
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

OPTIMIZATION SIMULATION: THE CASE OF
MULTI-STAGE STOCHASTIC DECISION MODELS

Suvrajeet Sen

Data Driven Decisions Laboratory
Integrated Systems Engineering

The Ohio State University
Columbus, OH 43210

Zhihong Zhou

SIE Department
University of Arizona,

Tucson, AZ 85721

ABSTRACT

In this paper we present a new approach to solving multi-stage stochastic decision models in the presence
of constraints. The models themselves are stochastic linear programs (SLP), but we presume that their
deterministic equivalent problems are too large to be solved exactly. We seek an asymptotically optimum
solution by simulating the stochastic decomposition (SD) algorithmic process, originally designed for
two-stage SLPs. When SD is implemented in a time-staged manner the algorithm begins to take the flavor
of a simulation leading to what we refer to as optimization simulation. Among its major advantages, it
can work directly with sample paths, and this feature makes the new algorithm much easier to integrate
within a simulation. We also overcome certain limitations such as a stage-wise independence assumption
required by other sampling-based algorithms for multi-stage stochastic programming. Finally, we also
discuss how these methods can be interpreted as close relatives of approximate dynamic programming.

1 INTRODUCTION

Solution of constrained stochastic decision models remains the holy grail of optimization. Despite dec-
ades of research on optimization models and algorithms, our ability to solve constrained stochastic opti-
mization problems remains a continuing challenge. One might lay the blame on the well known “curse-
of-dimensionality” associated with Dynamic Programming (DP, e.g. Powell 2007). However, the diffi-
culties go beyond DP. Other approaches to stochastic optimization problems (e.g. Shapiro 2006) also
present a rather bleak outlook for constrained stochastic optimization. One might even trace the difficul-
ties to a result of Dyer and Stougie (2006) who show that the problem of optimizing a multi-dimensional
expected value functional is inherently difficult because its decision counterpart is #P-complete, in the
worst case. Despite these difficulties, practitioners and specialists in the art of modeling do not have the
luxury of setting these problems aside; on a daily basis, decisions are made in the face of uncertainty
while accommodating physical and financial constraints. Moreover, these systems are inherently dynam-
ic, with the simplest models resulting in two-stage problems. We will focus on multi-stage problems, and
in this setting, the demands on optimization algorithms rise to a whole new level. In this paper, we intro-
duce the notion of optimization by simulating the algorithmic process, and hence we refer to this process
as “Optimization Simulation.”

The natural question in these circumstances is “what differentiates Optimization Simulation from tra-
ditional Simulation Optimization ?” Whereas the latter refers to optimizing a simulation model, the for-
mer refers to simulating an optimization algorithm. What seems to be only a subtle distinction at first
sight is really a significant conceptual difference: the latter (i.e. simulation optimization) operates on a
simulation model, whereas, the former simulates an optimization algorithm, seeking a solution to an op-
timization model. Examples of simulation optimization problems are available at www.simopt.org, whe-
reas, an example of optimization simulation is the stochastic decomposition algorithm (SD, Higle and Sen

4103978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Sen and Zhou

1991, 1994) . The SD algorithm is an optimization simulation method that extends the scope of the L-
shaped method (Van Slyke and Wets 1969, also known as Benders’ decomposition, Benders 1962) to
cases with continuous random variables, or even to discrete random variables in which the number of out-
comes are too many to enumerate efficiently. A similar approach based on importance sampling has been
proposed by Dantzig and Glynn (1991) and Infanger (1994). Another version of optimization simulation
is the Abridged Benders’ Decomposition (Donahue and Birge 2006) algorithm which derives from its
parent algorithm, the Nested Benders’ Decomposition algorithm, as well as dual decomposition method
of Pinto and Periera (1991). These algorithms are designed for multi-stage SLP, and for a general over-
view of SLP algorithms, we refer the reader to Birge and Louveaux (1997). In any event, the above sam-
ple-based methods for multi-stage problems work with a sampled sub-tree, and as shown by Linowksi
and Philpott (2005), and more recently by Shapiro (2010), these methods can provide asymptotic optimal-
ity (wp1) provided certain conditions are satisfied.

There are two handicaps associated with the above mentioned OS methods for multi-stage SP: a)
most of the methods do not work with individual sample paths, and while the two-stage SD algorithm
does operate on one sample path at a time, it is restricted to two stage SLP, b) the assumptions of inde-
pendence severely limits the power that simulation can bring to bear on these models. The expressive ca-
pability of simulation and its ability to represent complicated random phenomena are some of the attrac-
tive features that would provide a rich class of optimization models in SLP. But the current algorithmic
limitations are unsatisfying. The current paper is devoted to an algorithm that overcomes both these han-
dicaps.

2 MULTI-STAGE STOCHASTIC DECISION MODELS

In our formulation, time will march ahead from now (ݐ ൌ 0) to the end of horizon (ݐ ൌ ܶ), where T is

a given positive integer. With this notation, there will be ܶ 1 stages in the formulation, and thus a two-
stage formulation will have stages indexed by ݐ ൌ 0 and ݐ ൌ 1.

Let ሺΩ, ࣠, Եሻ denote a filtered probability space (i.e ௧࣠ ك ࣠, and for ݐ ൌ 1, … , ܶ ௧࣠భ
ك ௧࣠మ

 for
ଵݐ ൏ ଶ.) As usual, Ωݐ ൌ Ωଵ ൈ … ൈ Ω் ሺΩ௧ ك Ըఔ with ߥ௧ a positive integer) and, an outcome consisting
of ݐ elements of the process will be denoted ߱௧ ؔ ሺ߱ଵ, … , ߱௧ሻ, and the corresponding random variable
will be denoted ߱௧. The ߪ-algebras ௧࣠ represent data available to the decision maker at time ݐ. We will
assume that ߱௧ has finite support for all ݐ, ௧࣠ is finite, and so is the filtration ሼ ଵ࣠, … , ்࣠ሽ. Moreover,

௧࣠ is generated by a finite partition ൛Θ௧
ℓൟ of Ω. The same is true for ௧࣠ାଵ generated by ሼΘ௧ାଵ

ℓ ሽ with the
property that the latter is finer than the former (i.e. for any set Θഥ א ൛Θ௧

ℓൟ, a collection of sets in ሼΘ௧ାଵ
ℓ ሽ,

indexed by ԧሺΘഥሻ, say, such that Θഥ ൌ ℓאԧሺഥሻ Θ௧ାଵ
ℓ ሻ. The relationships between the sets in the partition

൛Θ௧
ℓൟ and their children ԧ ቀ൛Θ௧

ℓ൯ቁ can be encoded in the form of a tree which is termed as a scenario tree in

SP. A node in period ݐ represents a subset of paths (such as Θഥ) which have the same events in the first
ݐ periods, and record some new event in period ݐ 1. Since algorithms will work by using the tree as a
road-map, it will be convenient to index nodes on the scenario tree by ݊, and denote the (unconditional)
probability of reaching node ݊ by . We will denote any random child of node ݊ by the notation ݊ , so
that the outcomes ݊+ א ԧሺ݊ሻ. By the same token, arrival at node ݊ of a scenario tree implies knowledge
of the (unique) parent node which will be denoted by ݊-. Finally, letting ሺା|ሻ denote the probability
of reaching node ݊+, given that the process has arrived at node ݊, we can simulate the generation of a
sample path through the scenario tree. If ߱௧ is a continuous stochastic process, then ensuring measurabili-
ty of decisions requires greater care (Casey and Sen 2005).

As with the two-stage SD algorithm, the multi-stage SD method will work with sample paths, al-
though in this case, we will sample from the scenario tree. The set of nodes of the scenario tree will be
denoted ܰ. In the following statement of the sequential decision model, we associate a time index ݐሺ݊ሻ
with each node ݊. We will use the following convention in the model stated below.

4104

Sen and Zhou

a) The root node is indexed by node 0.
b) If node ݊ belongs to the last stage, the expected value/recourse function of ݊ (the future) is 0.
c) Finally, we define composite state variables ݏ ൌ ൫ݕ, ߱൯. Note that the composite state ݏ used

here traces the entire history of the data state ߱. Thus by using the scenario tree, SP allows us to
capture the history of the process. However, the state ݕ is only defined at node ݊, and is data
and decision dependent, prompting us to refer to them as the “3d” states.

Given a scenario tree, a multi-stage decision model may be stated as follows.

Min ሼܿሺݔሻ :ା൯൧ݏା൫݄ൣܧ ݔ א ܺ, ଵݕ א ଵܻሺݔ, ,ݕ ߱ଵሻ a.s. ሽ (0)

where ݄ are defined recursively for ݊ 1 as

݄൫ݏ൯ ൌ ݀
ݕୃ

 Min

ە
ۖ
۔

ۖ
ۓ ܿ

ݔୃ ା൯ሿݏሾ݄ା൫̃ܧ

ݔ א ܺ൫ ݏ൯

ܺ൫ݏ൯ ൌ ൜
ݔ௧ሺሻܥ ൌ ݎ െ
,ݕܦ ݔ 0

ൠ a.s
ۙ
ۖ
ۘ

ۖ
ۗ

(1)

and
ାݕ ൌ ାݍ ݔାܣ . (2)ݕାܤ

Since the dependence of the value function on data can be captured via the node index ݊, we drop the
dependence on (߱ሻ, and simply write ሺܿ, ݀, ,ܣ ,ܤ ,ܥ ,ܦ ,ݍ -ሻ as data for node ݊ , and the conݎ
straints on the decisions at node ݊ are written as ݔ א ܺ൫ ݏ൯ a.s. However, in order to appeal to the
ideas of two-stage SD (Higle and Sen 1991), and to ease some of the computational burden, we assume
ሺܥሻ ൌ ሺܥ௧ሺሻሻ, that is, these instances satisfy a multi-stage version of the fixed-recourse assumption for
two-stage problems. All other data elements are allowed to depend on the state of the stochastic process
in node ݊.

The parallels between the two-stage and the multi-stage stochastic program should be clear. As usual,
the above recursive statement is such that the multi-stage model can be conceptually interpreted both as a
specialization as well as a generalization of a two stage model. From a computational point of view how-
ever, the presence of a nested collection of conditional expectation functions, poses far more serious
computational challenges for the multi-stage case.

3 OPTIMIZATION SIMULATION WITH MULTI-STAGE STOCHASTIC
DECOMPOSITION

We begin by presenting a summary of the algorithm which is discussed in greater depth subsequently.

1. Simulate a sample path (்߱
ሻ and for all nodes of the scenario tree, update counts as well as fre-

quencies reflecting the number of visits, and the fraction of visits. We will refer to nodes along the sam-
ple path by the notation ݊ א ்߱

 . (If one initializes all counts to be zero, then one can simply update
counts (of visits to nodes) on the sample path observed in the current iteration.)

4105

Sen and Zhou

1.1. Assuming that approximations ݂

 are available, obtain incumbent and candidate sequences by
solving a sequence of nodal decision simulations (see (3)) for all non-terminal nodes on the sample path
(section 3.)

1.2. If some nodes ݊ א ்߱
 have not been visited in previous iterations, then perform operations of

step 1.1 until no such nodes are available, and then, solve two scenario LPs associated with the re-
mainder of the path. One LP is initialized with the incumbent decision, and the other with the candidate
decision. The resulting solutions yield the incumbent and candidate sequences.

2. Solve or approximately solve certain nodal dual approximation (see (4)) for each non-root node
݊ א ்߱

 , for the incumbent sequence ሼ̂ݏሽ, as well as the candidate sequence ሼݏ
ሽ, where once again,

݊ א ்߱
.

3. Collect information and update approximations for each non-root node ݊ א ்߱
 . To do so, col-

lect information regarding dual vectors of the nodal dual approximation (see (4)), and pass an affine
lower bounding approximation to the parent node denoted ݊ െ. Each parent (i.e. non-terminal)
node ݊ א ்߱

 updates a lower bounding approximation ݂
ାଵ (see (13)) using both the incumbent se-

quence ሼݔොሽ, as well as the candidate sequence ሼݔ
ሽ.

4. Update the incumbent (i.e. ݔො
ାଵ ՚ ݔ

ሻ
 if ሺ ݂

ାଵ൫ݔ
, ത൯ݕ െ ݂

ାଵ൫ݔො
, ത൯ݕ ൣߛ ݂

൫ݔ
, ത൯ݕ െ ݂

൫ݔො
, ොݔ ത൯൧ሻݕ

ାଵ ՚ ݔ

otherwise, we continue with ݔො
ାଵ ՚ ොݔ

. (ߛ א ሺ0,1ሻ ݅ݎ݁ݐ݁݉ܽݎܽ ܽ ݏሻ.
Increment the iteration counter ݇, and repeat from 1.

It is important to recognize that in any iteration, approximations of the expected recourse functions
are developed only for those nodes ݊ that belong to the sample path generated in iteration k (i.e. א ்߱

).
Thus, unlike other approaches for optimization simulation in stochastic programming (e.g. Donahue and
Birge 2004, Linowsky and Philpott 2005), the multi-stage SD algorithm creates approximations of the
expected recourse function of non-terminal nodes of the sample path ்߱

 generated in iteration ݇. Fur-
ther details of each step are provided below.

Borrowing from the case of two-stage SD, we will make the following assumptions: a) the set of first-
stage decisions is compact, b) the relatively complete recourse assumption is satisfied at every stage; (i.e.
(1) has a finite optimum for any setting of feasible ݕ, and c) zero provides lower bound on all condition-
al expectations. (This assumption can be easily relaxed as in the two-stage case.) In addition, we reite-
rate the fixed recourse assumption ൫ܥ ൌ ௧ሺሻ൯, as well as the requirement that the stochastic process hasܥ
finite support.

3.1. Simulate a sample path

We assume that the simulation will be consistent with the given stochastic process denoted ்߱. In de-
veloping the approximations however, we will use the empirical distribution observed for transitions from
node ݊ to a child node ݊+. At iteration ݇, this estimate (ሺା|ሻሻ will be denoted by ା

 . Our estimates
of probabilities will reflect the number of times the simulation has visited a given node, given that the
parent node was visited.

Steps 1.1 and 1.2 are often called forward pass because they are used to generate a sequence of states
based on incumbent ൫ݔො

൯ and candidate ൫ݔ
൯ decisions. Given a decision ݔ, one is able to find the next

“3d” states ሼݕାሽାאԧ
using the dynamics by traversing the sampled path ்߱

 forward in time, by starting
with ݊ ൌ 0 and then recursively calculating the “3d” states associated with the candidate sequence using
the dynamics: ݕ

ାଵ ൌ ݍ ିݔܣ
ାଵ ିݕܤ

ାଵ, followed by the decisions

4106

Sen and Zhou

ݔ
ାଵ א argmin ሼ ݂

൫ݔ, ݕ
ାଵ൯

ఙೖ

ଶ
ฮݔ െ ොݔ

ฮ
ଶ

: ݔ א ܺሺݕ
ାଵሻሽᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

N୭ୢୟ୪ Dୣୡ୧ୱ୧୭୬ S୧୫୳୪ୟ୲୧୭୬

. (3)

where ݊ א ்߱
 follows ݊ െ. Similarly, the incumbent trajectory ݔො

 may be obtained by using the same
process, but starting with ݔො

. We refer to decision problems in (3) as a nodal decision simulation because
these forward passes generate decisions during the simulation. The approximate functions ݂

 are updated
from one iteration to the next by using piecewise linear approximations developed during the backward
pass (step 2).

Step 1.2 plays a role in those iterations in which the sampling process discovers new nodes of the
scenario tree. For such nodes, function approximations have not been created in any previous iteration,
and as a result it is not possible to perform (3). What we recommend in this case is that a linear program
be solved, starting from the first newly revealed node, with data corresponding to the rest of the sample
path. The solution of this LP will provide the dual multiplier estimates to be used in the backward pass
(step 2 - see next subsection).

3.2. Solve or approximately solve nodal dual approximations

These calculations are carried out backward in time, along the path that was generated in the forward
pass. Accordingly, the definitions that follow are best carried out in a recursive manner, starting from a
terminal node. One of the main ideas behind the multi-stage SD setup is that it highlights the use of state

variables ቀݏ ൌ ൫ݕ, ߱൯ቁ in the approximation process.

 For a terminal node ݊, we define ܧሾ݄ାሿ ൌ 0 and let ݄
 provide a lower bound on ݄.

 In order to define approximations for non-terminal nodes, we set forth a recursive definition by
assuming that for all ݊ א ԧ, we have approximations ݄ା

 , as well as empirical probabilities
൛ା

 ൟ
ା אԧ

. Then, we define ݄
 as an empirical lower bounding approximation of the nodal recourse

function at node ݊ as follows:

݄
൫ݏ൯ ൌ ݀

ݕୃ Min { ܿ
ݔୃ ା

 ݄ା

ାאԧ

ሺݏାሻ ݔ௧ሺሻܥ ൌ ݎ െ , ݕܦ ݔ 0ሽ.

Of course, if ݊ is a terminal node, above formula still applies, with ݄ା
 ൌ ݄ା ൌ 0.

For finite ݇, our simulation-based successive approximation scheme has two sources of error: the
probability distribution (using empirical distributions), and the future value functions ݄ା

 . The latter will
be approximated using subgradients of approximations. Now, if we could ensure that the collection of ap-
proximations satisfy ൛݄ା

 ՜ ݄ାൟ
ା אԧ

 in some sense (e.g. epi-convergence), then one could (using the

law of large numbers) ensure that ݄
 ՜ ݄ with probability one. However, it is well known that the ap-

proximations generated by SD obeys epi-nesting relative to ݄, but not epi-convergence to ݄ (Higle and
Sen 1992, Rockafellar and Wets 1997). Thus the approximations ݄

 developed below (using subgra-
dients) should be designed to ensure epi-nesting, which will be sufficient for convergence of state trajec-
tories with probability one.

Suppose that for all ݊ א ԧ, we have already calculated a subgradient ሺwith respect to ݕା)
ାߜ

 א ሾ߲݄ା
 ൫ݏା൯ െ ݀ାሿ and let ߩା

 denote the constant term associated with the corresponding sup-
porting hyperplane. Assuming relatively complete recourse, and substituting for the “3d” state variables,
that is, ݕା ൌ ାݍ ݔାܣ -, and replacing the primal value function by its dual representaݕାܤ
tion, we obtain an affine lower bounding approximation as follows:.

4107

Sen and Zhou

 ݄
൫ݏ൯ ൌ ݀

ݕୃ ା

ାא ԧ

ሼߩା
 ሺ݀ା ାߜ

 ሻୃሾݍା ሿሽݕାܤ

Max ߨ
ୃሾݎ െ ሿݕܦ ௧ሺሻܥ

ୃ ߨ ܿ ା
 ାܣ

் ሺ݀ା ାߜ
 ሻ

ା ԧא

ൌ: ܿ

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
Nodal Dual Approximation for node n

(4)

The LPs in the second line of (4) will be referred to as nodal dual approximations (NDA). In order to
instantiate the NDA for node ݊, denoted NDA(n), note that the right-hand side requires quantities
ା

 , ,ାܣ ݀ା, ାߜ
 for ݊ א ԧ. In order to do the recursion will assume that ା

 , ାߩ
 , and ߜା

 are es-
timated and available for all ݊ א ԧ. Indeed, while we will maintain these quantities for all non-
terminal nodes that have been visited at least once, they will only be updated periodically, depending on
their “proximity” to the sampled path. The notion of “proximity” as well as the updating procedure will
be described subsequently. For now, let us assume that we have all estimates ൛ߜା

 ൟ
ା אԧ

 that are neces-

sary to calculate ܿ
. Let ߨ

 denote solutions obtained by setting ݕ ൌ ݕ
 (a candidate) for the LPs in (4).

Hence using ߨ
, we obtain

݄
൫ݏ൯ ൫ߨ

൯
ୃ

ݎ ൫݀ െ ܦ
ߨୃ

൯
ୃ

ݕ ା

ାא ԧ

൛ߩା
 ሺ݀ାߜା

 ሻୃሾݍା ሿൟ (5)ݕାܤ

Letting

ߜ
 ൌ െܦ

ߨୃ
 ା

ାא ԧ

ାܤ
ୃ ሺ݀ା ାߜ

 ሻ (6)

and ߩ
 ൌ ൫ߨ

൯
ୃ

ݎ ∑ ା

ାא ԧ
ሼߩା

 ൫݀ା ାߜ
 ൯

ୃ
ାሽ, (7)ݍ

we recursively obtain a subgradient ߜ
 א ൣ߲݄

൫ݏ൯ െ ݀ ൧ (with respect to ݕሻ and the quantitity
ߩ

 represents the “constant” term of the hyperplane. These quantities will be used for approximations at
the parent node ݊ െ . Finally define an indicator vector ݓ௧ሺሻ

 for which the ݅௧ element is 1 if the ݅௧ row

of NDA(n) is tight (i.e. ܥ,௧ሺሻ
ୃ ߨ

 ൌ ܿ,
), and 0 otherwise. Then, we update

 ௧ܹሺሻ

 ൌ ௧ܹሺሻ
ିଵ ௧ሺሻݓ

 . (8)

For the case in which we wish to update approximations for the incumbent sequence ݕ ൌ ොݕ

, we use it
(the incumbent ݕො

ሻ in NDA in (4) together with values ߩොା
 and vectors ߜመା

 provided by nodes ݊ and
future incumbents ݕොା

 . Upon solving the NDA, the resulting dual multiplier for the incumbent will be
denoted ߨො

, and accordingly, one defines analogous ߜመ
 and ߩො

 using the expressions in (6) and (7). As
in case of the candidate updates, we will update the indicator vectors as in (8).

We now return to the issue of how one approximates the quantities used in defining NDA recursively.
Let ݐሺ݊ሻ denote time period associated with node ݊. Among those nodes ݉ that satisfy ݐሺ݉ሻ ൌ ,ሺ݊ሻݐ
and

 0, we calculate the quantities ߜ
 in two subgroups.

 If ݉െ് ݊ െ, then we let ߩ
 ൌ ߩ

ିଵ, ߜ
 ൌ ߜ

ିଵ. In other words, the estimates are not re-
vised unless node ݉ is a child of some node along the sample path generated in iteration ݇.
(This is how we measure “proximity” of a node to a sample path.) In case iteration ݇ is one

4108

Sen and Zhou

for which the subgradient approximations are to be updated for the incumbent sequence, we
also put ߩො

 ൌ ොߩ
ିଵ, መߜ

 ൌ መߜ
ିଵ.

 Otherwise (i.e. ݉െ ൌ ݊െሻ, we update ߜ
 by using an “argmax” procedure as follows. Let

ߨ
 א argmax ൛ߨ

ୃ ൫ݎ െ ݕܦ
 ൯ ,௧ሺሻܥ

ୃ ߨ ൌ ܿ,
 , ݓ ൌ 1, ,௧ሺሻܥ

ୃ ߨ ܿ,
 , ݓ ൌ

0, ݓ א ௧ܹሺሻ
 ൟ. Note that this procedure involves the solution of a system of linear equations

(using equations indexed by ݓ ൌ 1), followed by dual feasibility verification (for ݓ ൌ 0ሻ,
thus reducing the complexity of LP solves. If one is willing to store the factorizations asso-
ciated with the corresponding bases of ܥ௧ሺሻ, then, one can reduce the computational com-
plexity of this step even further, but at the cost of additional storage. Now the quantities
ߜ

 , ߩ
 are estimated analogously to (6) and (7), as follows:

ߜ
 ൌ െܦ

ୃ ߨ
 ା

ାא ԧ

ାܤ
ୃ ሺ݀ା ାߜ

 ሻ (9)

 and ߩ
 ൌ ൫ߨ

 ൯
ୃ

ݎ ∑ ା

ାא ԧ
ሼߩା

 ൫݀ା ାߜ
 ൯

ୃ
ାሽ. (10)ݍ

We also remind the reader that one also needs to record analogous quantities ൫ߜመ

, ොߩ
൯, for those ݉ satis-

fying ݐሺ݉ሻ ൌ ሺ݊ሻ, andݐ
 0), so that incumbent cuts can be updated when necessary. Because each

iteration needs one subgradient for a candidate and one for an incumbent solution for all nodes that have
been visited by the method, it may be worthwhile clustering these vectors whenever the difference are
negligible (or acceptable for approximations).

3.3 Collect information and update approximations

Using the pairs (6),(7) (and their analogs for incumbent trajectories when necessary), we can now sum-
marize the approximations developed at the candidate state trajectory for the multi-stage SD algorithm:

 ݄
൫ݏ൯ ߩ

 ሺ݀ ߜ
 ሻୃݕ ൌ: ݃ି,

 ሺݏሺݔି, ିሻሻݕ . (11)

Upon substituting the dynamics (2) in place of ݕ in (11), and setting ݊ ՚ ݊ െ , we obtain an affine ap-
proximation of the following form

ܩ
ሺݔ, ሻݕ ؔ ା

 ݃,ା
 ቀݏାሺݔ, ሻቁݕ

ା אԧ

ൌ ߙ
 ߚ

ݔ ߛ
ݕ, (12)

with

ߙ
 ൌ ା

 ቂߩା
 ൫݀ା ାߜ

 ൯
ୃ

ߚ ,ାቃݍ
 ൌ ା

 ሺ݀ା ߜା
 ሻୃAା

ା א ԧ

,
ା אԧ

ߛ
 ൌ ା

 ሺ݀ା ߜା
 ሻୃܤା

ା א ԧ

Let ߢ
ℓ denote the number of visits to node ݊, when the ℓሼ௧ሽ approximation is created. Then, in itera-

tions ݇, the nodal lower bounding approximation for ݊ א ்߱
 is given by

݂
ሺݔ, :ሻݕ ൌ ܿ

ݔୃ ݀
ݕୃ Max

ଵஸℓஸ
ೖ

ߢ
ℓ

ߢ
 ܩ

ℓሺݔ, ሻ. (13)ݕ

4109

Sen and Zhou

Based on the assumption that the expected value/recourse function has a lower bound of zero, the above
“Max” function above has the same form as in two-stage SD.

3.4 Update incumbent solutions

As with the two-stage regularized SD algorithm (Higle and Sen 1994), the choice of the incumbent is
based on objective value estimates at the root node; that is, we estimate whether there is a reduction in the
value ݂

ሺݔ; ොݔ ,തሻ; that isݕ
ାଵ ՚ ݔ

 if

݂
ାଵ൫ݔ

, ത൯ݕ െ ݂
ାଵ൫ݔො

, ത൯ݕ ൣߛ ݂
൫ݔ

, ത൯ݕ െ ݂
൫ݔො

, ത൯൧ݕ

Note if any sequence of stage 1 incumbent decisions converge (ݔො
 ՜ ොሻ, then with probability one, theݔ

state trajectories also converge. Then the stability of the nodal decision simulations (see (3)) implies that
the nodal decisions must also converge with probability one. The fact that these approximations satisfy
epi-nesting follows from the observation that the sequence of sets ௧ܹ

 (for all ݐሻ grows in cardinality as
iterations proceed. Because there are finitely many constraints in any stage, these sets cannot grow indefi-
nitely. Hence these “argmax” steps must eventually provide accurate estimates of solutions of the nodal
dual problems. Moreover, the finite support assumption (of the scenario tree) ensures that every node of
the scenario tree must be visited infinitely often. Thus, with probability one the approximations become
accurate at the accumulation points of the sequence of nodal decisions. Hence, the method satisfies suffi-
cient conditions for asymptotic convergence as discussed in Higle and Sen (1992) and Rockafellar and
Wets (1997). Other regularizing tools may also be applied (see Lemarechal, Nemirovski and Nesterov
1995).

4 PRELIMINARY COMPUTATIONS

We present our preliminary computations within the context of a production and inventory instance avail-
able from H. Gassmann’s website (http://myweb.dal.ca/gassmann/). First, we run a small instance, which
has 5 stages and every node in the scenario tree has three children nodes except the nodes at last stage.
Therefore, there are totally 81 scenarios in this instance. Figure 1 reports the computational results of the
first stage solution as iterations proceed. One can observe that after 32 iterations, the first stage solution
converges to (8,0). This solution is verified to be optimal by solving the corresponding deterministic
equivalent linear program.

4110

Sen and Zhou

Figure 1: Sequence of first-stage solutions for a small production-inventory instance (81 scenarios)

Figure 2: Sequence of first-stage solutions for a larger production-inventory instance (325 scenarios)

We also replicated the solution of this (small) instance by using 20 different seeds to run this algorithm.
A summary of the outcomes of these runs are provided in Table 1.

4111

Sen and Zhou

Table 1: Results from Replications of the Multi-stage Stochastic Decomposition Algorithm

First-stage Solution Sample Average Std. Deviation Confidence Inter-
val Half Width

ࢻ) ൌ . ሻ
 ଵ 7.978 0.141 0.062ݔ
 ଶ 0.068 0.032 0.019ݔ

In order to study whether the method would scale to problems with more scenarios, we run a similar pro-
duction-inventory instance, but for this one we allow 6 stages and every node has 32 children nodes. This
results in an instance with 32ହ scenarios. Furthermore, we fix the number of iterations as 500. Figure 2
reports the computational results of this instance. It is not difficult to observe that the solutions stabilize
after approximately 50 iterations. Since it is not possible to solve the deterministic equivalent problem in
this instance, we use the scenario tree generated by Multi-stage SD method and solve the corresponding
deterministic linear program. Once again, we find that solutions by solving deterministic problem are
identical to that obtained by running the Multi-stage SD algorithm.

5 COMPARISONS AND CONCLUSIONS

The multi-stage SD algorithm can be specialized or generalized in several ways: a) The process is well
suited for special structures (e.g. networks and generalized networks for the matrices ܥ௧ሻ; b) the method is
applicable to cases such as model-predictive control in which objectives are typically defined using qua-
dratic terms; c) single-stage dependence (as in Markov Chains) and more general dependencies and lags
are also allowed within a finite horizon setting. These are clearly important areas for which the proposed
methodology is well suited. We compare our methodology with certain variants of dynamic program-
ming, as well as sampled versions of Nested Benders’ decomposition in greater detail below.

5.1. Connections with Variants of Dynamic Programming

The statement of a multi-stage stochastic programming (SP) problem (see 0-2) is patterned after the DP
principle of optimality. However, the algorithmic process used to solve such problems go beyond the DP
methodology, through its use of numerical approximation techniques. Just as one states differential equa-
tions as models, one might liken the statement in 0 as a model, whose solution via analytical DP is un-
tenable. Instead, as in the case of differential equations, we resort to numerical approximations, and this
is where the power of convexity and variational methods (King and Wets 1991, Rockafellar and Wets
1997) are brought to bear on this problem.

One might also think of our approach as a non-smooth and stochastic analog of smooth deterministic
methods such as Differential Dynamic Programming (DDP) proposed by Jacobson and Mayne (1970). In
this context however, the reader might be reminded of a popular commercial campaign slogan “This is
not your father’s,…” DP or DDP!. The approach we have presented accommodates randomness, con-
straints, and non-smooth objectives. It is also the only sampling-based method that works with directly
with sample paths, thus making it a convenient tool for integration within a simulation.

In a sense, one can also think of SD as an approximate DP (ADP) method in which stochastic esti-
mates of subgradients are used to create and update the value function approximations recursively. To
see this, note that the subgradient of the future nodes appear in the right hand side of the NDA via ܿ

. In
the spirit of ADP, one could interpret SD as using forecasts of future prices as the basis for value function
approximations. For illustrative purposes, consider the two-stage case. Suppose that ሼߨ௪ሽ௪אௐభ

ೖ denote

the collection of future prices (or dual variables) available for use in forming the first-stage approxima-
tion. Then, the approximate value function for state variable ݏଵ can be expressed as ݄ଵ

ሺݏଵሻ ൌ

4112

Sen and Zhou

 max ቄ∑ :ଵሻݏ௪߶௪ሺߣ ∑ ௪ߣ ൌ 1,௪אௐభ
ೖ ௪ߣ 0௪אௐభ

ೖ ቅ, where ߶௪ሺݏଵሻ ൌ ௪ߨ
ୃሾݎଵ െ -ଵሿ, where the quantiݕଵܦ

ties ሺݎଵ, ,ଵܦ ଵ, which in turn is specified by the outcome ߱ଵ pointing toݏ ଵሻ are specified by the stateݕ
ሺݎଵ, -ଵሻ asݏଵ. Clearly, the “max” above is attained for that dual price for which ߶௪ሺݕ ଵሻ, and the stateܦ
sumes the highest value, which is the same as that given in 0. Note that in SD, the collection of functions
indexed by ݓ grows with iterations, and ultimately, the dual LP must stop generating new functions be-
cause the total number of dual bases is finite. Similar analogs exist in the multi-stage case. However, un-
like ADP, multi-stage SD requires both forward as well as backward passes. It is these passes that guar-
antee epi-nesting, and hence convergence (with probability one).

5.2 Connections with Sampled Nested Benders’ Decomposition

Finally, we present the connections between sampled versions of Nested Benders’ decomposition, and the
algorithmic framework of this paper (i.e Multi-stage SD).

Table 2: Comparison of Optimization Simulation Algorithms

Sampled Nested Benders Decomposition Multi-stage Stochastic Decomposition
Works with sampled sub-trees Works with individual sample paths
Allows general constraint matrices for all data Requires fixed recourse (ܥ௧ሻ in each period
Requires stage-wise independence of random va-
riables

Overcomes the independence requirement

Forward and backward passes solve LPs with simi-
lar structures, both of which include cuts that may
destroy specialized matrices (e.g. network flows)

Forward pass includes cuts representing piecewise
linear value functions, but the backward pass has
no cuts. The backward pass preserves special
structure.

Every iteration updates approximations over the
sampled sub-tree, and as the size of the sub-tree
grows, the updates also grow

Every iteration updates approximations along the
sample path, and some approximations are updated
depending upon the proximity of nodes to the sam-
pled path

Not designed to interface with a simulator Designed specifically to interface with a simulator

ACKNOWLEDGMENTS

We are grateful to the National Science Foundation for its continued support of this line of research
through CMMI grant 0900070. The first author is also grateful to Warren Powell on interesting discus-
sions regarding DP, ADP and SP.

REFERENCES

Benders, J.F. 1962. “Partitioning procedures for solving mixed integer variables programming prob-
lems,” Numerische Methematick, 4: 238-252.

Birge, J.R. and F. Louveaux 1997. Introduction to Stochastic Programming, Springer-Verlag.
Casey, M. and S. Sen 2005. “The Scenario Generation Algorithm for Multi-stage Stochastic Linear

Programming,” Mathematics of Operations Research, 30:615-631.
Dantzig, G.B. and Glynn, P.W. 1990. “Parallel Processors for Planning Under Uncertainty,” Annals of

Operations Research 22:1-21.
Donohue, C.J. and J. R. Birge. 2006. “The abridged nested decompositionmethod formultistage stochastic

linear programs with relatively complete recourse,” Algorithmic Operations Research, 1:20-30.
Dyer, M, and L. Stougie. 2006. “Computational Complexity of Stochastic Programming Problems,” Ma-

thematical Programming, 106:423-432.

4113

Sen and Zhou

Higle, J.L. and S. Sen. 1991. “Stochastic Decomposition: An algorithm for two stage linear programs
with recourse,” Mathematics of Operations Research, vol. 16:650-669.

Higle, J.L. and S. Sen. 1992. “On the convergence of algorithms with implications for stochastic and
nondifferentiable optimization," Mathematics of Operations Research, 17:112-131.

Higle, J.L. and S. Sen. 1994. “Finite master programs in stochastic decomposition," Mathematical Pro-
gramming, 67:143-168.

Jacobson, D.H. and D. Q. Mayne. 1970. Differential Dynamic Programming, Elsevier, Netherlands.
Infanger, G. 1994. Planning Under Uncertainty – Solving Large-Scale Stochastic Linear Programs, The

Scientific Press Series, Boyd and Fraser.
King, A.J. and R. Wets. 1991. “Epi-consistency of convex stochastic programs,” Stochastics and Statis-

tics Reports, 34: 83-92.
Linowsky, K. and A. B. Philpott. 2005. “On the convergence of sampling-based decomposition algo-

rithms for multistage stochastic programs,” Journal of Optimization Theory and Applications, 125:
349-366.

Lemarechal, C., A. Nemirovskii, A., and Y. Nesterov. 1995. “New variants of bundle methods,” Ma-
thematical Programming, 69:111-147, 1995.

Pereira, M.V. and L. M. Pinto. 1991. “Multi-stage stochastic optimization applied to energy planning,”
Mathematical Programming, 52:359-375.

Powell, W. B. 2007. Approximate Dynamic Programming: Solving the curses of dimensionality, Wiley
Series in Probability and Statistics.

Rockafellar, R.T. and R.J-B. Wets. 1997. Variational Analysis, Springer-Verlag, Berlin, Germany.
Shapiro, A. 2010. “Analysis of Stochastic Dual Dynamic Programming Method,” Optimization Online.
Shapiro, A. 2006. “On complexity of multistage stochastic programs,” Operations Research Letters, 34:

1-8.
Van Slyke, R. and R. Wets. 1969. “L-shaped linear programs with applications to optimal control and

stochastic linear programs,” SIAM Journal on Applied Mathematics, 17: 638-663.

AUTHOR BIOGRAPHIES

SUVRAJEET SEN is Professor of Industrial and Systems Engineering, and Director of the Data-Driven
Decisions Lab at the Ohio State University. Until recently, he also served as the Director of the College's
Center for Energy, Sustainability, and the Environment. Prior to joining OSU, he served on the faculty at
the University of Arizona, and he also served as a program director at NSF where he was responsible for
the Operations Research, and the Service Enterprise Engineering programs. Professor Sen is a Fellow of
INFORMS. He has served on the editorial board of several journals, including Operations Research as
Area Editor for Optimization, and as Associate Editor in INFORMS Journal on Computing, Operations
Research, and Journal of Telecommunications Systems. Professor Sen is the past-Chair of the INFORMS
Telecommunications Section and founded the INFORMS Optimization Section.
.
ZHIHONG ZHOU is a Ph.D. student at the University of Arizona. His research interests are in stochas-
tic programming models and methods.

4114

