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ABSTRACT

We consider the solution of monotone stochastic variational inequalities and present an adaptive steplength
stochastic approximation framework with possibly multivalued mappings. Traditional implementations of
SA have been characterized by two challenges. First, convergence of standard SA schemes requires a strongly
or strictly monotone single-valued mapping, a requirement that is rarely met. Second, while convergence
requires that the steplength sequences need to satisfy ∑k γk = ∞ and ∑k γ2

k < ∞, little guidance is provided
on a choice of sequences. In fact, standard choices such as γk = 1/k may often perform poorly in practice.
Motivated by the minimization of a suitable error bound, a recursive rule for prescribing steplengths is
proposed for strongly monotone problems. By introducing a regularization sequence, extensions to merely
monotone regimes are proposed. Finally, an iterative smoothing extension is suggested for accommodating
multivalued mappings. Preliminary numerical results suggest that the schemes prove effective.

1 INTRODUCTION

In this paper, we consider the solution of a monotone stochastic variational inequality, denoted by VI(X ,F),
where X ⊆Rn is a closed and convex set, the ith component of F : X→Rn is defined as Fi(x), E[ fi(x;ξ )]
and f : Rn×Rd → Rn. Note that ξ is a random variable with ξ : Ω→ Rd and the associated probability
space is denoted by (Ω,F ,P). A solution of VI(X ,F) is denoted by x∗ where x∗ ∈ SOL(X ,F), the solution
set of VI(X ,F), if (x−x∗)T F(x∗)≥ 0 for all x ∈ X . It may be recalled that the mapping F(x) is monotone
over X if (F(x)−F(y))T (x− y)≥ 0 for all x,y ∈ X .

Variational inequalities (cf. Facchinei and Pang 2003) are a broad class of objects that allows for
capturing the set of solutions to convex optimization problems as well as noncooperative Nash games over
continuous strategy sets. Stochastic variational inequalities are a relatively less studied class of problems
and our interest lies in extensions in which the mapping F comprises of expectations in its components,
as examined by Jiang and Xu (2008) and Ravat and Shanbhag (2011). Given that the components of
F(x) contains expectations, standard approaches for solving variational inequalities (cf. Facchinei and
Pang 2003) cannot be leveraged since this necessitates having analytical expressions for the expectations.
Instead, we turn to a simulation-based approach for obtaining solutions. Jiang and Xu (2008) appear to be
amongst the first to have analyzed such schemes in the context of strongly monotone stochastic variational
inequalities. Extensions to merely monotone regimes have been recently provided by Koshal et al. (2010)
where Tikhonov regularization and proximal-point schemes are overlaid on standard SA techniques.

One of the motivations for the present work lies in the lack of guidance in choosing steplength sequences;
notably, certain choices may lead to significant degradation in performance. Adaptive steplength stochastic
approximation procedures have been studied extensively since the earliest work by Robbins and Monro
(1951). Subsequently, Kesten (1958) suggested a sequence that adapts to the observed data. Subsequently,
under suitable conditions, Sacks (1958) proved that a choice of the form a/k is optimal from the standpoint
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of minimizing the asymptotic variance. Yet, the challenge lies in estimating the “optimal” a. Subsequently,
Venter (1967) in what is possibly amongst the first adaptive steplength SA schemes, considered sequences
of the form ak/k where ak is updated by leveraging past information. Averaging techniques were applied
by Polyak and Juditsky (1992). More recently, Broadie et al. (2011) consider an adaptive Kiefer-Wolfowitz
(KW) SA algorithm and derive upper bounds on its mean-squared error.

Yousefian, Nedić, and Shanbhag (2011) presented two adaptive steplength SA schemes for strongly
convex programs, both of which produce a sequence of iterates guaranteed to converge almost surely to
the true solution. Of these, the first relies on minimizing the upper bound on the error at every step; in fact,
such a minimization leads to a recursive rule for updating steplengths and the scheme is referred to as a
recursive SA (or RSA) scheme. The second scheme introduces regular reductions in the steplength when
a suitable error criterion is satisfied and the associated scheme is referred to as a cascading SA scheme
(or CSA) scheme. A random local smoothing approach is employed for accommodating the approximate
solution of nonsmooth stochastic convex programs. In this paper, we revisit our RSA scheme with the
intent of introducing three key generalizations: (i) First, we extend the regime of applicability of the
RSA scheme to strongly monotone stochastic VIs; (ii) Second, we overlay a regularization scheme that
facilitates addressing merely monotone stochastic VIs; and (iii) Third, we introduce a smoothing parameter
that allows for solving problems with strongly monotone but multivalued maps. The remainder of the
paper is organized as follows. In Section 2, we introduce a regularized recursive steplength stochastic
approximation scheme for monotone stochastic VIs. We show that this algorithm produces iterates that
converge in expectation to the solution. In Section 3, we introduce an iterative smoothing generalization
of the recursive scheme. Finally, in Section 4, we present some preliminary numerical results and provide
some concluding remarks in Section 5.

2 A REGULARIZED RECURSIVE STEPLENGTH STOCHASTIC APPROXIMATION SCHEME

In Section 2.1, we introduce a regularized SA scheme, akin to that developed by Koshal, Nedić, and
Shanbhag (2010). By introducing a recursive rule for updating the steplengths, we present the regularized
recursive SA scheme or RRSA scheme in Section 2.2.

2.1 A Regularized Stochastic Approximation scheme

Consider a regularized stochastic approximation scheme of the form:

xk+1 = ΠX (xk− γk(F(xk)+ηkxk +wk)) for all k ≥ 0,

wk = f (xk,ξk)−F(xk),
(1)

where {γk} is the stepsize sequence, {ηk} is a nonnegative sequence, and x0 ∈ X is a random initial vector
that is independent of the random variable ξ and such that E

[
‖x0‖2

]
< ∞. We make the following two

assumptions through our analysis, of which the first pertains to problem parameters and errors and the
second to the algorithm parameters (steplength and regularization) sequences.
Assumption 1
(a) The sets X ⊂ Rn are closed and convex; (b) F(x) is Lipschitz with constant L over the set X .
(c) The stochastic errors wk satisfy ∑

∞
k=0 γ2

kE
[
‖wk‖2 |Fk

]
< ∞ almost surely.

Assumption 2 Let the following hold:

(a) 0 < γk <
ηk

2(ηk+L)2 for all k ≥ 0; (b) limk→∞ ηk = 0;

(c) ∑
∞
k=0 γkηk = ∞; (d) ∑

∞
k=0

(ηk−1−ηk)
2

η2
k

(1+ 1
γkηk

)< ∞;

(e) limk→∞
(ηk−1−ηk)

2

η3
k γk

(1+ 1
γkηk

) = 0; (f) limk→∞
γk
ηk
E
[
‖wk‖2 |Fk

]
= 0.

We also make use Lemma 11, Pg. 50 from the monograph by Polyak (1987).
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Lemma 1 Let {vk} be a sequence of nonnegative random variables, where E[v0] < ∞, and let {αk} and
{βk} be deterministic scalar sequences such that:

E[vk+1|v0, . . . ,vk]≤ (1−αk)vk +βk a.s for all k ≥ 0,

0≤ αk ≤ 1, βk ≥ 0,
∞

∑
k=0

αk = ∞,
∞

∑
k=0

βk < ∞, lim
k→∞

βk

αk
= 0.

Then, vk→ 0 almost surely.
We let Fk denote the history of the method up to time k, i.e., Fk = {x0,ξ0,ξ1, . . . ,ξk−1} for k≥ 1 and

F0 = {x0}. The following Lemma is a combined result of Lemma 3 and Proposition 1 from Koshal et al.
(2010).
Lemma 2 Assume that SOL(X ,F) is nonempty and X ∈ Rn be closed and convex. Furthermore, let the
map F : X →Rn be continuous and monotone over X . Consider the Tikhonov sequence {yk} for VI(X ,F),
i.e., {yk} is the sequence of exact solution to VI(X ,F +ηkI), k ≥ 0, with ηk > 0 for all k. Then

(a) For all k ≥ 1 we have

‖yk− yk−1‖ ≤My
|ηk−1−ηk|

ηk
, (2)

where My is a norm bound on the Tikhonov sequence, i.e., ‖yk‖ ≤My for all k ≥ 0.
(b) For all k ≥ 1 we have

E
[
‖xk+1− yk‖2 |Fk

]
≤ qk(1+ γkηk)‖xk− yk−1‖2

+qkMy
(ηk−1−ηk)

2

η2
k

(1+
1

γkηk
)+ γ

2
kE
[
‖wk‖2 |Fk

]
, (3)

where qk = 1−2γkηk + γ2
k (ηk +L)2.

In the remainder of this subsection, we prove convergence of Tikhonov algorithm under weaker
assumptions than shown by Koshal et al. (2010). More specifically, we weaken the assumptions
limk→∞

γk
ηk
(ηk +L)2 = 0 and limk→∞ γkηk = 0 by part (a) of Assumption 2.

Proposition 1 Let Assumptions 1 and 2 hold. Also, assume that SOL(X ,F) is nonempty. Then, the
sequence {xk} generated by iterative Tikhonov scheme (2) converges to the least-norm solution x∗ of
VI(X ,F) almost surely and for k ≥ 1 we have

E
[
‖xk+1− yk‖2 |Fk

]
≤ (1− ηk

2
γk)‖xk− yk−1‖2 +qkM2

y
(ηk−1−ηk)

2

η2
k

(1+
1

γkηk
)+ γ

2
kE
[
‖wk‖2 |Fk

]
, (4)

where qk = 1−2γkηk + γ2
k (ηk +L)2.

Proof. From Lemma 2, we have

E
[
‖xk+1− yk‖2 |Fk

]
≤ qk(1+ γkηk)‖xk− yk−1‖2 +qkMy

(ηk−1−ηk)
2

η2
k

(1+
1

γkηk
)+ γ

2
kE
[
‖wk‖2 |Fk

]
.

Next, we estimate the coefficient qk(1+ηkγk). From part (a) of Assumption 2 for k ≥ 0 we have

(ηk +L)2

ηk
γk <

1
2
< 2⇒−2ηkγk + γ

2
k (ηk +L)2 < 0⇒ qk < 1.
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Therefore, using this and the definition of qk we obtain

qk(1+ηkγk) = qk +ηkγkqk < qk +ηkγk = 1−ηkγk + γ
2
k (ηk +L)2.

Obviously, when 0 < γk <
ηk

2(ηk+L)2 , we have

1−ηkγk + γ
2
k (ηk +L)2 ≤ 1−uk,

where uk ,
ηk
2 γk. Therefore, we obtain

E
[
‖xk+1− yk‖2 |Fk

]
≤ (1− ηk

2
γk)‖xk− yk−1‖2 +qkMy

(ηk−1−ηk)
2

η2
k

(1+
1

γkηk
)+ γ

2
kE
[
‖wk‖2 |Fk

]
. (5)

To claim the convergence of the sequence ‖xk+1−yk‖, we show that Lemma 1 applies to relation (5). Let
us define vk as

vk , qkM2
y
(ηk−1−ηk)

2

η2
k

(1+
1

γkηk
)+ γ

2
kE
[
‖wk‖2 |Fk

]
.

Therefore we have

E
[
‖xk+1− yk‖2 |Fk

]
≤ (1−uk)‖xk− yk−1‖2 + vk, for all k > K,

and it suffices to examine a shifted sequence. We need to verify that uk and vk satisfy the conditions of
Lemma 1 for k ≥ 0. Note that from part (a) of Assumption 2 for k ≥ 0, uk < 1 since for any L > 0, we
have 0 < γk <

ηk
2(ηk+L)2 < 2

ηk
. Assumption 2 (c) implies that ∑

∞
k=K uk = ∞. Next, we consider the ratio vk

uk

and observe that vk
uk
≥ 0 for k ≥ 0. We show that its upper bound converges to zero. Since 0 < qk < 1, the

ratio vk
uk

can be bounded as follows

vk

uk
≤ 2

ηkγk
M2

y
(ηk−1−ηk)

2

η2
k

(1+
1

γkηk
)+

2γ2
k

ηkγk
E
[
‖wk‖2 |Fk

]
= M2

y
2(ηk−1−ηk)

2

η3
k γk

(1+
1

γkηk
)+

2γk

ηk
E
[
‖wk‖2 |Fk

]
. (6)

By Assumption 2 (e) and (f), the above two terms converge to zero, implying that limk→∞
vk
uk
= 0. Finally,

by Assumption 1 (c) and Assumption 2 (d), ∑
∞
k=K vk < ∞. It follows from Lemma 1 that ‖xk− yk−1‖

converges to zero almost surely. This and the fact that Tikhonov sequence converges to the least-norm
solution x∗ of VI(X ,F) imply that xk→ x∗ almost surely.

Remark on choices of γk and ηk: While Assumption 2 appears rather difficult to satisfy, Koshal et al.
(2010), show that a stronger form of Assumption 2 is satisfied by γk = k−a and ηk = k−b with a+b < 1
and a > b. We conclude with a corollary that relies on the following assumption on the errors.
Assumption 3 The errors wk are such that for some ν > 0 E

[
‖wk‖2|Fk

]
≤ ν2 a.s. for all k ≥ 0.

The following corollary gives a parametric upper bound for the error; this result is applied to obtain
the recursive scheme in next part.
Corollary 1 Let Assumptions 1, 2, and 3 hold. Also, assume that SOL(X ,F) is nonempty. Then, the
sequence {xk} generated by iterative Tikhonov scheme (2) converges to the least-norm solution x∗ of
V I(X ,F) almost surely and for k ≥ 1 we have

E
[
‖xk+1− yk‖2]≤ (1− ηk

2
γk)E

[
‖xk− yk−1‖2]+qkM2

y
(ηk−1−ηk)

2

η2
k

(1+
1

γkηk
)+ γ

2
k ν

2,∀k ≥ 1, (7)

where qk = 1−2γkηk + γ2
k (ηk +Lk)

2.

Proof. The convergence result follows from Proposition 1 while (7) follows from (4) by taking expectations
and invoking Assumption 3.

4118



Yousefian, Nedić, and Shanbhag

2.2 A Regularized Recursive Steplength SA Scheme

A challenge associated with the implementation of diminishing steplength schemes lies in determining an
appropriate sequence {γk}. The key result of this section is the motivation and introduction of a scheme that
adaptively updates the steplength across successive iterations; such a rule is derived from the minimization
of a suitably defined error function at each step. Let us view the quantity E

[
‖xk+1− yk‖2

]
as an error,

denoted by ek+1, and arising from the use of the stepsize values γ0,γ1, . . . ,γk. Thus, in the worst case, the
error satisfies the following recursive relation for any k ≥ 1:

ek+1(γ1, . . . ,γk) = (1− ηk

2
γk)ek(γ1, . . . ,γk−1)+qkM2

y
(ηk−1−ηk)

2

η2
k

(1+
1

γkηk
)+ν

2
γ

2
k ,

where qk = 1−2γkηk +γ2
k (ηk +Lk)

2, e1 is a positive scalar, ηk is a positive regularization parameter and ν2

is the upper bound for the second moments of the error norms ‖wk‖. Then, it seems natural to investigate
if the stepsizes γ1,γ1 . . . ,γk can be selected so as to minimize the error ek+1. It turns out that this can indeed
be achieved at each iteration. Let us now define the following parameters:

Mk , M2
y
(ηk−1−ηk)

2

η2
k

, ak ,
ηk

2
, bk ,

Mk

ηk
, ck ,−Mk,

dk , Mk

(
(ηk +L)2

ηk
−2ηk

)
, fk , Mk(ηk +L)2 +ν

2. (8)

Then, (2.2) may be rewritten as follows for k ≥ 1:

ek(γ1, . . . ,γk−1) = (1−ak−1γk−1)ek−1(γ1, . . . ,γk−2)+
bk−1

γk−1
+ ck−1 +dk−1γk−1 + fk−1γ

2
k−1. (9)

The presentation of our recursive steplength scheme is significantly simplified by defining a function
Dk : R+→ R such that

Dk(t),
1
ak

(
−bk

t2 +dk +2 fkt
)
. (10)

Regularized recursive steplength SA (RRSA) scheme: For k≥ 1, given an e1 > 0, the RRSA scheme
generates a sequence {xk} where xk+1 is updated as per (1), {ηk} satisfies Assumption 2 and γk satisfies

D1(γ1)− e1 = 0, (11)

Dk+1(γk+1) = (1−akγk)Dk(γk)+
bk

γk
+ ck +dkγk + fkγk

2. (12)

For k ≥ 1, the above equations lead to a polynomial function of the third degree with respect to γk. We
assume that at each iterate, this equation has a positive real root denoted by γk. Furthermore, we often refer
to ek(γ1, . . . ,γk−1) by ek whenever this is unambiguous. In our main result of this subsection, we show
that the stepsizes γi, i = 1, . . . ,k−1, minimize the errors ek over the range that 0 < γk <

ηk
2(ηk+L)2 for k≥ 1,

where L is the Lipschitz constant associated with the mapping F(x).
Proposition 2 Let ek(γ1, . . . ,γk−1) be defined as in (2.2), where e1 > 0 is such that (11) has a real positive
root as γ∗1 , and we assume that for each k≥ 1, equation (12) has a real positive root as γ∗k . Let the sequence
{γ∗k } be given by (11)–(12). Suppose that the sequence {ηk}∞

k=0 is nonincreasing and fixed. Then, the
following hold:

(a) The error ek satisfies ek(γ
∗
1 , . . . ,γ

∗
k−1) =

2
ηk
(− bk

γ∗k
2 +dk +2 fkγ∗k ) for all k ≥ 1, where bk, dk, and fk

are defined in (8).
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(b) For each k ≥ 1, the vector (γ∗1 ,γ
∗
1 , . . . ,γ

∗
k ) minimizes ek+1(γ1, . . . ,γk) over the set

Gk ,

{
α ∈ Rk : 0 < α j <

η j

2(η j +L)2 for j = 1, . . . ,k
}
.

Additionally, for any k ≥ 2 and any (γ1, . . . ,γk−1) ∈Gk−1, we have

ek(γ1, . . . ,γk−1)− ek(γ
∗
1 , . . . ,γ

∗
k−1)≥

(
bk

γ∗k
2
γk

+ fk

)
(γk− γ

∗
k )

2 ≥ 0.

Proof. (a) We use induction on k to prove our result. Note that the result holds trivially for k = 1 from
(11) and definition of function D1. Next, assume that we have ek(γ

∗
1 , . . . ,γ

∗
k−1) =

1
ak
(− bk

γ∗k
+dk +2 fkγ∗k ) for

some k, and consider the case for k+1. By the definition of the error ek in (2.2), we have

ek+1(γ
∗
1 , . . . ,γ

∗
k ) = (1−akγ

∗
k )ek(γ

∗
1 , . . . ,γ

∗
k−1)+

bk

γ∗k
+ ck +dkγ

∗
k + fkγ

∗
k

2

= (1−akγ
∗
k )Dk(γ

∗
k )+

bk

γ∗k
+ ck +dkγ

∗
k + fkγ

∗
k

2

= Dk+1(γ
∗
k+1) =

1
ak+1

(− bk+1

γ∗k+1
2 +dk+1 +2 fk+1γ

∗
k+1),

where the second equality follows by the inductive hypothesis and definition of Dk in (10), the third
inequality follows by (12), and the last inequality follows by definition of Dk+1 in (10).
(b) We now show that (γ∗1 ,γ

∗
2 , . . . ,γ

∗
k−1) minimizes the error ek for all k ≥ 2. We again use mathematical

induction on k. By the definition of the error e2, we have

e2(γ1)− e2(γ
∗
1 ) = (1−a1γ1)e1 +

b1

γ1
+ c1 +d1γ1 + f1γ

2
1 − (1−a1γ

∗
1 )e1−

b1

γ∗1
− c1−d1γ

∗
1 − f1γ

∗
1

2.

Using (11) and definition of D1 in (10) we have

e2(γ1)− e2(γ
∗
1 ) = a1(γ

∗
1 − γ1)(

1
a1

)(−b1

γ∗1
+d1 +2 f1γ

∗
1 )+b1(

1
γ1
− 1

γ∗1
)+d1(γ1− γ

∗
1 )+ f1(γ

2
1 − γ

∗
1

2)

=−b1

γ∗1
+d1γ

∗
1 +2 f1γ

∗
1

2 +
b1

γ∗1
2 γ1−d1γ1−2 f1γ

∗
1 γ1 +b1(

1
γ1
− 1

γ∗1
)+d1(γ1− γ

∗
1 )+ f1(γ

2
1 − γ

∗
1

2)

= b1(1−
γ1

γ∗1
)(

1
γ1
− 1

γ∗1
)+ f1(γ

2
1 + γ

∗
1

2−2γ
∗
1 γ1) =

b1(γ
∗
1 − γ1)

2

γ∗1
2
γ1

+ f1(γ1− γ
∗
1 )

2 ≥ 0,

where the last inequality follows by positiveness of b1 and f1. Now suppose that ek(γ1, . . . ,γk−1) ≥
ek(γ

∗
1 , . . . ,γ

∗
k−1) holds for some k and any (γ1, . . . ,γk−1) ∈ Gk. We want to show that ek+1(γ1, . . . ,γk) ≥

ek+1(γ
∗
1 , . . . ,γ

∗
k ) holds as well for all (γ1, . . . ,γk) ∈Gk+1. To simplify the notation we use e∗k+1 to denote the

error ek+1 evaluated at (γ∗1 ,γ
∗
1 , . . . ,γ

∗
k ), and ek+1 when evaluating at an arbitrary vector (γ1,γ1, . . . ,γk)∈Gk+1.

Using (2.2) we have

ek+1− e∗k+1 = (1−akγk)ek +
bk

γk
+ ck +dkγk + fkγ

2
k − (1−akγ

∗
k )e
∗
k−

bk

γ∗k
− ck−dkγ

∗
k − fkγ

∗
k

2

≥ (1−akγk)e∗k +
bk

γk
+ ck +dkγk + fkγ

2
k − (1−akγ

∗
k )e
∗
k−

bk

γ∗k
− ck−dkγ

∗
k − fkγ

∗
k

2
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where the last inequality follows by the induction hypothesis and the observation that (1−akγk)> 0 from
the feasibility of the sequence {γ j}k

j=1 with respect to Gk. Using (12) and the definition of Dk in (10),

ek+1− e∗k+1 = ak(γ
∗
k − γk)(

1
ak
)(−bk

γ∗k
+dk +2 fkγ

∗
k )+bk(

1
γk
− 1

γ∗k
)+dk(γk− γ

∗
k )+ fk(γ

2
k − γ

∗
k

2)

=−bk

γ∗k
+dkγ

∗
k +2 fkγ

∗
k

2 +
bk

γ∗k
2 γk−dkγk−2 fkγ

∗
k γk +bk(

1
γk
− 1

γ∗k
)+dk(γk− γ

∗
k )+ fk(γ

2
k − γ

∗
k

2)

= bk(1−
γk

γ∗k
)(

1
γk
− 1

γ∗k
)+ fk(γ

2
k + γ

∗
k

2−2γ
∗
k γk) =

bk(γ
∗
k − γk)

2

γ∗k
2
γk

+ fk(γk− γ
∗
k )

2 ≥ 0,

where the last inequality follows by positiveness of bk and fk. Hence, we have ek(γ1, . . . ,γk−1)−
ek(γ

∗
1 , . . . ,γ

∗
k−1) ≥ ν2(γk − γ∗k )

2 for all k ≥ 2 and all (γ1, . . . ,γk−1) ∈ Gk. Therefore, for all k ≥ 2, the
vector (γ1, . . . ,γk−1) ∈Gk is a minimizer of the error ek.

2.3 Convergence of RRSA Scheme

In this part, we show that the RRSA scheme converges in expectation to the solution for a fixed choice of
regularization sequence by employing the following result proved by Koshal et al. (2010).
Proposition 3 Let Assumptions 1(a)-(b), and 3 hold and suppose that SOL(X ,F) is nonempty. Consider the
choice ηk = k−b and γk = k−a for all k, where a,b ∈ (0,1), a+b < 1, and a > b. Then, this choice satisfies
Assumptions 1(c), and 2 and the sequence {xk} generated by iterative Tikhonov scheme (2) converges to
the least-norm solution x∗ of VI(X ,F) almost surely.
Proposition 4 Let Assumptions 1(a)-(b), and 3 hold and suppose that SOL(X ,F) is nonempty. Consider
the choice ηk = k−b for all k, where b ∈ (0,1/2) and suppose that {γ∗k }∞

k=1 is given by the adaptive scheme
(11)-(12). Then, the sequence {xk} generated by iterative Tikhonov scheme (2) converges in expectation
to the least-norm solution x∗ of VI(X ,F).

Proof. Let γ̄k = k−a for all k, where a+b < 1 and b < a. Now suppose that {x̄k} is generated by the
iterative Tikhonov scheme (2) with {γ̄k} and {ηk}. Then from Lemma 3, Assumptions 1(c), and 2 are
satisfied by this choice of {ηk} and {γ̄k} and therefore by Proposition 1, E

[
‖x̄k+1− yk‖2

]
goes to zero

where {yk} is the sequence of exact solution to V I(X ,F +ηkI) for k ≥ 0. This implies that the upper
bound sequence defined by (2.2) goes to zero. Now, from Proposition 2(b), we know that for the sequence
{xk} generated by the iterative Tikhonov scheme (2) with {γ∗k } and {ηk} the following inequality holds
for k ≥ 0:

ek(γ1, . . . ,γk−1)− ek(γ
∗
1 , . . . ,γ

∗
k−1)≥ 0. (13)

Since E
[
‖x̄k+1− yk‖2

]
−E
[
‖xk+1− yk‖2

]
≥ 0 and by noting that E

[
‖x̄k+1− yk‖2

]
→ 0 when k goes to

infinity, we conclude that the sequence {xk} generated by the RRSA scheme converges in expectation to
the least-norm solution x∗ of VI(X ,F).

Remark on almost-sure convergence: It is worth noting that almost-sure convergence of the estimators
may be proved by showing that the sequence {γk} satisfies the requirements of Lemma 1. This requires a
deeper analysis of the roots and will not be pursued further, given the size restrictions of this paper.

3 AN ITERATIVE SMOOTHING RECURSIVE SA SCHEME

Yousefian, Nedić, and Shanbhag (2011) considered stochastic optimization problems with nonsmooth
integrands and inspired by Lakshmanan and Farias (2008), employed a random local smoothing of the
objective in constructing a stochastic approximation scheme. In fact, a more extensive study of the literature
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revealed that such smoothing techniques had been employed extensively in the past and were referred to as
Steklov-Sobolev smoothing techniques. Succinctly, such smoothing approaches led to an approximation
that was shown to admit Lipschitzian properties. In fact, the growth rate (with problem size) of the Lipschitz
constant associated with the gradient of the objective may be quantified under different types of smoothing
distributions, as derived by Yousefian, Nedić, and Shanbhag (2011) and Lakshmanan and Farias (2008).

In this section, we make two extensions to our earlier work. First, we extend the approach to address
stochastic variational inequalities which may arise from either stochastic optimization problems or Nash
games. Second, while our earlier approach obtained an approximate solution since a small, but fixed,
smoothing parameter was employed, we consider how this smoothing parameter may be reduced after
every iteration, leading to an iterative smoothing scheme, with the intent of obtaining the true solution.
For purposes of simplicity, we assume that the original mapping is strongly monotone, implying that there
is no need for employing a regularization term.

3.1 Nonsmooth Stochastic Optimization Problems and Nash games

We motivate our approach by considering a nonsmooth stochastic Nash game. Consider an N−player Nash
game in which the ith player solves the following problem, given x−i , (x j)i6= j∈{1,...,N}:

Ag(x−i) min
xi∈Xi

E[ fi(xi;x−i,ξ )] , (14)

where for i = 1, . . . ,N, Xi ⊆Rni is a closed and convex set, ∑
N
i=1 ni = n and fi : Rn×Ω→R is a continuous

convex function for all x−i ∈∏ j 6=i X j. Recall that a Nash equilibrium is given by a tuple {x∗i }N
i=1 such that x∗i

solves Ag(x∗−i) for i = 1, . . . ,N. Then the resulting Nash equilibrium is given by a solution to a multi-valued
variational inequality VI(X ,∂F) where X , ∏

N
i=1 Xi and ∂F(x), ∂xiE[ fi(x;ξ )] for i = 1, . . . ,N. Note that

if fi(x;ξ ) is differentiable in xi, given x−i, VI(X ,∂F) reduces to VI(X ,F) where F(x) = (∇xiE[ fi(x;ξ )])N
i=1

is a single-valued mapping. Clearly, if N = 1, then this game reduces to a stochastic optimization problem.

3.2 An Iterative Smoothing Extension of the RSA Scheme

Consider a smoothed approximation of the stochastic Nash game in which the ith player solves the following
smoothed problem:

min
xi∈Xi

E[E[ fi(xi + zi;x−i,ξ ) | ξ ]] , (15)

where the inner expectation is with respect to zi ∈ Rni , a random vector with a compact support. Then
z , (zi)

N
i=1 ∈Rn is an n−dimensional random vector with a probability distribution over the n-dimensional

ball centered at the origin and with radius ε . If f̂i is defined as f̂i , E{ fi(xi + zi;x−i;ξ ) | ξ}, then
F̂(x), (∇xi f̂i)

N
i=1. For the mapping F̂ to be well defined, we need to enlarge the underlying set X so that

the mapping F(x+ z) is defined for every x ∈ X . In particular, for a set X ⊆ Rn and ε > 0, we let Xε be
the set defined by Xε = {y | y = x+ z, x ∈ X , z ∈ Rn, ‖z‖ ≤ ε}. We employ a uniform distribution for
purposes of smoothing but a normal distribution may also work, as considered by Lakshmanan and Farias
(2008). However, distributions with finite support seem more appropriate for capturing local behavior of a
function, as well as to deal with the problems where the function itself has a restricted domain. Our choice
lends itself readily for computation of the resulting Lipschitz constant and for assessment of the growth
of the Lipschitz constant with the size of the problem. Suppose z ∈ Rn is a random vector with uniform
distribution over the n-dimensional ball centered at the origin and with a radius ε , i.e., z has the following
probability density function:

pu(z;ε) =


1

cnεn for ‖z‖ ≤ ε,

0 otherwise,
(16)
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Yousefian, Nedić, and Shanbhag

where cn =
π

n
2

Γ(n
2 +1)

and Γ is the gamma function given by

Γ

(n
2
+1
)
=


(n

2

)
! if n is even,

√
π

n!!
2(n+1)/2 if n is odd,

where !! is the double factorial symbol. We consider a stochastic approximation scheme in which the
parameter specifying the size of the support of the smoothing distribution is reduced after every iteration:

xk+1 = ΠX
(
xk− γk(F̂(xk)+wk)

)
for all k ≥ 0,

wk = sk− F̂(xk), where sk ∈
N

∏
i=1

∂xi fi(xi + zk
i ;x−i,ξ ),

where zk is drawn from a uniform distribution pu(z;εk) and εk → 0. In effect, the step computation is
modified by a randomness drawn from a uniform distribution with steadily decreasing support. While this
seems intuitive form the standpoint of recovering convergence, the rate at which εk is reduced remains
crucial from the standpoint of recovering convergence. Yousefian, Nedić, and Shanbhag (2011) derive
a growth property for the Lipschitz constant associated with the smoothed gradient of the optimization
problem; in particular, we show that the Lipschitz constant is of the form

‖F̂(x)− F̂(y)‖ ≤
(

κ
n!!

(n−1)!!
C
ε

)
‖x− y‖ for all x,y ∈ X ,

where κ = 2
π

if n is even and κ = 1 otherwise. Therefore, as ε→ 0, the Lipschitz constant grows to infinity.
Yet, if this growth rate is sufficiently small, one may recover almost-sure convergence. The crux of the proof
lies in showing that the recursive steplength rule is feasible with respect to the Lipschitz constants which
are growing in each step. More specifically, Gk requires that 0 < γ j <

η

2(η+L(ε j))2 for j = 1, . . . ,k. Under
this modified specification of Gk, the optimality of the steplength choices would need to be established.
Almost-sure convergence follows if this steplength sequence satisfies ∑k γ2

k < ∞ and ∑k γk = ∞; verifying
these requirements is a focus of ongoing research.

4 NUMERICAL RESULTS

In this section, we present some preliminary numerical results detailing the performance of the proposed
schemes. In Section 4.1, we consider a stochastic network utility problem and compare the performance of
the proposed RRSA scheme with an ITR scheme and a standard SA implementation with stepsizes given
by γk = 1/k. A sensitivity analysis is also conducted for different values of problem parameters in an effort
to gauge the stability of the performance of each scheme. Nonsmooth stochastic variational problems are
examined in Section 4.2 where an iterative smoothing counterpart of the RSA scheme is examined. Note
that the computational results were developed on Matlab 7.0 on a Linux OS. Furthermore, the true solutions
were computed by solving a sample-average approximation (SAA) problem.

4.1 A Stochastic Network Utility Problem

We consider a spatial network with n users competing over L1 links. Suppose the ith user’s utility function is
denoted by ξi log(1+xi). Additionally, a congestion cost is imposed on every user of the form c(x) = ‖Ax‖2

where A is defined as the adjacency matrix with binary elements that specifies the set of links traversed by
the traffic generated by a particular user. We assume that the user traffic rates are restricted by capacity
constraints ∑

n
i=1 Alixi ≤Cl for every link l where Cl is the aggregate traffic through link l. The resulting

equilibrium conditions are given by a stochastic monotone variational inequality.
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Employing the same starting point, we generate 100 replications for each scheme and compare the
average error norm with respect to the reference solution as computed from the solution of an SAA problem.
Figure 1 shows the trajectory of the mean error for the ITR, RRSA, and HSA schemes. Note that the
x−axis denotes the iteration number while the y−axis denotes the logarithm of the averaged error over a
100 replications. In other words, for a fixed problem and a fixed scheme, we run the simulation 100 times
and averaged the terms ‖xk− x∗‖ where x∗ is the solution of VI(X ,F) from solving an SAA problem and
1≤ k≤N. Here, we assume that C1 = (0.10,0.15,0.20,0.10,0.15,0.20,0.20,0.15,0.25) = 0.1C2 = 0.01C3
and x is constrained to be nonnegative. We also assume that ξi is a uniform random variable between
zero and β for any i where β is a positive parameter. Table 1 displays the 90% confidence intervals for
nine parameter settings, categorized into three groups. In the first group, the sensitivity of the results to
changing N is examined while the second and third groups investigate the impact of changing β and C.

Insights: We observe that the adaptive scheme performs favorably in comparison with the other two
schemes from several standpoints. From Figure 1, we observe that the RRSA scheme tends to perform
well across three different problem settings while the performance of a standard SA implementation is
characterized by tremendous variability. In fact, as seen in Figures 1a and 1b, the HSA scheme performs
poorly. It should be emphasized that the standard HSA scheme is not guaranteed to converge for merely
monotone variational problems but is often a de-facto choice in simulation-based optimization. Furthermore,
when HSA does outperform RRSA (as in Figure 1c), it does not contradict the optimality of adaptive
stepsizes since the HSA scheme is not part of the feasible set of sequences that RRSA is optimized over.
Table 1 shows the sensitivity of the three schemes to changes in parameters. One can immediately see
that the RRSA scheme produces iterates with lower average error and is relatively robust to parametric
changes. The HSA scheme, on the contrary, is extremely sensitive to such modifications, particularly when
they arise in the form of a change in β .

(a) β = 5, C =C1 (b) β = 10, C =C1 (c) β = 10, C =C3

Figure 1: Trajectories of average error for the stochastic network utility problem.

Table 1: Parametric Sensitivity of Confidence Intervals.

- P(i) N β C ITR - 90% CI RRSA - 90% CI HSA - 90% CI
N 1 4000 5 C1 [4.34e−2,5.05e−2] [1.10e−2,1.32e−2] [5.01e−1,6.69e−1]

2 2000 5 C1 [5.93e−2,6.99e−2] [1.45e−2,1.71e−2] [6.09e−1,7.93e−1]
3 1000 5 C1 [9.58e−2,1.11e−1] [1.64e−2,1.93e−2] [7.31e−1,9.30e−1]

β 4 4000 10 C1 [9.79e−2,1.16e−1] [1.44e−2,1.71e−2] [2.52e−0,3.04e−0]
5 4000 10 C2 [9.79e−2,1.16e−1] [1.53e−2,1.82e−2] [5.10e−3,6.30e−3]
6 4000 10 C3 [9.79e−2,1.16e−1] [1.88e−2,2.23e−2] [5.10e−3,6.30e−3]

C 7 4000 20 C1 [2.88e−1,3.23e−1] [1.87e−2,2.22e−2] [7.30e−0,8.50e−0]
8 4000 50 C1 [1.83e−1,1.91e−1] [2.75e−2,3.25e−2] [2.25e+1,2.57e+1]
9 4000 100 C1 [4.62e−0,4.75e−0] [3.85e−2,4.48e−2] [4.80e+1,5.45e+1]
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4.2 A Nonsmooth Stochastic Optimization Problem

Next, we examine the following nonsmooth optimization problem:

min
x∈X

{
f (x) = E

[
φ

(
n

∑
i=1

(
i
n
+ξi

)
xi

)]
+

η

2
‖x‖2

}
, (17)

where X = {x ∈ Rn|x≥ 0,∑n
i=1 xi = 1} and ξi are independent and identically distributed random variables

with mean zero and variance one for i = 1, . . . ,n. The function φ(·) is a piecewise linear convex function
given by φ(t) = max1≤i≤m{vi + sit}, where vi and si are constants between zero and one, and f (x,ξ ) =
φ(∑n

i=1(
i
n +ξi)xi)). By applying our smoothing approach, the modified problem is given by

min
x∈X

{
f̂ (x), E

[
φ(

n

∑
i=1

(
i
n
+ξi)(xi + zi))+

η

2
‖x+ z‖2

]}
, (18)

where z ∈ Rn is the uniform distribution on a ball with radius ε with independent elements zi, 1≤ i≤ n.
While space limitations preclude a detailed numerical study, we provide schematics of the performance of
our iterative smoothing extension of the RSA scheme in Figure 2 for two problem instances in which the
smoothing parameter is reduced at 1/k and 1/

√
k, of which the former displays better properties.

(a) n = 10,εk = 1/k (b) n = 5,εk = 1/
√

k

Figure 2: The stochastic utility problem: random smoothing with adaptive stepsizes.

5 CONCLUDING REMARKS

Traditionally, a key challenge in the implementation of SA schemes lies in the choice of the steplength
sequences. In earlier work in the context of stochastic convex optimization, we developed a simple recursive
procedure that was sensitive to problem parameters but relied on strong convexity. We extend this regularized
recursive SA scheme to the regime of merely monotone stochastic variational inequalities by overlaying a
regularization parameter that is reduced after every gradient step. Convergence in mean of the associated
sequence is presented. The second part of the paper introduces an iterative smoothing generalization that
allows for multivalued mappings. Preliminary results on a class of stochastic convex and nonsmooth
problems suggest that adaptive schemes perform well in comparison with standard implementations.
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