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ABSTRACT

We develop an algorithm for two-stage stochastic programming with a convex second stage program and with
uncertainty in the right-hand side. The algorithm draws on techniques from bounding and approximation
methods as well as sampling-based approaches. In particular, we sequentially refine a partition of the support
of the random vector and, through Jensen’s inequality, generate deterministically valid lower bounds on
the optimal objective function value. An upper bound estimator is formed through a stratified Monte Carlo
sampling procedure that includes the use of a control variate variance reduction scheme. The algorithm
lends itself to a stopping rule theory that ensures an asymptotically valid confidence interval for the quality
of the proposed solution. Computational results illustrate our approach.

1 INTRODUCTION

We develop an algorithm for approximately solving a class of two-stage stochastic programs by combining
Jensen’s inequality with a Monte Carlo estimator. Our approach is related to a classic approximation scheme
in stochastic programming, called the sequential approximation method (SAM) (Edirisinghe and Ziemba
1992, Frauendorfer 1992, Huang, Ziemba, and Ben-Tal 1977, Kall, Ruszczyński, and Frauendorfer 1988).
A SAM uses upper and lower bounds on the expected value of the future-cost function. These bounds
exploit convexity and, in this classic approach, are iteratively refined. Our approach is similar except that
we replace the more computationally expensive of these two bounds with a Monte Carlo estimator. Valid
termination of an optimization algorithm with noisy bounds on the optimality gap demands attention to
accompanying sequential issues. We describe how to deal with those issues, and we further propose a
variance-reducing estimator that exploits special structures associated with the iterative refinement scheme.

For a two-stage stochastic program, under certain convexity properties, lower bounds are typically
based on Jensen’s inequality. While there are a number of exceptions (see, e.g., Birge and Dulá 1991,
Birge and Teboulle 1989, Birge and Wets 1989, Kall 1991, Morton and Wood 1999), many of the upper
bounding schemes are rooted in the Edmundson-Madansky inequality (Edmundson 1957, Madansky 1959,
Madansky 1960). In contrast to Jensen’s lower bound, which requires only one function evaluation for each
element of the partition, the number of function evaluations required to apply the Edmundson-Madansky
inequality to a random vector with independent components can grow exponentially with the dimension
of the random vector. In this paper, we develop a method that combines deterministically valid lower
bounds on the objective function (those used by a SAM through Jensen’s inequality) with Monte Carlo
sampling-based upper bound estimates. We use this approach within the sequential framework of Bayraksan
and Morton (2011) to devise an algorithm that generates high-quality solutions with high probability. We
call the resulting algorithm the sampling-based sequential approximation method (SSAM).

SSAM integrates the two algorithmic frameworks as follows. First, it uses SAM to generate the
sequence of candidate solutions. That is, it sequentially refines a partition of the random vector’s support,
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and employs Jensen’s inequality conditionally on each cell of the partition, to generate a candidate solution.
Next, SSAM uses Monte Carlo sampling-based upper bounds, alleviating the computational bottleneck
caused by calculating Edmundson-Madansky upper bounds in SAM. Calculating the upper bound via Monte
Carlo sampling corresponds to estimating the objective function value for the current candidate solution,
which is the usual sample mean estimator. We reduce the variance of this estimator within SSAM using
stratified sampling and control variates. Finally, the procedure iteratively increases the sample size and
terminates according to the sequential sampling framework of Bayraksan and Morton (2011).

SSAM uses Jensen’s lower bound applied to each cell of the partition and then weighted by the
associated probability mass and summed over all cells. While Jensen’s lower bound requires modest effort
to compute, this approach to lower bounding leads to three potential drawbacks. First, the convexity
assumption required to use Jensen’s inequality restricts the class of problems to which SSAM applies (see
Section 2). Second, for some problems, Jensen’s lower bound can be loose. Third, because SSAM forms
a partition of the random vector’s support, just as in SAM, it can be less effective as the dimension of the
random vector grows. The use of tighter lower bounds (Dokov and Morton 2005, Topaloglu 2009), through
means other than refining the partition, may improve SSAM’s performance in these cases, although we do
not pursue such alternatives here.

2 PROBLEM CLASS

We consider two-stage stochastic programs of the form:

z∗ = min
x∈X
{ f (x)≡ c(x)+E[Q(x,ξ )]}, (SP)

where
Q(x,ξ ) = min

y≥0
q(y)

s.t. g(y)≤ h(ξ )−T (x,ξ ).
(1)

We assume the random vector ξ has finite dimension which we denote by dξ , and known distribution, which
we assume independent of decision x. We denote the set of feasible first stage decisions by X ⊆ Rdx . Here,
c : X→R, Q : X×co(Ξ)→R, q : Rdy →R, g : Rdy →Rmy , h : co(Ξ)→Rmy , and T : X×co(Ξ)→Rmy ,
where Ξ is ξ ’s support and co(·) denotes the convex hull operator. We assume that: the expectation in (SP)
is finite for all x ∈ X ; model (1) has a finite optimal solution achieved by a feasible y for every element of
X× co(Ξ); and, model (SP) has a finite optimal solution achieved on X . We further assume:

(A1) Q(x, ·) is convex on co(Ξ) for all x ∈ X ; and,
(A2) ξ has independent components, and h(·) and T (x, ·) are affine on Rdξ for all x ∈ X .

Assumption (A1) allows us to use Jensen’s inequality to form lower bounds on the objective function.
Under assumption (A2), a sufficient condition to ensure that assumption (A1) holds is that q(·) and g(·)
are convex functions; see, e.g., Fiacco and Kyparisis (1986). Given these conditions, convexity of Q(·,ξ )
on co(X) holds, provided T is convex on co(X) for each fixed element of co(Ξ). From the perspective
of the underlying probability model, assumption (A2), with the affine dependence of h(·) and T (x, ·) on
ξ , permits capturing first order notions of dependency of the random parameters in (SP), such as those
that arise in commonly-used linear factor models. With these assumptions in place, model (SP) can take a
variety of forms. For instance, it can be a stochastic linear program or a stochastic convex program or X
can have integrality restrictions, leading to a stochastic integer program. This changes the requisite tools
for solving the lower bounding problems (see Sections 3 and 4 for details) but the algorithmic framework
of SSAM that we put forward remains the same.

3 SEQUENTIAL APPROXIMATION METHOD

Significant parts of the algorithmic machinery from the literature on sequential approximation methods are
inherited by our SSAM, and so we briefly review the key ideas behind a SAM here. For more details on
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SAMs, see, e.g., Kall, Ruszczyński, and Frauendorfer (1988). Let ai < bi, i = 1,2, . . . ,dξ , be such that

Ξ⊆∏
dξ

i=1[ai,bi], where we allow for the possibility that ai =−∞ and/or bi = ∞.

3.1 Bounding the Objective Function

We now review the lower bounding function on f (x) that arises from Jensen’s inequality applied to a
partition of Ξ. Let S = {Ξ` : ` = 1,2, . . . ,ν} denote a partition of Ξ; that is, Ξi

⋂
Ξ j = /0, i 6= j and⋃

ν
`=1 Ξ` = Ξ. Let p` = P(ξ ∈ Ξ`) denote the probability mass of cell ` and let ξ̄ ` = E[ξ |ξ ∈ Ξ`] denote ξ ’s

mean, conditional on being in cell `. Then, E[Q(x,ξ )] = ∑
ν
`=1 p`E[Q(x,ξ )|ξ ∈ Ξ`]. Since Q(x, ·) is convex

on co(Ξ`), application of Jensen’s inequality on each cell results in a lower bounding function induced by
the partition S ,

LS (x)≡ c(x)+
ν

∑
`=1

p` Q(x, ξ̄ `)≤ f (x). (2)

In what follows, we assume that each cell of the partition has form Ξ` =∏
dξ

i=1[a
`
i ,b

`
i ], where ai≤ a`i < b`i ≤ bi,

`= 1,2, . . . ,ν . Under assumption (A2), this means that forming p` and ξ̄ ` only requires computing univariate
expectations.

Let US (x) denote a deterministically-valid upper bound that, like the Jensen bound, is adapted to the
partition S , and has the following form:

US (x)≡ c(x)+
ν

∑
`=1

p`E[Q(x,ξU`
)]≥ f (x). (3)

In the Edmundson-Madansky bound, ξU`
is a random variable whose support is the set of extreme points

of Ξ`, and so when Ξ` = ∏
dξ

i=1[a
`
i ,b

`
i ] this means evaluating E[Q(x,ξU`

)] requires 2dξ function evaluations.
See, for example, Frauendorfer (1992), Kall, Ruszczyński, and Frauendorfer (1988) for further details on
this conditional version of the Edmundson-Madansky inequality.

3.2 Generating Solutions

Given a partition S , we generate a candidate solution, x̂, in SAM by optimizing LS (x) over X :

x̂ ∈ argmin
x∈X

LS (x). (4)

For a given x ∈ X , let µx denote its optimality gap, µx = f (x)− z∗. For a candidate solution found by (4),
we can bound µx̂ via µx̂ ≤US (x̂)−LS (x̂). This follows immediately from (2) and (3) and the fact that x̂
minimizes the lower bound. SAM sequentially refines the partition S to improve the candidate solution as
well as the bound on the optimality gap. The procedure stops when the upper bound on µx̂ is sufficiently
small (see Section 3.4 for details).

3.3 Refining Partitions

Three issues arise when refining a partition S = {Ξ` : `= 1,2, . . . ,ν}. First, which cell(s) of the partition
should we refine? Second, given a cell, perpendicular to which axis should we construct a hyperplane
to form two new cells? Third, at which point on the designated axis should the splitting hyperplane be
positioned? In SAM, and in SSAM of the next section, we answer these questions for a fixed x̂ found via
(4). We only sketch basic ideas here and leave it to Section 4.4 to detail specifics for SSAM.

To answer the first question, note that the error bound US (x̂)−LS (x̂) on µx̂ may be expressed as a
sum of contributions from each cell, where that from cell ` is given by:

p`
[
E[Q(x̂,ξU`

)]−Q(x̂, ξ̄ `)
]
. (5)
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We refine those cells with the largest errors, as defined by (5).
Assume that cell ` is to be split. Jensen’s inequality arises from the best linear approximation of Q(x̂, ·)

across a cell, which is the first-order Taylor approximation formed at the conditional mean of the cell, ξ̄ `.
Assume for the moment that Q(x̂, ·) is twice differentiable (as is our computational example in Section 5).
Forming a second-order Taylor approximation of Q(x̂, ·) at ξ̄ ` along the ith coordinate axis, computing the
expected value of the difference with the first-order approximation, and selecting the axis with the largest
such expected error means that we choose axis:

i∗ ∈ argmax
i=1,...,dξ

[
∂ 2Q(x̂,u)

∂u2
i

∣∣∣∣
u=ξ̄ `

var(ξi|ξ ∈ Ξ`)

]
. (6)

In the case of a two-stage stochastic program with recourse, Q(x̂, ·) is not even once differentiable and
other approaches are required. Birge and Wets (1986) suggest using differences of subgradients at the
endpoints of each edge of a bounded cell to make this determination. Frauendorfer and Kall (1988) found
that examining differences between first order Taylor approximations and actual recourse function values
along each edge often further improves the refinement procedure.

Finally, we turn to the third question. Once the axis to split, i∗, has been determined, the corresponding
component of the conditional mean may be used as the point to position the splitting hyperplane (Birge
and Wets 1986, Kall, Ruszczyński, and Frauendorfer 1988).

3.4 SAM and Convergence Properties

Algorithm 1 summarizes the discussion in Sections 3.1-3.3, providing a brief algorithmic statement of
SAM. Going forward, we use index k to denote an iteration of an algorithm. So, Sk denotes the partition at
iteration k of SAM, which contains νk cells, and we denote the corresponding candidate solution, obtained
in (4) with S = Sk, by x̂k.

We now turn to the limiting behavior of SAM as k→ ∞. Let

fk(x,ξ ) = c(x)+
νk

∑
`=1

I(ξ ∈ Ξ`)
[
Q(x, ξ̄ `)+∇ξ Q(x, ξ̄ `)(ξ − ξ̄

`)
]
,

where we use ∇ξ Q(x, ξ̄ `) to denote a (sub)gradient of Q(x, ·) at ξ̄ ` and I(·) denotes the indicator function.
Note that LSk(x) = E fk(x,ξ ). In this way, f1(x,ξ ) is integrable with E f1(x,ξ ) = c(x)+Q(x,Eξ ). And,
because the partition for k+1 is a refinement of that at k, we have fk(x,ξ )≤ fk+1(x,ξ )≤ c(x)+Q(x,ξ ).
Thus, if we refine the partitions in such a way to ensure pointwise convergence,

lim
k→∞

fk(x,ξ ) = c(x)+Q(x,ξ ), (7)

then we can employ the monotone convergence theorem to infer

lim
k→∞

E fk(x,ξ ) = c(x)+EQ(x,ξ ). (8)

Moreover, E fk(x,ξ )≤ E fk+1(x,ξ ) coupled with (8), lower semicontinuity of E fk(x,ξ ) and continuity of
c(x)+EQ(x,ξ ) ensures that LSk(x) = E fk(x,ξ ) converges uniformly to c(x)+EQ(x,ξ ). Under these
assumptions limk→∞ LSk(x̂k) = z∗ and every accumulation point of {x̂k}∞

k=1 solves (SP). For these types
of results under weaker assumptions via the notion of epi-convergence, see, e.g., Birge and Wets (1986).
Frauendorfer (1992) discusses conditions on the refinement schemes to ensure (7) holds.
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Algorithm 1: Sequential Approximation Method (SAM)
step 0 (initialization)

select ε > 0 and let k = 1, Sk = {Ξ} and νk = |Sk| ;
step 1 (lower bounding problem)

let x̂k ∈ argminx∈X LSk(x);
step 2 (stopping criterion)

if USk(x̂k)−LSk(x̂k)≤ ε ·max{|USk(x̂k)|, |LSk(x̂k)|} then stop;
step 3 (partition refinement)

refine partition Sk, let k = k+1, update νk; let ξ̄ ` = E[ξ |ξ ∈ Ξ`] and p` = P(ξ ∈ Ξ`), ∀`;
goto step 1;

4 SAMPLING-BASED SEQUENTIAL APPROXIMATION METHOD

This section describes an algorithm similar to SAM of the previous section except that we replace the
computationally taxing Edmundson-Madansky upper bound by a sampling-based estimate of E[Q(x,ξ )].
The error bounds provided by our new sampling-based SAM (SSAM) have statistical error. This leads us
to characterize solution quality in SSAM via a confidence interval rather than the deterministically-valid
bounds on the optimality gap of SAM. Moreover, in our sampling-based adaptation of SAM, we iteratively
test whether an estimator of the optimality gap satisfies a termination criterion, an inescapably sequential
procedure. Such sequential procedures can exhibit premature termination with associated poor coverage
results for their interval estimators; see, e.g., Glynn and Whitt (1992). To avoid premature termination and
ensure an asymptotically valid confidence interval on the optimality gap of the solution proposed by SSAM,
we adapt the sequential sampling framework in Bayraksan and Morton (2011) to SSAM (see Section 4.3).

SSAM generates candidate solutions and calculates a lower bound in the same manner as SAM. SSAM
also improves this lower bound and hence, the solutions generated, by refining the partition of the random
vector’s support, again, much like SAM. When forming a sampling-based estimator of E[Q(x,ξ )], the
partitioning scheme inherent in SSAM suggests that we employ stratified sampling to reduce the variance
of the associated estimator (see Section 4.1). We attempt to further reduce variance via a control variate,
where the control on each cell of the partition is a linear approximation of Q(x, ·) that use subgradient
information, which is already available (see Section 4.2). The motivation for using a control variate estimator
lies in the notion that the quality of these linear approximations should improve with finer partitions of Ξ.
Indeed, the partitioning scheme already chooses and splits cells for the purpose of reducing nonlinearity
of Q(x, ·) in order to tighten the Jensen bound (see Section 3.3).

4.1 Stratified Monte Carlo Sampling

Given a partition S of Ξ with ν cells, and a solution x ∈ X , we estimate f (x) by stratified Monte Carlo
sampling. Suppose we have a sample size of N to be allocated among the ν cells; i.e., N = ∑

ν
`=1 n`, where

n` denotes the number of observations drawn from the conditional distribution of ξ given that ξ ∈ Ξ`. We
propose a stratified estimator of the form

ŪS ,N(x) = c(x)+
ν

∑
`=1

p`Ū `
n` , (9)

where Ū `
n` estimates E[Q(x,ξ ) |ξ ∈ Ξ`] with sample size n`. For now, we may view Ū `

n` as the standard
sample mean estimator, but below we modify it to be a control variate estimator. We prefer a stratified
estimator to a crude Monte Carlo estimator because the stratified approach reduces variance, guides selection
of cells for refinement (see Section 4.4), and facilitates a control variate to further reduce variance (see
Section 4.2).

Ignoring integrality, we allocate the sample size N across the cells of the partition according to

n` = p`N, `= 1,2, . . . ,ν , (10)
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which ensures variance reduction. Substituting the sample size formula (10) into var[ŪS ,N(x)] yields

var[ŪS ,N(x)] =
1
N

ν

∑
`=1

p`σ2
` (x)≡

1
N

σ
2(x), (11)

and we have the central limit theorem
√

N
(
ŪS ,N(x)− f (x)

)
⇒ N(0,σ2(x)), as N→ ∞ ∀x ∈ X ,

where ⇒ denotes convergence in distribution. We estimate σ2(x) using conditional sample variance
estimators from each cell, s2

`(x), via

s2(x) =
ν

∑
`=1

p`s2
`(x). (12)

In implementation, we round sample sizes up to the next largest integer.

4.2 A Control Variate Estimator

We develop a control variate scheme that we employ separately in estimating E[Q(x,ξ ) |ξ ∈ Ξ`] at each cell
` of the partition. Recall ξ̄ ` = E [ξ |ξ ∈ Ξ`] and consider the following first-order Taylor approximation of
Q(x, ·) as the control random variable

Γ`(x,ξ ) = Q(x, ξ̄ `)+∇ξ Q(x, ξ̄ `)(ξ − ξ̄
`), `= 1,2, . . . ,ν ,

where, again, ∇ξ Q(x, ξ̄ `) denotes a (sub)gradient of Q(x, ·) at ξ̄ `. When we have Q(x,ξ ) in analytic
form (see, e.g., Section 5), we can obtain ∇ξ Q(x, ξ̄ `) analytically. Or, if T (x,ξ ) = T (x) then the vector
of Lagrange multipliers on the constraints of (1), say π(x, ξ̄ `), is a subgradient of Q(x, ·) at ξ̄ `. More
generally, when T (x, ·) depends on the random parameter, we can use the chain rule to obtain the desired
subgradient.

Note that E[Γ`(x,ξ ) |ξ ∈Ξ`] =Q(x, ξ̄ `) and hence Γ`(x,ξ ) has known conditional mean. SSAM obtains
value Q(x, ξ̄ `) when solving the lower bounding problem, and the subgradient value may also be obtained
immediately (e.g., if it has value π(x, ξ̄ `)), or with minimal additional effort (e.g., via the chain rule with an
affine T (x,ξ )). Therefore, the control, Γ`(x,ξ ), may be formed with essentially no additional computation.

Let
W`(x,ξ ,λ ) = Q(x,ξ )−λ [Γ`(x,ξ )−Q(x, ξ̄ `)].

We have subtracted from Q(x,ξ ) a random variable with conditional mean zero. Choosing λ to minimize
var[W`(x,ξ ,λ ) |ξ ∈ Ξ`] yields

λ
∗ =

cov[Q(x,ξ ), Γ`(x,ξ ) |ξ ∈ Ξ`]

var[Γ`(x,ξ ) |ξ ∈ Ξ`]
.

We can estimate λ ∗ by

λ̂n` =
ĉov[Q(x,ξ ), Γ`(x,ξ ) |ξ ∈ Ξ`]

v̂ar[Γ`(x,ξ ) |ξ ∈ Ξ`]
, (13)

using the sample covariance and sample variance based on the n` observations for cell `. We then form
the following estimate of E[Q(x,ξ ) |ξ ∈ Ξ`]:

W̄ `
n`(λ̂n`) =

1
n`

n`

∑
j=1

W`(x,ξ j, λ̂n`).
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Under a joint normality assumption, Lavenberg and Welch (1981) obtain a confidence interval associated
with the point estimate, W̄ `

n`(λ̂n`). Nelson (1990) shows that asymptotically, the normality assumption is
unnecessary, obtaining in our notation that

√
n`
(

W̄ `
n`(λ̂n`)−E[Q(x,ξ ) |ξ ∈ Ξ`]

)
⇒ N(0, σ̄2

` (x)), as n`→ ∞ ∀x ∈ X , (14)

where σ̄2
` (x) = (1−R2)σ2

` (x) and R2 is the squared conditional correlation coefficient between Q(x,ξ )
and Γ`(x,ξ ).

Instead of estimating λ ∗, we can simply use a deterministic value, say, λ = 1. Then, W̄ `
n`(1) is a sample

mean of i.i.d. random variables it again satisfies a central limit theorem, albeit with a larger variance term
than that of (14). In forming our sampling-based estimate of f (x) can replace Ū `

n` in (9) by W̄ `
n`(λ̂n`) or

by W̄ `
n`(1). In these cases, we would similarly replace σ2

` (x) in (11) with σ̄2
` (x) or its analog for W̄ `

n`(1),
with corresponding conditional sample variance estimators in (12). In Section 5 we report computational
results for both W̄ `

n`(λ̂n`) and W̄ `
n`(1).

4.3 Rules to Increase the Sample Size and Stop

At the kth iteration of SSAM we use Gk to estimate the current optimality gap µx̂k , where

Gk = ŪSk,Nk(x̂k)−LSk(x̂k).

Extending the notation as in SAM, we use Nk to denote the total sample size at iteration k. To simplify
the discussion, we take ŪSk,Nk(x̂k), the point estimate of f (x̂k), to be the stratified-sampling estimator of
equation (9) but it could instead be that estimator with Ū `

n` replaced by W̄ `
n`(λ̂n`) or W̄ `

n`(1). Associated
with Gk is a sample variance estimator, s2

k from equation (12).
Following the sequential sampling framework of Bayraksan and Morton (2011), SSAM stops when Gk

falls below a pre-specified factor of the sample standard deviation, sk; i.e., SSAM terminates at iteration

T = inf
k≥1
{k : Gk ≤ h′sk + ε

′}. (15)

When the procedure stops, a statement on the quality of the candidate solution, x̂T , is made as a 100(1−α)%
approximate confidence interval on its optimality gap of the form

[0,hsT + ε].

Here, h > h′ > 0 and ε > ε ′ > 0 are prespecified constants. The terms ε and ε ′ are typically small, relative
to h and h′, and ensure finite stopping. (We discuss how to select h and h′ in Section 5.) Using a sample
size schedule Nk as prescribed in Bayraksan and Morton (2011)

Nk ≥
(
h−h′

)−2
(

cp,q +2pk2q/r
)
, (16)

where q> 1, p> 0 and cp,q =max{2ln
(
∑

∞
j=1 exp[−p j2q/r]/

√
2πα

)
,1}. Under a finite variance assumption,

lim
h↓h′

P(µx̂T ≤ hsT + ε)≥ 1−α.

In (16), q > 1 and p > 0 are parameters that can be chosen to minimize the computational effort of the
sequential sampling procedure. For details on the set of conditions to ensure asymptotic validity and how
to select p and q, see Bayraksan and Morton (2011).
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4.4 Refining Partitions

We describe in Section 3.3 how to refine partitions in SAM. That discussion carries over to SSAM directly,
except that the error contributed by each cell ` to the current estimate of the optimality gap would revise
from (5) to p`[Ū `

n` −Q(x̂k, ξ̄
`)]. However, we can further revise this by taking into account the stopping

criteria (15). In particular, we can choose to split cell ` if

p`
[
Ū `

n`−Q(x̂k, ξ̄
`)−h′sk,`(x̂k)

]
> 0. (17)

If (17) fails to hold for any cell then the stopping criteria is satisfied because ∑
ν
`=1 p`s` ≤

(
∑

ν
`=1 p`s2

`

)1/2.
If we find this rule to be too aggressive in splitting cells we can restrict attention to those cells with the
largest left-hand side of (17). In our implementation, we do this in a matter depicted in Algorithm 2. Our
implementation further uses (6) to select the axis to split, and we split at the conditional mean.

4.5 Algorithm Statement

Algorithm 2 details SSAM, beginning with initialization of the parameters, h,h′,ε,ε ′, α , q and p. The
initial partition S1 is the entire sample space and so ν1 = 1. The list of cells to be considered for splitting,
List, is initially empty. In step 1 of the algorithm, the current partition is refined by selecting cells from
List to be partitioned. For each cell Ξ` with ` ∈ List we split Ξ` by selecting the axis according to (6)
and splitting at the conditional mean as indicated in Section 3.3. In the first iteration the List is empty,
and so we just solve the lower-bounding problem using Jensen’s bound with the single “scenario,” ξ̄ = Eξ .

Algorithm 2: Sampling-based Sequential Approximation Method (SSAM)
step 0 (initialization)

select h > h′ > 0, ε > ε ′ > 0, 0 < α < 1, q > 1 and p > 0 ;
let k = 1, Ξk = Ξ, Sk = {Ξk}, List=/0,νk = 1, LBk =−∞;

step 1 (partitioning and lower bounding problem)
for ` ∈ List do

split Ξ` and update Sk; compute p`
′

and ξ̄ `′ for two new cells;
end
x̂k ∈ argminx∈X LSk(x), νk = |Sk|, LBk = LSk(x̂);

step 2 (upper bound estimation)
Nk =

⌈(
h−h′

)−2
(

cp,q +2pk2q/r
)⌉

;

for `=1 toνk do
allocate n` = dp`Nke samples to cell `; form Ū `

n` and s2
k,`(x̂k);

end
ŪSk,Nk(x̂k) = c(x̂k)+∑

νk
`=1 p`Ū `

n` , s2
k = ∑

νk
`=1 p`s2

k,`(x̂k), Gk = ŪSk,Nk(x̂k)−LSk(x̂k);
step 3 (stopping criterion)

if Gk ≤ h′sk + ε ′ then
output x̂k and confidence interval [0,hsk + ε] on µx̂k and stop;

end
step 4 (update List)

Let 0≤ r < 1, ∆k = Gk−h′sk, δ `
k = p`

(
Ū `

n` −Q(x̂k, ξ̄
`)−h′s`k

)
;

List =
{
` : ∑`∈List δ `

k > r∆k, and δ `
k ≥ δ

`1
k ∀`1 6∈ List

}
and |List| is minimal;

Set k = k+1 and goto step 1;

Step 2 chooses a sample size according to (16), allocates samples to each cell proportional to the
probability mass of that cell, and forms the conditional sample mean and conditional sample variance.
In each cell of the partition, we form these by generating i.i.d. observations from the distribution of ξ ,
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conditional on ξ being in that cell. These samples are also independent of samples generated in previous
iterations. We then form a point estimate of the objective function value for the current candidate solution
under stratified sampling according to (9) and the associated sample variance estimator according to (12).
After forming the point estimate of the optimality gap, Gk, we check the stopping criterion in step 3.
While we describe the algorithm in step 2 for the simplest case of stratified sampling, it is straightforward
to modify step 2 in an attempt to further reduce variance using the control variate scheme described in
Section 4.2. Step 4 of the algorithm selects cells of the current partition to consider for refinement. Instead
of selecting all cells according to condition (17), it selects the cells that contribute at least 100r% to the
current violation. In our numerical experiments, a value of r = 0.5 is found to give a good balance between
the number of cells in the partition and the convergence of the algorithm; so, we use this value in our
experiments in Section 5.

5 NUMERICAL RESULTS

In this section, we experiment with SSAM on an asset allocation problem with m assets defined as

z∗ = max
x∈X

E[u(x,ξ )], (18)

where X = {x : ∑
m
j=1 x j = 1,x j ≥ 0, j = 1, . . . ,m}, u(x,ξ ) = 1−e−ρ(ξ x) and ξ x = ∑

m
j=1 ξ jx j. We use problem

data for model (18) from Partani, Morton, and Popova (2006), which specifies the mean vector and covariance
matrix for a 14-asset model in which the random return vector ξ follows a multivariate normal distribution.
We depart from Partani, Morton, and Popova (2006) in that we use an exponential, rather than a power,
utility function, but we use a risk parameter of ρ = 0.812211 in an attempt to match their optimal solution.
Our optimal solution, x∗, has three non-zero components (x4 = 0.0786, x9 = 0.7317, and x10 = 0.1897,
using the same ordering as in Partani, Morton, and Popova 2006) and z∗ = 0.5881.

All problem instances were solved using CVX version 1.21 (Grant and Boyd 2008, Grant and Boyd
2011) in MATLAB on a 2.93GHz Dell Xeon multi-processor computer with 9 GB of memory, using only
one processor. We used the pre-defined MATLAB utilities to generate the normal random variates. We set
q = 1.5, p = 4.67× 10−3 and cp,q = 9.689 according to the guidelines in Bayraksan and Morton (2009)
with α = 0.1, ε ′ = 1×10−8, ε = 2×10−8, and we determine ∆h = h−h′ so that the sample size at the
first iteration k = 1 is at least as large as some initial target sample size, N0. To find suitable values for
h′, we carryout pilot runs with a moderate sample size n in order to get a sense of the range of values of
the ratio Gk/sk, which dictates termination in SSAM. We can then select h′ to be slightly smaller than the
average of values of the G/s ratio observed during the pilot runs.

5.1 Variance Reduction

We study variance reduction in SSAM for the different estimators we have proposed. Our simplest estimator,
a stratified estimator, allocates samples proportional to each cell’s probability mass according to equation
(10). This stratified estimator with proportional sampling (STP) already reduces variance, and to assess
this reduction we also employ a crude Monte Carlo (CMC) estimator. We can use the control variate
estimator of Section 4.2 within the stratified sampling scheme in an attempt to further reduce variance.
This estimator has a parameter λ , and we can either fix λ = 1 (SCV1) or we can estimate λ (ŜCV) by the
λ̂n` of equation (13).

We compare the sample variances of these four estimators as follows. We use h′ = 0.4275, N0 = 100,
and we made independent 100 runs of SSAM in which the sampling-based upper bound estimator uses the
ŜCV procedure. For each run, we compute the other estimators (CMC, STP and SCV1) in the background
using the same sample sizes, as the algorithm progresses. For each estimator, we take the average of
the variance estimates at iteration k, s2

k , over the 100 runs. Table 1 compares the estimated variances
between each pair of these sampling schemes by computing the ratio of the average of these variances as
the procedure progresses for the first 10 iterations.
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Table 1: Ratio of variance estimators for each pair of sampling scheme.

k CMC/ŜCV STP/ŜCV SCV1/ŜCV CMC/SCV1 STP/SCV1 CMC/STP
1 11.60 12.26 1.15 10.11 10.69 0.95
2 83.50 35.64 1.82 45.75 19.53 2.34
3 277.11 70.83 1.77 156.33 39.96 3.91
4 394.64 89.41 1.70 231.85 52.53 4.41
5 531.26 114.21 2.74 193.84 41.67 4.65
6 954.93 160.30 2.52 379.20 63.66 5.96
7 1387.37 199.13 2.54 547.25 78.55 6.97
8 1461.46 204.69 3.00 486.51 68.14 7.14
9 2180.77 256.79 3.71 587.52 69.18 8.49

10 3925.98 393.51 3.25 1207.85 121.06 9.98

According to Table 1, ŜCV dominates the other estimators. The second column indicates that ŜCV
reduces variance by a factor of 10-3900 over crude Monte Carlo sampling, the third column indicates ŜCV
improves over the simple stratified estimator by factors of 12-390, and the fourth column indicates that
estimating λ improves variance ratios by 1-3. Variance reduction of the stratified estimators (ŜCV, SCV1
and STP) grows over CMC as the algorithm proceeds and the partition refines, but this is particularly true
for the control variate estimators because their linear controls provide better approximations as k grows.
Table 1 suggests the following ordering in terms of variance reduction over CMC: ŜCV > SCV1 > STP
> CMC. Similar results are obtained for larger initial sample size values N0 = 200, 300, 400, and 500.
Since the sampling scheme ŜCV results in the largest variance reduction, we use that estimator to form
the sampling-based upper bound in SSAM in the remainder of the results we report in this section.

5.2 Results Summary

Table 2 summarizes empirical performance measures of SSAM for initial sample size values of N0 = 100,
200, 300, 400 and 500. For each value of the initial sample size, we report 90% confidence intervals on the
following: stopping iteration T ; the sample size used for upper-bounding at termination NT ; the number of
scenarios (number of cells in the partition) used for the lower-bounding problem at termination; hsT + ε ,
the width of the confidence interval on the optimality gap; and, the coverage probability p based on the
results of 100 independent runs. The last column of Table 2 reports the proportion of z∗ represented by the
width of the 90% CI on the optimality gap, [0,hsT +ε], obtained by the procedure. Overall, the algorithm
performs well on our asset-allocation model: the empirical coverage probability is 100%, the procedure
requires a modest number of iterations to stop, and the number of cells in the partition is relatively small.
However, the confidence intervals on the optimality gap appear to be somewhat conservative. For instance,
even though the CI width on the optimality gap ranges from 0.72% to 0.97% of the optimal value, more
than 90% of the solutions, x̂T , that the procedure produced are actually within 0.05% of optimality.

Table 2: Empirical results.

N0 (h,h′) T NT # Cells hsT + ε p̂ % Opt
100 (0.7389, 0.4275) 13.94 ± 1.25 107.54 ± 1.02 21.89 ± 2.29 4.1 ×10−3 ± 1.3 ×10−3 1.00 ± 0.00 0.92
200 (0.6477, 0.4275) 20.48 ± 2.34 226.60 ± 4.39 47.14 ± 6.25 3.4 ×10−3 ± 0.9 ×10−3 1.00 ± 0.00 0.74
300 (0.6073, 0.4275) 22.02 ± 2.76 347.53 ± 8.20 64.59 ± 9.67 4.2 ×10−3 ± 1.5 ×10−3 1.00 ± 0.00 0.97
400 (0.5832, 0.4275) 34.13 ± 3.94 514.97 ± 17.56 129.54 ± 17.02 3.6 ×10−3 ± 1.4 ×10−3 1.00 ± 0.00 0.86
500 (0.5668, 0.4275) 34.30 ± 4.30 650.18 ± 24.80 148.51 ± 20.79 3.0 ×10−3 ± 1.2 ×10−3 1.00 ± 0.00 0.72

6 CONCLUSIONS

We have developed a sequential procedure, denoted SSAM, that at each iteration, generates a candidate
solution by solving a lower-bounding problem derived from Jensen’s inequality applied on a partition of
the random vector’s support. This lower bound, coupled with a stratified sampling-based estimate of the
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objective function value at the candidate solution and a control variate estimator, provides a point estimate
of the optimality gap. The procedure stops when this estimate falls below a pre-specified fraction of the
sample standard deviation. Otherwise, we refine the partition, increase the sample size and repeat the
procedure. We applied SSAM to an asset allocation problem. Our results indicate that the control variate
estimator on a stratified sample significantly reduces variance and SSAM performs well on this test problem.
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