time, i.e., the order in which they are placed is
not necessarily the order in which they are received;

• Holding cost: h = 1 unit per period;
• Fixed ordering cost: K = 36 units per order;
• Variable ordering cost: u = 2 units per unit ordered;
• Replenishments: the orders are received at the beginning of a period;
• Objective: minimize the expected total cost TC = hW+

i + I{Xi < s}(K +u(S−Xi)), where Xi is the
inventory position at period i, Wi = Xi +β is the inventory level at period i, β are the outstanding
orders, I{·} is the indicator function and A+ = max{0, A};

• Constraints:
– Deterministic: 900 6 s 6 1250 and 1 6 Q 6 500, where Q = S− s;
– Stochastic: stockout rate δ > 0.10, where stockout rate is the fraction of demand not supplied

from stock on hand;

The fact that orders are allowed to cross in time does not allow this model to be analytically tractable,
so simulation is a need.

In order to have a fair comparison with the results of Kleijnen et al. (2010), we decided to simulate
the optimal points found by them in our implementation of the (s,S) inventory model. Table 2 displays the
simulation results. With the exception of the solution (s,Q) = (1061,69), all other results were considered
satisfactory. As a result of this discrepancy, we decided to check the accuracy of our implemented model.
This check is showed in appendix A.

Due to the mentioned discrepancy and to our belief in our model accuracy, we decided to use our
results of the optimal points found by Kleijnen et al. (2010) in all the comparisons hereafter.

The results of 10 macro-replications of the stochastic-constrained COMPASS are displayed in Table
3. Table 4 summarizes the results of both tables 2 and 3 (recall that we decided to use our results of
of the optimal points found by Kleijnen et al. (2010)). Analysis of Tables 2, 3 and 4 shows that the
stochastic-constrained COMPASS had the best mean result and also the best overall minimum that is
feasible (the OptQuest (Arena 12) mi = 10 had three better results, but they are all infeasible).

5 CONCLUSION

We proposed an improvement in the random search algorithm called COMPASS to allow it to deal with a
single stochastic constraint.

We described the original COMPASS algorithm in Section 2. In Section 3, we presented our proposal,
and numerical examples of our proposal utilization were given in Section 4.
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Table 2: Our results of the solutions presented by Kleijnen et al (2010)

Parameters Kleijnen
et al. (2010)

Our Results (300 replicates)

Proposal
s Q TC∗ SR∗

TC SR
µTC σTC µSR σSR

OptQuest (Arena 12) mi = 10 1009 287 716.16 0.0828 715.76 3.2900 0.0820 0.0037
OptQuest (Arena 11) mi = 10 1047 108 660.91 na 661.61 2.8470 0.0889 0.0040

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 638.69 2.8179 0.0982 0.0045
DOE-Kri-MP τ = 0.15 1021 114 640.09 0.0991 640.99 2.8188 0.0989 0.0041

OptQuest (Arena 12) mi = 10 1027 84 632.42 0.0993 631.63 2.7760 0.1018 0.0044
OptQuest (Arena 11) mi = 10 1047 97 656.79 na 656.38 2.8966 0.0904 0.0041

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 639.02 2.8606 0.0975 0.0045
DOE-Kri-MP τ = 0.15 1061 31 634.74 0.0999 635.49 2.6992 0.1003 0.0042

OptQuest (Arena 12) mi = 10 1050 44 632.77 0.0993 631.98 2.7342 0.1012 0.0048
OptQuest (Arena 11) mi = 10 1047 85 650.60 na 650.36 3.0723 0.0928 0.0042

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 639.07 2.9918 0.0978 0.0044
DOE-Kri-MP τ = 0.15 1062 29 634.19 0.0999 635.52 2.8332 0.1000 0.0045

OptQuest (Arena 12) mi = 10 1061 191 713.74 0.0746 716.21 3.3758 0.0731 0.0038
OptQuest (Arena 11) mi = 10 1047 103 657.35 na 659.23 3.0888 0.0895 0.0042

DOE-Kri-MP mi = 10 1057 41 636.36 0.0999 637.50 3.0586 0.0985 0.0047
DOE-Kri-MP τ = 0.15 1076 12 637.39 0.0993 638.89 2.8771 0.1000 0.0043

OptQuest (Arena 12) mi = 10 1129 35 700.19 0.0711 699.73 2.8992 0.0714 0.0035
OptQuest (Arena 11) mi = 10 1047 99 657.90 na 657.04 2.9439 0.0904 0.0043

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 638.86 2.7625 0.0979 0.0041
DOE-Kri-MP τ = 0.15 1041 73 638.04 0.0983 639.07 3.0011 0.0975 0.0046

OptQuest (Arena 12) mi = 10 1002 209 671.28 0.0936 671.03 2.9225 0.0929 0.0042
OptQuest (Arena 11) mi = 10 1047 95 655.28 na 655.35 2.6980 0.0908 0.0039

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 639.07 2.9905 0.0976 0.0048
DOE-Kri-MP τ = 0.15 1047 58 635.20 0.0998 636.61 2.8626 0.0986 0.0041

OptQuest (Arena 12) mi = 10 1027 84 632.02 0.0998 631.66 2.7763 0.1013 0.0043
OptQuest (Arena 11) mi = 10 1047 99 657.86 na 656.91 3.1588 0.0904 0.0042

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 639.10 2.8170 0.0976 0.0042
DOE-Kri-MP τ = 0.15 1041 73 638.04 0.0983 638.57 2.8248 0.0979 0.0043

OptQuest (Arena 12) mi = 10 1054 59 642.44 0.0956 643.01 2.8227 0.0956 0.0039
OptQuest (Arena 11) mi = 10 1047 122 667.34 na 668.66 2.9712 0.0865 0.0042

DOE-Kri-MP mi = 10 1046 59 635.63 0.0996 636.29 2.7352 0.0989 0.0043
DOE-Kri-MP τ = 0.15 1057 40 634.62 0.0990 636.46 3.1857 0.0989 0.0046

OptQuest (Arena 12) mi = 10 1061 69 714.79 0.0739 654.92 2.9306 0.0894 0.0041
OptQuest (Arena 11) mi = 10 1047 92 652.85 na 653.28 2.8177 0.0915 0.0039

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 638.97 3.1103 0.0979 0.0044
DOE-Kri-MP τ = 0.15 1039 73 636.24 0.0992 637.00 2.8391 0.0985 0.0042

OptQuest (Arena 12) mi = 10 999 185 655.21 0.0972 656.13 3.2160 0.0975 0.0044
OptQuest (Arena 11) mi = 10 1047 109 661.05 na 662.07 3.1068 0.0881 0.0043

DOE-Kri-MP mi = 10 1043 70 638.34 0.0992 639.01 2.8644 0.0976 0.0044
DOE-Kri-MP τ = 0.15 1049 54 636.14 0.0999 636.46 2.8588 0.0991 0.0042

* source: Kleijnen et al. (2010); na: not available; TC: total cost; SR: stockout rate; µa: average of a;
and σa: standard deviation of a.
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Table 3: Stochastic-Constrained COMPASS results for the (s,S) inventory model.

Parameters Total Cost Stockout Rate
s Q µTC σTC µSR σSR

1010 135 641.91 2.7955 0.0996 0.0044
1052 46 634.27 3.1641 0.0979 0.0042
1033 79 635.18 2.9886 0.0997 0.0040
1037 72 634.48 3.0110 0.0997 0.0031
1040 66 634.45 2.5115 0.0987 0.0037
1028 90 635.91 3.0767 0.0999 0.0039
1087 1 643.28 2.9865 0.0996 0.0038
1060 31 634.99 2.7827 0.0993 0.0041
1054 40 633.91 2.6492 0.0998 0.0042
1003 156 645.84 2.6412 0.0988 0.0040

TC: total cost; SR: stockout rate; µa: average of a;
and σa: standard deviation of a.

Table 4: Performance summary.

Proposal
Total Cost Stockout Rate

Average Min Max Average Min Max
Stochastic-Constrained COMPASS 637.42 633.91 645.84 0.0993 0.0979 0.0999

DOE-Kri-MP τ = 0.15 637.51 635.49 640.99 0.0990 0.0975 0.1003
DOE-Kri-MP mi = 10 638.56 636.29 639.10 0.0979 0.0975 0.0989

OptQuest (Arena 11) mi = 10 658.09 650.36 668.66 0.0899 0.0865 0.0928
OptQuest (Arena 12) mi = 10 665.21 631.63 716.21 0.0906 0.0714 0.1018
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Our algorithm builds on two ideas: a novel simulation allocation rule based on the proposal of Hunter
and Pasupathy (2010) and the proof that this new simulation allocation rule obeys the conditions established
by Hong and Nelson (2007) for local convergence of any random-search algorithm.

It was shown that the stochastic-constrained COMPASS has a competitive performance in relation to
other well known algorithms found in the literature: (a) two algorithms proposed by Andradóttir and Kim
(2010) for constrained Ranking & Selection and (b) an algorithm proposed by Kleijnen et al. (2010) for
general stochastic-constrained simulation optimization.

Future work shall focus on applying the stochastic-constrained COMPASS on a broader range of
applications.

A ACCURACY TEST OF OUR SIMULATION MODEL IMPLEMENTATION

We checked the accuracy of our simulation model implementation with a reference (s,S) model that has
a known analytical solution. Karlin (1958) showed that the analytical solution for a (s,S) system with
exponentially distributed demand with average λ−1 , full back-logging with a penalty cost p applied when
a demand is not satisfied, and zero lead time, is given by:

Q∗ =

√
2K/

λh (7)

s∗ =
− ln

(
h+
√

2Khλ

h+p

)
λ

(8)

E[TC] =
c
λ
+

K +h
(

s−1/
λ +λQ(s+0.5Q)

)(
(h+ p)e−λ s/

λ

)
1+λQ

(9)

Table 5 shows the comparison of the analytical results with our simulation outcomes for the following
parameters: 30 replicates, c= h= 1, and number of periods per replicate of 30,000. ∆SE is the representation
of the difference between the analytical and simulated E[TC] measured by the number of standard errors.

Table 5: Accuracy experiment for our implementation of the (s,S) inventory problem.

Parameters Analytical Our Implementation
∆SE

λ−1 p K s Q E[TC] E[TC] Standard Error
200.00 0.00 100.00 0.00 200.00 300.00 299.81 0.22 0.85
200.00 0.00 10000.00 0.00 2000.00 2018.18 2018.27 1.35 0.07
200.00 100.00 100.00 784.39 200.00 1184.39 1183.58 2.82 0.29
200.00 100.00 10000.00 443.45 2000.00 2643.45 2643.40 3.16 0.01
5000.00 0.00 100.00 0.00 1000.00 5166.67 5161.79 5.30 0.92
5000.00 0.00 10000.00 0.00 10000.00 11666.67 11663.78 6.81 0.42
5000.00 100.00 100.00 22163.99 1000.00 28163.99 28169.72 57.10 0.10
5000.00 100.00 10000.00 17582.54 10000.00 32582.54 32610.32 80.12 0.35
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