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ABSTRACT

In a recent paper, Gongyun Zhao introduced what appears to be the first interior point formulation for
solving two-stage stochastic linear programs for finite support random variables. In this paper, we generalize
Gongyun Zhao’s formulation by incorporating it into a retrospective approximation framework. What results
is an implementable interior-point solution paradigm that can be used to solve general two-stage stochastic
linear programs. After discussing some basic properties, we characterize the complexity of the algorithm,
leading to guidance on the number of samples that should be generated to construct the sub-problem linear
programs, effort expended in solving the sub-problems, and the effort expended in solving the master
problem.

1 INTRODUCTION

1.1 Problem Statement

In this paper, we consider problems of the form

min cT x+ρ(x) s.t. Ax = a, x≥ 0, (M)

where A ∈ IRc×qM ,a ∈ IRc and x ∈ IRqM , and ρ(x) = E[G(x,ξ )] is called the recourse function. The term
G(x,ξ ) is the optimal value of the problem

min dT (ξ )y(ξ ) s.t. w(ξ )y(ξ ) = h(ξ )−T (ξ )x, y(ξ )≥ 0. (S)

In the above, ξ is a random vector, and T (ξ ) ∈ IRl×qM ,W (ξ ) ∈ IRl×qS and y(ξ ) ∈ IRqS are linear coefficients
for each realization ξ . The random vector ξ has a distribution law over a support Ξ. No assumptions are
made about the nature of the distribution or the support Ξ.

Problems in the general form (M)− (S) are called two-stage stochastic linear programs, and have an
extensive body of literature dedicated to them (see e.g., Birge and Louveaux (1997), Shapiro (2004), Chap.
2 in Shapiro et al. (2009) for comprehensive reviews.) This formulation typically represents decision
making in two stages, where the first (or master) stage concerns decisions x that are to be taken under
uncertainty about the eventual outcome ξ in the second stage, and the second stage (or sub-problem)
decisions y(ξ ) act as recourse actions undertaken once the uncertain parameters ξ are realized. Numerous
applications in diverse fields like supply-chain (Bassok et al. 1999), energy (Wallace and Fleten 2003),
healthcare (Denton et al. 2010) etc. make this a key part of the stochastic optimization literature.

Monte-Carlo sampling based methods form an essential approach to solving such two-stage problems.
The prototypical algorithm samples a finite set of n realizations {ξi, i = 1, . . . ,n} of ξ , and then solves the
approximate optimization problem

min cT x+ ρ̂(n,x) s.t. Ax = a, x≥ 0, (M̂n)
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which is obtained by replacing the recourse function ρ(x) with its approximation ρ̂(n,x) = 1
n ∑

n
i=1 G(x,ξi),

and where G(x,ξi) are obtained from (S). The samples ξi are usually i.i.d. copies of the random variable
ξ , although Homem-de-Mello (2008) studies the non-i.i.d. setting.

The two-stage linear program literature concentrates on two related goals. One aim is to study the
statistical properties of the approximation (M̂n) to the original problem (M) with the objective of selecting
an appropriate sample size. Let η∗ be the optimal value for the master problem (M), and η̂∗(n) the optimal
value of the sample-path problem (M̂n). Then under fairly general assumptions, it is well known that
η̂∗(n)→ η∗ (c.f. King and Rockafellar 1993.) In addition Shapiro et al. (2009)[Chapter 3] and Shapiro
(2004) show that a rate-of-convergence result for the optimal objective value can also be obtained under
additional conditions. For example, if P(‖ρ̂(n,x)−ρ(x)‖ ≤ ε) converges exponentially fast as n→∞, then
the same can be shown to hold for the optimal objective value P(|η̂∗(n)−η∗| ≤ ε). Homem-de-Mello
(2008) remarks that in general the functional CLT that holds for the estimator of the stochastic function
can be translated to hold also for optimal objective value, and even for the optimal solution values under
more restrictive conditions. Such rates-of-convergence results have also inspired some work on sequential
algorithms towards identifying methods that return, with a guaranteed confidence, a solution of a stipulated
standard (Bayraksan and Morton 2009).

The second goal is to solve the approximation (M̂n) for a fixed size n in the most efficient possible
manner. Zhao (2001) lays out a nice mosaic of all the different approaches taken to solve the approximation
problem (M̂n) efficiently. The solutions are broadly classified into direct methods, where the simplex
method or interior point methods are used to directly solve the finite linear program (M̂n)− (S) written as
one large program, and decomposition methods, which keep the two problems (M̂n) and (S) separate and
pass relevant information between them iteratively. Decomposition methods are further divided into cutting-
plane (CPDM) and derivative based (DDM) decomposition methods. The CPDM paradigm generates a
set of cuts from (S) in order to approximate the non-linear and non-smooth ρ̂(n,x) in (M̂n). The DDM
approach evaluates the derivative (or its approximate) of ρ̂(n,x) at the current iterate of the master problem
(M̂n) using the sub-problems (S) and chooses the next iterate for the master problem using any one of the
standard non-linear gradient-based descent algorithms.

Decomposition based methods enjoy the clear advantage over direct methods of scaling well with
increasing sample size n. The CPDM methods suffer the handicap of not being able to change their samples
as the method progresses, as this might invalidate a cut added earlier. Thus, they can only be used to
solve (M̂n) to optimality for a specified sample set. The DDM methods do not suffer this limitation since
they use samples only to determine local information (the gradient at the current iterate), but a substantial
obstacle exists in estimating the derivative of the non-linear non-smooth function ρ(n,x) (refer Section 2.2
in Shapiro et al. 2009 for an explanation of this property.) Zhao (2001) suggests fixing this limitation of
DDMs by solving an interior point version of the two-stage program by introducing barrier-functions for
the linear constraints in both stages. Subsequent work along this line (e.g., in Chen and Mehrotra 2007,
Mehrotra and Ozevin 2007) has further expanded the use to more efficient interior-point methods in a
decomposition scheme which takes advantage of warm-starts to be performed in both stages.

1.2 Solution Context

Interestingly, all of the work discussed thus far appear within the realm of sample average approximation
(SAA), where a single approximate problem, “generated” with a large-enough sample size, is solved to
identify a solution estimator. We situate our contribution in this paper within an arguably more efficient
variation of SAA called retrospective approximation (RA) (Chen and Schmeiser 1994, Pasupathy and
Schmeiser 2009, Pasupathy 2010), and within the DDM class of optimization approaches. The broad
strategy of RA is easily stated: generate a sequence of approximate problems with increasing sample
sizes, and solve each of the generated problems using an appropriate solver to within a specified error
tolerance. RA’s efficiency comes from the use of “warm starts,” i.e., solutions to prior problems are used as
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initial guesses to subsequent problems, and from appropriate choice of the sample size and error tolerance
sequences.

The RA approach can be efficiently adapted to solving two-stage programs if two conditions are met:
a) an appropriate notion of accuracy is developed for any feasible master-stage candidate solution, and b)
the effort required in estimating the recourse function ρ(x) using a specified sample-size estimate ρ̂(n,x) is
quantified. Usual solver implementations for linear programs are based on the simplex-method, which has
few theoretical guarantees on the number of steps required to obtain a solution with a pre-specified quality
guarantee. But recent work by Zhao (2001) and Chen and Mehrotra (2007) on using barrier-function based
interior-point methods in this context inspires us to assume similarly that the second stage problems (S)
are solved using interior point methods. Barrier methods have a guaranteed worst case solution time that
scales polynomially with the (inverse of) the precision required, which is measured in terms of duality
gap for linear programs. Thus, an ε-close estimate of the approximate recourse function ρ̂(n,x) can be
obtained in computational time that is polynomial in n and 1/ε .

The algorithm embodiment presented here assumes only that the second stage LPs (S) are solved using
interior point methods to evaluate the recourse function at current iterate, and is agnostic of the method
used to solve the first stage problem. The recourse function ρ(x) in the master stage problem is a convex
function in general, and is strictly so under certain regularity conditions (refer Section 2.2 in Shapiro et al.
2009). It is thus reasonable to make the following assumption, which will be operative for the rest of this
paper:
Assumption 1 The master-stage problem (M) attains its optimal value η∗ in the strict interior of the
feasible set {Ax = a, x≥ 0} of the master-stage variables.

So, the master-stage problem (M) is locally an unconstrained problem as the iteration count grows. The
master-stage solver may utilize any Newtonian convergence scheme to realize a linear or higher reduction
in a figure-of-merit, which is usually the objective function value itself, as iterations proceed. For example,
the barrier-based methods of Zhao (2001) provide such a polynomial converge guarantee.

We sketch an outline of the RA paradigm for general two-stage linear programs in Section 2. In
analyzing this method, we rely heavily on Pasupathy (2010) where optimal parameter choice for classical
retrospective optimization is studied. In congruence with the RA approach, we assume that each iteration
requires approximate solutions for problems (M̂n) of a specified sample size n to within a specificed
accuracy. The accuracy required is specified as an εS for the interior point method for the second-stage
problems (S) and a εM for the master problem solver. The following quantities are important for the
analysis and bear defining upfront:

(i) η∗, as before, is the optimal value for the master problem (M).
(ii) η̂∗(n) is the optimal value of the sample-path problem (M̂n).

(iii) η̂∗(n,εS) is the optimal value when the subproblems in (M̂n) are solved to within εS.
(iv) ˆ̂η∗(n,εS,εM) is the value obtained when the sample-path problem (M̂n) is solved to within εM, and

the sub-problems in (M̂n) are solved to within εS.

Section 2.2 establishes that ˆ̂η∗(n,εS,εM) is a consistent estimator of η∗ as n grows and εS,εM falls.
In Section 2.3 we address how outer iterations should increase sample size n and simultaneously decrease
solution guarantees εS and εM for the sub- and master-problems respectively in an efficient manner.

1.3 Summary of Contributions

The following are the main contributions of this paper.

1. We outline an interior-point based RA framework for solving two-stage stochastic LPs. Consistent
with usual RA frameworks, the problem is solved iteratively. Each iteration involves approximately
solving a convex programming problem that approximates the true problem.
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2. We characterize the complexity of the problem in terms of the parameters used within the framework.
Specifically, we derive an expression for the total computational effort in terms of the sample size
(i.e., number of LPs solved when observing the convex objective function constructed during each
iteration) and the extent to which the master and the subproblems are solved.

3. We derive the best achievable complexity within the framework, and the corresponding stipulations
on the algorithm parameters needed to achieve it.

We emphasize that neither the proposed framework nor the methods of analysis followed in this paper are
original contributions. Instead, our contribution lies in the use of the framework and the analysis to a very
specific but important class of simulation optimization problems, and in the process aiding implementability.

2 INTERIOR-POINT BASED RA FOR SOLVING TWO-STAGE STOCHASTIC LPS

The proposed interior-point based RA algorithm is conceptually very simple. During the kth iteration, a
problem of the type (M̂nk) is independently generated and solved to within error-tolerance εM

k , thereby
yielding a solution Xk. In the subsequent iteration, Xk is used as the initial solution (“warm start”) to solve
the problem (M̂nk+1) to within error-tolerance εM

k+1. The process is then repeated until some user-specified
termination criterion is satisfied. As we shall see, under certain conditions on the sample-size sequence
{nk} and the error-tolerance sequence {εM

k }, the sequence of generated solutions {Xk} converges to the
correct solution wp1.

We emphasize here that the generated problem (M̂nk) is convex, and that its solution is assumed to be
identified through a “black-box” solver. This is because the objective function in (M̂nk) is unknown until a
specific point x is visited by the algorithm being used to solve (M̂nk), at which time nk LPs are independently
generated and solved. Moreover, each of the generated LPs are solved (using an interior-point solver) only
to within error-tolerance εS

k .

2.1 Algorithm Listing

We now formally list the proposed algorithm along with its components.

Algorithm Components:

(i) A interior-point procedure for solving the LPs generated as sub-problems (S).
(ii) A procedure for solving convex programming problems of the type (M̂n)

(iii) A rule to compute the sample size sequence {nk}.
(iv) A rule to compute the error-tolerance sequences {εS

k },{εM
k }.

Algorithm Logic:

0. Initialize the iteration number k = 1. Set n1,ε
S
1 , εM

1 .
1. Use component (ii) to solve the sample-path problem (M̂nk ) to within error-tolerance εM

k . (At each
x, nk LPs of the type (S) are generated independently, and solved to within error-tolerance εS

k using
component (i).) Obtain a retrospective solution Xk.

5. Use components (iii) and (iv) to obtain nk+1,ε
S
k+1, and εM

k+1. Set k← k+1 and go to Step 1.

Two aspects are crucial to the efficient functioning of the proposed algorithm. First, solutions from the
previous iterations ought to be used as “warm starts” solutions to the subsequently generated problems, i.e.,
Xk should be the initial guess to the problem (M̂nk+1). As the sample sizes become larger, this will usually
yield efficiency gains because subsequent problems will “look similar” to previous problems and thereby
have solutions in close proximity. Second, the sequences {εM

k } and {εS
k } should be chosen carefully.

Choosing them too small will result in too much work per iteration compared to the inherent sampling
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variability in the sample-path problem (M̂nk). Choosing them too large will result in a large bias in the
obtained solutions {Xk}. We discuss this issue rigorously and provide a recommendation in Section 2.3.

2.2 Convergence

In this section, we present some basic results on convergence and rate of convergence of the (true) objective
function values of the solutions generated by the proposed paradigm. Recall that through the framework
just proposed, a sequence of sample-path problems {M̂nk} are solved to respective tolerances {εM}, to
obtain a sequence of solutions along with a sequence of corresponding optimal values { ˆ̂η∗(n,εS,εM)}.

Towards preparing for the main results, we first state a result that provides sufficient conditions that
guarantee that the sequence of recourse-function approximations {ρ̂nk(x)} converges to the recourse function
ρ̂(x) uniformly (in x) wp1.
Proposition 1 Let ∂F(x,ξ ) denote the sub-differential of F(x,ξ ) (with respect to x). Suppose there exists
a constant b < ∞ satisfying b > supx∈D b(x), where

b(x) = sup
y∈∂F(x,ξ )

{‖y‖} wp1.

Let the sequence of positive constants {nk}→ ∞ as k→ ∞. Then ρ̂(nk,x)→ ρ(x) as k→ ∞ uniformly (in
x) wp1.

Proof Sketch. If uniform convergence does not hold, there exists a convergent sequence {xk} and ε > 0
such that {xk}→ x and |ρ̂(nk,xk)−ρ(xk)|> ε with positive probability. However,

|ρ̂(nk,xk)−ρ(xk)| ≤ |ρ̂(nk,xk)− ρ̂(nk,x)|+ |ρ̂(nk,x)−ρ(x)|+ |ρ(x)−ρ(xk)|. (1)

The first term on the right-hand side of (1) satisfies |ρ̂(nk,xk)− ρ̂(nk,x)| ≤ b‖xk− x‖. The second term is
small by pointwise convergence and the third term is small due to the continuity of ρ(·).

Proposition 1 essentially states that as long as the supremum-norm of the sub-differentials of the
sample-paths F(x,ξ ) are bounded, the approximations to the recourse function converge in a uniform
sense. Such convergence is very useful to demonstrate that the sequence of objective function values
{ ˆ̂η∗(n,εS,εM)} of the solutions returned by the procedure converges to the true optimal value η∗ wp1.
We state this formally next, along with a sketch of the proof.
Proposition 2 Suppose {εM

k } and {εS
k } are positive-valued sequences satisfying {εM

k }→ 0 and {εS
k }→ 0

as k→ ∞ wp1. Also, suppose ρ̂(nk,x)→ ρ(x) uniformly (in x) wp1 as k→ ∞. Then

| ˆ̂η∗(n,εS,εM)−η
∗| → 0 wp1 as k→ ∞.

Proof Sketch. Since ρ̂(nk,x)→ ρ(x) uniformly (in x) wp1, it can be shown that η∗(nk)→ η∗ as k→∞

wp1. Now use

| ˆ̂η∗(n,εS,εM)−η
∗| ≤ | ˆ̂η∗(n,εS,εM)− η̂(nk,ε

S
k |+ |η̂(nk,ε

S
k −η

∗(nk)|+ |η∗(nk)−η
∗|

≤ ε
M
k + ε

S
k + |η∗(nk)−η

∗| (2)

to see that the assertion in the proposition holds.

Proposition 2 states that as long as the sequence of tolerances for the master and sub-problems are
chosen to converge to zero, and the recourse-function approximations converge to the recourse function
uniformly, the (true) objective function values will converge to the optimal value. The rate at which such
convergence happens is given, as usual, through a central limit theorem, as stated next without proof.
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Proposition 3 Suppose {εM
k } and {εS

k } are positive-valued sequences satisfying εM
k = o(1/

√
nk) and

εS
k = o(1/

√
nk) as k→ ∞. (Given two sequences {un} and {vn}, we say that un = o(vn) if un/vn→ 0 as

n→ ∞ (Serfling 1980)[pp. 8].) Suppose there exists a constant b < ∞ satisfying b > supx∈D b(x), where
b(x) = supy∈∂F(x,ξ ){‖y‖} wp1. Also suppose that supx E[(F(x,ξ ))2]< ∞. Then

√
nk( ˆ̂η∗(n,εS,εM)−η

∗)
d→N (0,σ2(x∗)),

where x∗ is the unique solution of the problem (M), N (µ,σ2) refers to a normal random variables with
mean µ and variance σ2, and σ2(x∗) = Var(F(x∗,ξ )).

2.3 Complexity Analysis and Optimal Parameter Characterization

In this section, we first characterize the complexity of the proposed method as a function of the error-
tolerance sequences {εS

k }, {εM
k }, and the sequence of sample sizes {nk}. This work characterization is

then used to provide guidance on the relative rates at which the error-tolerances should tend to zero while
the sample-size sequence tends to infinity. Towards facilitating exposition, we introduce the following
additional notation:

– wS(ε): the number of algorithmic steps involved in solving each sub-problem to within tolerance
ε > 0, i.e., until an ε-optimal solution is obtained;

– wM(x,ε): the number of steps involved in solving each master problem to within tolerance ε > 0,
starting from the initial solution x;

– β : a constant that captures the relative computational cost of the steps in the master and the
sub-problems.

(Notice that the notation wS(ε) implies independence of the chosen initial point when solving the
sub-problems. This is partially motivated by the fact that when implementing the proposed framework
using a solver, an initial point is chosen automatically and with no prior information. Also, the the notation
wS(ε) and wM(x,ε) implicitly assumes that, when all other conditions are the same, the number of steps
involved in solving any realization is the same. This assumption, while somewhat stringent, can be relaxed
by assuming instead that wS(ε) and wM(x,ε) are upper bounds on the actual number of steps expended by
the solver in solving the sub-problem and the master problem respectively.)

Given the above notation, the total amount of work involved during the ith iteration of the proposed
method is given as

Wi = (β +niwS
i (ε

S
ni
))wM(Xi−1,ε

M
i ). (3)

For a barrier method that uses Newton steps to perform centering on the sub-problems, the number of steps
wS(εi) can be shown to be

wS(εi) = d log(qS/εit0)

logν
e

≈ log(qS/t0)+ log(1/εS
i )

logν
, (4)

where qS is the number of constraints in the sub-problem, t0 is the initial penalty, and ν is the multiplicative
constant on the penalty (Boyd 2004)[Chapter 11]. Using (3) and (4), we see that the total work expended
after k iterations of the proposed method is

Wk ≈
k

∑
i=1

(
β +ni

log(qS/t0)

logν
+

log(1/εS
i )

logν

)
wM(Xi−1,ε

M
i ). (5)

4168



Ghosh and Pasupathy

We now use the expression developed in (5) to guide choices of the error-tolerance sequences {εS
i },

{εM
i } relative to the sequence of sample sizes {ni}. As a measure of efficiency of a particular choice

of the sequences, we use the product of the squared error of the optimality gap of the solution returned
by the proposed method and the total computational effort expended in arriving at the returned solution.
Specifically, given that Wk, expressed through (5), is the total work expended at the end of the kth iteration,
and ‖ ˆ̂η∗(n,εS,εM)−η∗‖ is the resulting error, we analyze the random variable sequence {Tk} given by

Tk = Wk‖ ˆ̂η∗(n,εS,εM)−η
∗‖2

= ‖ ˆ̂η∗(n,εS,εM)−η
∗‖2

k

∑
i=1

(
β +ni

log(qS/t0)

logν
+

log(1/εS
i )

logν

)
wM(Xi−1,ε

M
i ). (6)

(Tk is a random variable with the interpretation of “work × squared error.”) If we assume that the solver
that is being used to solve the master problem converges linearly, we can write the following “big Oh”
expression for wM(Xi−1,ε

M
i ), after exploiting a central limit theorem on the sequence of solutions {Xk}.

wM(Xi−1,ε
M
i ) = Op

(
1+

1
logs

log
εM

i

1/
√

ni−1 +1/
√

ni + εM
i−1

)
, (7)

where s > 0 is a constant that is related to the solver that is in use.
We now use (6) and (7) to make a statement on the behavior of the sequence of random variables {Tk}

through Proposition 4.
Proposition 4 Suppose {εS

i } and {εM
i } are Op(n

−q
i ) and Op(n−r

i ) respectively, where q,r > 0.

(a) If q < 1/2 or r < 1/2, then Tk/ lognk
p→∞.

(b) If q≥ 1/2 and r ≥ 1/2, then Tk/ lognk = Op(1).

Proof Sketch of (a). We see that if q < 1/2, then

wM(Xi−1,ε
M
i ) = Op

(
1+

1
logs

log
εM

i

1/
√

ni−1 +1/
√

ni + εM
i−1

)
= Op(1). (8)

Also, if q < 1/2 or r < 1/2,

ni‖ ˆ̂η∗(n,εS,εM)−η
∗‖2 = niOp

(
(1/
√

ni + ε
M
i + ε

S
i )

2)
p→ ∞. (9)

Also,

Tk/ lognk ≥
1
ν

log(1/εS
k )

log(nk)
nk‖ ˆ̂η∗(n,εS,εM)−η

∗‖2wM(Xk−1,ε
M
i ). (10)

Now use (8), (9), and (10) to conclude that the assertion in (a) holds.

3 CONCLUDING REMARKS

The recent paper Zhao (2001) incorporates interior-point methods within a sample-average approximation
framework for solving two-stage stochastic LPs. We believe that this is an important step in the direction
of reliably solving large-scale two-stage stochastic LPs — an important class of simulation optimization
problems. In this paper, we have attempted to extend Zhao’s framework by incorporating it into a refinement
of sample-average approximation called retrospective approximation. In the resulting framework, a sequence
of convex approximations to the original two-stage stochastic LP are generated and solved using a user-
specified interior point method.
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The strength of the proposed framework is that it is implementable. This is primarily owing to its
generality (the framework does not assume that the support of the underlying random variables is finite), its
use of a progressive sequence of approximate problems (instead of using a single approximation involving
a potentially enormous sample size), and its explicit incorporation of interior-point methods, which are
amongst the favored techniques for solving large-scale convex programs. We emphasize that neither the
individual elements in the proposed paradigm nor the type of analysis performed in the paper are new
— they have appeared in various forms and in more generality in some of the references that have been
cited. However, “putting together” these individual methodological elements within the important specific
context of two-stage stochastic has seemed particularly worthwhile to us.
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