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ABSTRACT

Random search algorithms are often used to solve optimization-via-simulation (OvS) problems. The most
critical component of a random search algorithm is the sampling distribution that is used to guide the
allocation of the search effort. A good sampling distribution can balance the tradeoff between the effort
used in searching around the current best solution (which is called exploitation) and the effort used in
searching largely unknown regions (which is called exploration). However, most of the random search
algorithms for OvS problems have difficulties in balancing this tradeoff in a seamless way. In this paper
we propose a new random search algorithm, called the Gaussian Process-based Search (GPS) algorithm,
which derives a sampling distribution from a fast fitted Gaussian process in each iteration of the algorithm.
We show that the sampling distribution has the desired properties and it can automatically balance the
exploitation and exploration tradeoff.

1 INTRODUCTION

Many globally convergent random search algorithms have been proposed to solve optimization-via-simulation
(OvS) problems, e.g., stochastic ruler of Yan and Mukai (1992), nested partition of Shi and Ólafsson (2000),
model reference method of Hu et al. (2007, 2008), and the shrinking ball method of Andradóttir and Prudius
(2010). In every iteration of these algorithms, a sampling distribution needs to be constructed based on all
the information collected through the last iteration and it is used to guide the search effort in the current
iteration.

To achieve fast global convergence, these algorithms have to balance the search effort in the current
local neighborhood and in the unknown regions. This is known as the exploitation and exploration tradeoff.
Exploitation refers to the search around current solution. Because there are often better solutions near the

4139978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Sun, Hong, and Hu

current solution, the exploitative search often has a high chance to find better solutions. Exploration refers
to the search in the entire feasible region. Because there may be regions that are significantly better than
the regions searched so far, explorative search may identify those regions to save the search effort the
algorithm may otherwise spend on searching the inferior region. Therefore, how to balance the exploitation
and exploration is a critical issue in designing globally convergent random search algorithms.

In this paper we propose a new approach to constructing sampling distributions. In each iteration of
a random search algorithm, our approach first constructs a Gaussian process passing through the sample
mean of previously visited points and takes into consideration the estimation errors. Based on the Gaussian
process, it calculates the probability of any solution better than the current best solution and normalizes these
probabilities into a sampling distribution. We show that the sampling distribution automatically balances
the tradeoff between exploitation and exploration.

We also design two OvS algorithms based on the sampling distribution proposed in this paper. One
algorithm is designed to solve deterministic continuous OvS problems and the other is designed to solve
stochastic discrete OvS problems. We call these algorithms Gaussian Process-based Search (GPS). We
show that the GPS algorithms are globally convergent for respective problems.

The rest of this paper is organized as follows. In Section 2, we discuss the desired properties of a
sampling distribution and illustrate our idea through a simple one-dimensional example. In Section 3, we
propose a novel way to build sampling distribution based on Gaussian process and discuss how to sample
from it. In Section 4, we give Gaussian process-based search algorithms for both deterministic continuous
and stochastic discrete problems. The results of the numerical study are given in Section 5.

2 DESIRED PROPERTIES OF SAMPLING DISTRIBUTIONS

In this paper, we are interested in solving deterministic continuous optimization problems and stochastic
discrete optimization problems which have the following form

max
x∈Q

g(x) (1)

where Q is either a finite discrete set or a compact continuous set and the closed-form expression of g(x) is
not available. Let Q∗ be the set of optimal solutions, g∗ be the maximal value of g on Q and M be the lower
bound of g on Q. Note that Q is either a finite discrete set or a compact continuous set. It is not difficult
to show that there exists M ≤ g(x)< ¥ for any x ∈ Q and there exists at least one point x∗ ∈ Q such that
g(x∗) = g∗. For any x ∈ Q, if g(x) could only be estimated with noise, we further assume g(x) = E [G(x)],
where G(x) is a measurable and integrable for all x ∈ Q.

Random search algorithms are often used to solve Problem (1). In each iteration of a random search
algorithm, a sampling distribution needs to be constructed and new solutions are sampled based on this
distribution. Selection of a proper sampling distribution is central to the tradeoff between exploration and
exploitation and is critical to the performance of the algorithm. In this section, we discuss the desired
properties of sampling distributions through a simple deterministic example. We then illustrate our idea of
constructing a proper sampling distribution using this example.

2.1 Desired Properties of Sampling Distribution

Suppose that we want to solve a one-dimensional optimization problem whose objective function g(x) can
be evaluated without noise. In the current iteration of a random search algorithm, we have evaluated six
points, x1, · · · ,x6, as shown in Figure 1. Based on the given information, how should the sampling effort
be allocated?

For clearer illustration, we divide the feasible region into five subregions, denoted as R1, . . . ,R5. We
believe that a reasonable sampling distribution for this example should have at least the following properties:
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Figure 1: Function values of f at some points.

• allocating more probabilities to points in R2 because it is likely to find better solutions around the
current best solution,

• allocating more probabilities to R1 than to R3 even though the evaluated solutions in these two
regions have the same objective value because R1 is less explored,

• allocating more probabilities to R5 than R4 because R5 is more likely to contain better solutions.

Although all these properties make sense, to the best of our knowledge, none of the existing random
search algorithms have constructed a sampling distribution that satisfies all these properties. In the rest of
this section, we show how to construct a sampling distribution that satisfies all these properties.

2.2 Idea of Building Sampling Distribution

Suppose that g(x) is a sample path of a Brownian motion process Y (x) starting from time −¥. Note
that we know that the Brownian motion process passes through (x1,g(x1)), · · · ,(x6,g(x6)). This limits the
possibilities that the sample path may take (Figure 2). Given this limit, we can derive the mean and variance
of all the points in the feasible region (Figure 3) based on the properties of a Brownian motion process.
Then, we can further calculate the probability that each point has a value that is better than the current
best solution, i.e., P(Y (x)> g∗k−1).

g(x)

R1 R2 R3 R4 R5

5

4

3

2

1

0

Figure 2: Brownian motion processes passing through x1, · · · ,x6.

We normalize these probabilities and use it as a sampling distribution. From Figure 4, it is clear that
this sampling distribution satisfies all the desired properties discussed in Section 2.1.

To apply the idea to multi-dimensional OvS problems, we need to consider the following issues:

• how to extend the one-dimensional Brownian motion process to a stochastic process that allows
multiple inputs and only one output,

• how to handle the possible noise in the estimation of objective values, and
• how to sample efficiently from the sampling distribution.
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Figure 3: Mean and variance of the Brownian motion process.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Pr[Y(x)>4]

Figure 4: P(Y (x)> g∗k−1) under the Brownian motion process.

We will discuss all these issues in Section 3 and discuss how to design OvS algorithms based on the
sampling distribution in Section 4.

3 GAUSSIAN PROCESS-BASED SAMPLING DISTRIBUTION

In the previous section, we use a simple one dimension example to illustrate our idea of constructing a
balanced sampling distribution. In this section, similar idea is extended to higher dimensional problems.
We first discuss how to fit response surface and construct sampling distribution based on traditional kriging
metamodeling and discuss the limitations of applying kriging idea. We then propose a novel approach
which is more suitable for constructing response surface and sampling distribution.

3.1 Kriging-based Search

In kriging metamodeling, it is usually assumed that a stochastic output on replication j at point x is

G j(x) = u+M(x)+ e j(x), (2)

where u is a constant, M(x) is a Gaussian process with mean 0 and stationary covariance function s2g(·, ·),
and e(x) is a normal random variable that has zero mean, variance s2

e (x) and covariance Cov(e(x),e(x′)) = 0
for any x 6= x′. If we have taken ni, i = 1, · · · ,n replications at point xi with sample mean Ḡ(xi). Ankenman
et al. (2010) show that the IMSE-optimal linear predictor of g at x0 is

ĝ(x0) = u+l (x0)
T(Ḡ−u1),
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with Ḡ= (Ḡ(x1), . . . , Ḡ(xn))
T and

l (x0)
T = g(x0)

T
(

G+
1

s2 Se

)−1

,

where g(x0) denotes the vector of coefficient (g(x0,x1), . . . ,g(x0,xn))
T, G denotes the n× n coefficient

matrix whose (i, j)-th element is g(xi,x j), the (i, i)-th element of Se is s2
e /ni whereas the other elements

are all 0. The optimal MSE is

MSE(x0) = s2

(

1− g(x0)
T
(

G+
1

s2 Se

)−1

g(x0)

)

.

Remark 1 In kriging metamodeling, we assume g(x) is a sample path of the Gaussian process u+M(x).
If g(x) can be observed without noise, by setting s2

e (x)≡ 0 this degenerates to the deterministic kriging
model.

Based on the kriging model, we know the predicted value of g(x0) is normally distributed with mean
ĝ(x0) and variance MSE(x0) for every x0 ∈ Q. Denote the predicted value of g(x0) as Y (x0). For any
z ∈R, p(z) = Pr{Y (x0)> z} can be calculated by normal distribution function. Let z = ĝ∗k−1 := Ḡk−1(x∗k−1).
Then, p(z) represents the probability that x0 has a higher objective function value than the current optimal
solution. Intuitively, the higher the p(z), the more sampling effort should be allocated for x0. The sampling
distribution is constructed based on this intuitive idea. We set fk(x), the probability density (mass) function
of sampling distribution at iteration k as

fk(x) =
Pr
{

Y (x)> ĝ∗k−1

}

∫

Q
Pr
{

Y (z)> ĝ∗k−1

}

dz
. (3)

There are several difficulties when applying this sampling distribution function. First, in each iteration
we need to invert an n×n matrix (G+ 1

s2 Se ). If the number of visited points is large, it is time-consuming to
invert this matrix. Moreover, if points are very close to each other, inverting the matrix may be impossible
because the matrix is not full-rank. Second, it will be time consuming and sometimes even impossible to
calculate the closed form of fk(x) because the denominator of the right side of (3) is an integration.

Kriging is originally used for surface fitting, based on the known points on the surface. The parameters
of the Gaussian process is first estimated by statistical methods such as MLE (Maximum Likelihood
Estimation) and then a response surface is constructed on conditional probability. The matrix G+ 1

s2 Se
needs to be inverted for only one time, its dimension is usually not very high, and points in most cases
scatter in the whole solution set. Therefore, it will not be difficult to invert the matrix. However, when we
apply kriging metamodeling for optimization, response surfaces need to be updated iteratively according
to the latest information, the dimension of G increases quickly and it is highly possible that G will be ill
conditioned because points will cluster in the good performance region. As has been mentioned in Jones et
al. (1998), applying kriging modeling directly in optimization will meet some difficulties when inverting
the matrix. In this paper, to overcome this difficulty, in the following subsection, we propose a new way
for building response surface to avoid the problem of inverting matrices.

3.2 Fast Construction of Gaussian Process

As in the preceding subsection, suppose we have evaluated the objective function on the set S =
{x1,x2, . . . ,xn}, and for any xi ∈ S, i = 1, · · · ,n, we have collected ni observations on xi with the mean
observation value Ḡ(xi) and sample variance ŝ2(xi) by the (k−1)th iteration.

We construct the following Gaussian process:

Yk(x) = Z(x)+l (x)T(ḠS−ZS)+l (x)TeS, (4)
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where ḠS = (Ḡ(x1), . . . , Ḡ(xn))
T, ZS = (Z(x1), . . . ,Z(xn))

T with Z(x) being a Gaussian process with mean 0
and covariance function s2g(·, ·), and eS = (e1, . . . ,en)

T where e1, . . . ,en are n independent normal random
variables with mean 0 and covariance matrix

Ŝe = diag

{

max
{

ŝ2(x1),s2
0

}

n1
, . . . ,

max
{

ŝ2(xn),s2
0

}

nn

}

.

We assume l (·) satisfies the following conditions:

i. ån
i=1 li(x) = 1;

ii. li(x)≥ 0 for any i = 1, . . . ,n;
iii. li(x j) = d (i, j) , where d (i, j) is an indicator function.

Remark 2 There are many choices of l (x) that satisfy the three conditions, e.g., li(x) =
|1−g(x,xi)|

−1

ån
j=1 |1−g(x,x j)|−1

or li(x) = e|1−g(x,xi)|
−1

ån
j=1 e|1−g(x,x j)|

−1 for any x 6= xi.

By simple mathematical calculation, we obtain the following property about Yk(x).

Proposition 1 For any x ∈ Q, E[Yk(x)] = l (x)T
ḠS, and

Var[Yk(x)] = s2 (1−2l (x)Tg(x)+l (x)TGl (x)
)

+l (x)TŜel (x)

where G denotes the coefficient matrix, g(x) denotes the coefficient vector. Specially, if x = xi, E[Yk(xi)] =
Ḡ(xi), Var[Yk(xi)] = max

{

ŝ2(xi),s2
0

}

/ni.

The sampling distribution has the same form as in (3).

Remark 3 If g can be observed without noise, then the variance at the estimated points is zero, g(x)
becomes a sample path of the following process

Yk(x) = Z(x)+l (x)T(ḠS−ZS).

Remark 4 In our model, we let Var[e(xi)] = Var[Yk(xi)] = max
{

ŝ2(xi),s2
0

}

/ni where s0 could be an arbi-
trarily small number, rather than Var[Y (xi)] = ŝ2(xi)/ni. This is because with finite number of observations,
it is impossible to decide whether Var[Yk(xi)] equals to 0 or not. For example, if Pr{Yk(xi) = 1}= 1−10−5

and Pr{Yk(xi) = 0} = 10−5, then it is highly possible that ŝ2(xi) = 0 with finite number of observations
though the true variance is not 0.

We directly construct a Gaussian process passing through the estimated points. The distribution of
unestimated points in our example is calculated by unconditional probability and therefore we avoid inverting
a high dimensional matrix.

In our model, E[Yk(x)] is the response surface based on the evaluated points. Numerical experiments
show that the newly built response surface still performs very well in surface fitting. The variance of Yk(x)
is a measure about uncertainty of surface fitting at the point. It consists of two parts, one representing the
uncertainty in surface fitting caused by the allocation of the visited points in the solution set and the other
representing the uncertainty caused by the estimation error at the visited points. For points in the regions
that have been densely evaluated, the first part will be small. Whereas for points in the regions that have
rarely been estimated, we can prove that the first part will be strictly larger than 0. This is identical to
our intuition that more points estimated in the region, less uncertainty in surface fitting. The second part
of Var[Yk(x)] is strictly larger than 0 for any point and it is largely affected by the estimation error of the
points close to it. This is also identical to our intuition that estimation error at a visited point will have
largest impact on surface fitting at points near to it.
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3.3 Sampling From the Sampling Distribution

The other problem is how to generate samples from fk(x) effectively. Note that

fk(x)≤ c ·
1

m(Q)
,

where m(Q) is the Lebesgue measure of Q and

c =
m(Q)

2
1

∫

Q Pr
{

Yk(z)> ĝ∗k−1

}

dz
.

We suggest using acceptance-rejection method to generate sample points. The detailed implementation of
the acceptance rejection method is as follows.

Generate x from fk(x) by acceptance rejection method

Step 1. Generate a sample Z uniformly in Q and U uniformly in (0,1).
Step 2. If U ≤ 2 ·Pr

{

Yk(Z)> ĝ∗k−1

}

, accept Z and set x = Z. Otherwise, go to Step 1.

The following proposition verifies the acceptance-rejection method. We omit its proof due to the space
limit.

Proposition 2 For any A ⊆ Q,

Pr{x ∈ A}=
∫

A
fk(z)dz

where x is generated by acceptance rejection method.

4 GAUSSIAN PROCESS-BASED SEARCH ALGORITHM

In this section, we will give algorithms for deterministic continuous optimization problems and stochastic
discrete optimization problems respectively.

4.1 GPS Algorithm for Deterministic Continuous Optimization Problems

We will now develop Gaussian process-based search algorithm for deterministic continuous optimization
problems. Let Q∗ be the set of optimal points of g on Q. First, we have the following assumption about
the problem.

Assumption 1 The set Q∗ is non-empty and for any e > 0, there exists B(de) = {x ∈ Q : |x− x∗| <
de for some x∗ ∈ Q∗}, such that minx∈B(de ) g(x)> g∗− e and B(de) has a positive Lebesgue measure.

The GPS algorithm for deterministic continuous optimization problems is as follows.

Gaussian Process-based Search (GPS) Algorithm for Deterministic Continuous Optimization

Step 0. Set iteration count k = 0. Generate x0,1, . . . ,x0,s uniformly from Q and set S0 = {x0,1, . . . ,x0,s}.
Step 1. Evaluate g(x) at xk,1, . . . ,xk,s. Find out g∗k = maxx∈Sk g(x) and update fk+1(x) where

fk+1(x) =
Pr
{

Yk+1(x)> g∗k
}

∫

z∈Q Pr
{

Yk+1(z)> g∗k
}

dz
.

Step 2. Set k = k+ 1. Independent of everything else, sample xk,1, . . . ,xk,s independently from fk(x).
Let Sk = Sk−1 ∪{xk,1, . . . ,xk,s}. Go to Step 1.
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To ensure the convergence of the GPS algorithm, we need the following conditions about the covariance
function.

Condition 1: Conditions on correlation function
For any x1,x2 ∈ Q, the correlation function of the Gaussian process Z(x) in (4) satisfies the following
condition: g(x1,x2) = h(|x1 − x2|) ≥ 0 where h(·) is a decreasing function with respect to its variable on
R
+, and for any x0,x1,x2 ∈ Q, h(|x1 − x2|)≥ h(|x0 − x1|) ·h(|x0 − x2|).

Remark 5 The correlation function in kriging metamodeling satisfies Condition 1 in most cases. For
example, the exponential correlation function h(x) = exp(−q |x|) with q > 0 and Gaussian correlation
function h(x) = exp(−qx2) with q > 0 satisfy the condition.

Theorem 1 Suppose Condition 1 and Assumption 1 are satisfied. Then for any e > 0,

lim
k→¥

Pr{|g∗k −g∗|> e}= 0,

where g∗k is generated by the GPS algorithm.

4.2 GPS Algorithm for Stochastic Discrete Optimization Problems

We will now develop the GPS algorithm for stochastic discrete optimization problems. At the very beginning,
we have the following assumptions about G(x).

Let Gi(x) denote the ith observation of G(x) on x. We make the following assumption about G(x).

Assumption 2 For any e > 0, there exists a positive number n∗ such that for all n ≥ n∗,

sup
x∈Q

Pr

{∣

∣

∣

∣

∣

1
n

n

å
i=1

Gi(x)−g(x)

∣

∣

∣

∣

∣

≥ e

}

≤ y(n,e),

where y(n,e) is a non-increasing function of n and e . Moreover, y(n,e)→ 0 as n → ¥ for any fixed
e > 0, y(n,e)→ 0 as e → ¥ for any fixed n > 0.

A similar assumption is also used by Hong and Nelson (2006) to analyze the convergence of their
algorithm for discrete OvS problems. If Gi(x), i = 1,2, . . . , are independent and identically distributed, and
there exist p > 2, C1 > 0 and C2 > 0 such that C1 < E [|G(x)− f (x)|p]<C2, then by Markov’s inequality,
for any e > 0

Pr

{∣

∣

∣

∣

∣

1
n

n

å
i=1

Gi(x)−g(x)

∣

∣

∣

∣

∣

> e

}

<
E [|ån

i=1 (Gi(x)−g(x)) |p]
(ne)p .

By Rosenthal’s inequality,

E

[∣

∣

∣

∣

∣

n

å
i=1

(Gi(x)−g(x))

∣

∣

∣

∣

∣

p]

<Cp max
{

nE [|G(x)−g(x)|p] ,(nVar[G(x)])p/2
}

.

When n is large enough, we have

(nVar[G(x)])p/2 > (nC1)
p/2 > nC2 > nE[|G(x)−g(x)|p].

Therefore, when n is large enough

Pr

{∣

∣

∣

∣

∣

1
n

n

å
i=1

Gi(x)−g(x)

∣

∣

∣

∣

∣

> e

}

<Cp
(Var [G(x)])p/2

np/2e p
<

C

np/2e p
, (5)
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for some C > 0. Therefore, Assumption 2 is satisfied.
The GPS algorithm for stochastic discrete optimization problems is as follows.

Gaussian Process-based Search (GPS) Algorithm for Stochastic Discrete Optimization Problems

Step 0. Set iteration count k = 0.
Generate x0,1, . . . ,x0,s uniformly from Q and set S0 = {x0,1, . . . ,x0,s}.
Independent of everything else, take m0 observations on x0,i, i = 1, . . . ,s.
Set N0(x0,i) = m0 for x ∈ S0 and N0(x) = 0 for all other points.
Calculate Ḡ0(x0,i) =

1
m0

åm0
j=1 G j(x0,i), i = 1, . . . ,s and set Ḡ0(x) =−¥ for all other points.

Find out x∗0 and ĝ∗0.

Step 1. Let k = k+1.
Construct

fk(x) =
Pr
{

Yk(x)> ĝ∗k−1

}

∫

z∈Q Pr
{

Yk(z)> ĝ∗k−1

}

dz
.

Independent of everything else, sample xk,1, . . . ,xk,s independently from fk(x). Set Sk = Sk−1 ∪
{xk,1, . . . ,xk,s}.

Step 2. Independent of everything else, take mk observations on xk,1, . . . ,xk,s and x∗k−1.

Set Nk(x) = Nk−1(x)+mk and update Ḡk(x) =
Nk−1(x)Ḡk−1(x)+å

mk
j=1 G j(x)

Nk(x)
, for x = xk,1, . . . ,xk,s and x∗k−1.

Find out x∗k and ĝ∗k .
Go to Step 1.

To guarantee that the algorithm will converge to the global optimal solutions. We need the following
condition about the sampling allocation rule (SAR).

Condition 2: Conditions on SAR
The sequence {mk} satisfies the following conditions:

i. For any e > 0, å¥
k=1 y(mk,e)< ¥.

ii. mk is strictly increasing function of k.

Remark 6 If Gi(x) are i.i.d observations at x and the pth moment (p > 2) of G(x) exist. By letting
mk = dk2/p′e for any p′ < p, Condition 2 is satisfied.

The following theorem shows the global convergence of the GPS algorithm. Recall that if Nk(x) = 0,
we have defined Ḡk(x) = −¥. Following this convention we define |Ḡk(x)− g(x)| = ¥ for any x with
Nk(x) = 0.

Theorem 2 Suppose Assumption 2 and Conditions 1 and 2 are satisfied. Then for any e > 0,

lim
k→¥

Pr{|ĝ∗k −g∗|> e}= 0

where
{

g∗k
}

is generated by the GPS algorithm.

5 NUMERICAL EXAMPLES

In this section, we apply the GPS algorithm to a function that has 25 local optima. Let the OvS problem be

maxg(x1,x2), 0 ≤ x1,x2 ≤ 100,

where g(x1,x2) = 10 · sin6(0.05px1)

2
2

(

x1−90
80

)2 +10 · sin6(0.05px2)

2
2

(

x2−90
80

)2 .
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Figure 5: Function g(x1,x2).

A similar example is also used by Xu et al. (2010). Note that g has 25 local optima with a global optimum
g(90,90) = 20. The second best value of g is 19.17 at (90,70) and (70,90) (see Figure 5). Without knowing
the closed form, this problem is difficult to solve because it has 25 local optima and the difference between
the values of the best and second best solutions is quite small.

We apply the GPS algorithm for deterministic optimization to solve this problem. For the algorithm,

we set s2 = 25, gi(x) = e−‖x−xi‖
2

and li(x) =
‖x−xi‖

−2

ån
j=1 ‖x−x j‖−2 where ‖x− y‖ denotes the Euclidean distance.

The left panel of Figure 6 shows the 30 sample paths of GPS algorithm with a total sample size of 1000. We
can see that the performance of the GPS algorithm is very satisfactory. To compare the GPS algorithm with
other algorithms, we also use simulated annealing and pure random search algorithm to find the optimal
value of g. The right panel of Figure 6 shows the average performances of the GPS algorithm, the simulated
annealing algorithm and the pure random search algorithm over 30 sample paths. The simulated annealing
algorithm we used from Ghate and Smith (2008) has a constant temperature of 0.1 and a set of neighborhood
whose maximal distance in each dimension is smaller than 1. We can see that the performance of the GPS
algorithm is much better than both the simulated annealing and the random search algorithms.
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To illustrate the performance of the GPS algorithm more clearly, Figure 7 shows the fitting surface,
variance surface, un-normalized probability density function and the sampled points of GPS algorithm
for 200, 500 and 1000 sampled points. Comparing these figures, we can see that the GPS algorithm can
automatically balance exploitation and exploration very well. Within 200 iterations, GPS algorithm can
identify both the promising regions and un-promising regions. As the number of points increases, the
response surface gets closer to the true surface and the sampling distribution focuses more on the region
that contains the global optimum.

Figure 7: Mean surface, variance surface, un-normalized probability density function and sampled points
of GPS algorithm based on 200, 500 and 1000 points.
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