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ABSTRACT

Using Sampled Fictitious Play (SFP) concepts, we develop SFPL: Sampled Fictitious Play Learning — a
learning algorithm for solving discounted homogeneous Markov Decision Problems where the transition
probabilities are unknown and need to be learned via simulation or direct observation of the system in real
time. Thus, SFPL simultaneously updates the estimates of the unknown transition probabilities and the
estimates of optimal value and optimal action in the observed state. In the spirit of SFP, the action after
each transition is selected by sampling from the empirical distribution of previous optimal action estimates
for the current state. The resulting algorithm is provably convergent. We compare its performance with
other learning methods, including SARSA and Q-learning.

1 INTRODUCTION

In this paper, we propose a learning algorithm based on Fictitious Play concepts for finding optimal policies
in homogeneous discrete Markov Decision Problems (MDPs) with unknown transition probabilities. MDPs
are characterized as sequential decision making problems that involve choosing actions, making observations
of the system, and then modifying these actions based on the new information (Powell 2007, Puterman
1994). The nature of these problems makes it possible to propose solution approaches even when the
dynamics of the system (e.g., cost of decisions, probability distributions of random disturbances in the
system, etc.) are unknown. By designing a learning algorithm that simultaneously makes observations
about the aspects of the system unknown to the decision maker and chooses actions using information
obtained via these observations, the optimal solution of the problem can be approximated. Ideally such an
algorithm uses simple calculations to generate approximate solutions in each iteration. For this reason we
believe that Fictitious Play (FP) concepts can be very useful in this framework. FP is an iterative algorithm
used to imitate analysis by players engaged in learning each others’ behaviors in a game to find a Nash
Equilibrium solution (Brown 1951, Robinson 1951). Our approach is to model an MDP problem as a
game (by associating players, strategies, and payoffs with components of the MDP) such that the optimal
solution of the problem is a Nash Equilibrium of this game, and apply a variant of FP to the game to search
for the optimal solution of the MDP, resulting in a new learning algorithm.
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Learning algorithms for MDPs have been extensively studied in the literature. Actor-critic methods,
Reinforcement Learning, Neuro-Dynamic Programming (Bertsekas and Tsitsiklis 1996, Sutton and Barto
1998, Szepesvári 2010), Approximate Dynamic Programming (Powell 2007) are well known frameworks
for such algorithms. For example, Temporal-Difference learning methods, including Q-learning and SARSA
and their extensions, have been very popular for problems that are sufficiently small to allow lookup-table
representation of Q-values, i.e., estimates of expected values of state-action pairs (Sutton and Barto 1998).
These algorithms can be applied to a variety of problems, and are suitable for interactive learning, where
learning occurs while interacting with the real system rather than a simulation (cf. Szepesvári 2010).
The algorithms estimate the Q-values and update these estimates as more information becomes available.
Multiple versions of learning algorithms, including extensions that allow for approximate solutions of
large-scale MDPs, are discussed in the survey publications cited above, and references therein.

In designing (interactive) learning algorithms one needs to specify a learning policy, i.e., the rules for
selecting actions in order to explore the state/action space, as well as a value function approximation update
method. The most straightforward approach to learning is to uniformly sample actions in each state. Biasing
the sampling procedure to choose “better” actions, e.g., using a greedy approach that chooses the best action
based on the current value estimates, can significantly improve performance (Chang et al. 2007). However,
a purely greedy method has too much bias and might force the algorithm to get “stuck” at a local optimal
solution. One of the most common approaches to dealing with this problem is to use ε-greedy sampling (in
which at each iteration, with probability ε , a randomly sampled action is used instead of the greedy choice)
or Boltzmann sampling, or another randomized method that has a bias towards greedy selection of actions.
As an alternative, Chang et al. (2005) designed an adaptive sampling algorithm for finite horizon stochastic
dynamic programming problems in which they incorporate regret analysis developed for the multi-armed
bandit problems into the action sampling process. With this adaptive approach, they save the effort of
sampling “poor actions” (which would significantly improve the algorithm performance if the sampling
is relatively time consuming) without sacrificing the convergence properties of the algorithm. Adaptive
sampling (and its potential advantages) is inherent in the algorithm we propose in this paper through the
utilization of “best action” histories, which are part of the FP framework.

Another important aspect of a learning algorithm’s design is the relationship between the value update
method and the learning policy, i.e., the states visited and actions deployed. For example, Q-learning is
an off-policy learning algorithm, i.e., the update of the value of a state-action pair is independent of the
learning policy followed, whereas SARSA is an on-policy learning algorithm, in which the policy that is
being followed is directly used in the value updates (Sutton and Barto 1998). Singh et al. (2000) establish
convergence results for single-step on-policy algorithms, such as SARSA(0). They also argue that analysis
of on-policy algorithms is more difficult compared to their off-policy counterparts, since in the later the
learning policy and value updates can be separated in the analysis. For instance, Kearns and Singh (1999)
study the convergence and convergence rate of Q-learning (as well as an indirect learning algorithm), and
Kearns and Singh (2002) establish polynomial bounds on the resources required to achieve near-optimal
return by a variation that simulates the system until enough information is collected on a set of states and
then uses optimization routines to update the value of these “known” states.

In this paper we design a learning algorithm based on Sampled Fictitious Play (SFP) that not only keeps
estimates of the optimal value and the optimal action for each state but also estimates system parameters
(the transition probability distribution). We assume for simplicity that the randomness in the system depends
on the state but is independent of the action taken. This assumption holds for many practical problems.
For example, in inventory control problems (Puterman 1994) the demand is typically independent of the
production amount. In dynamic location problems (Rosenthal et al. 1978), the action (positioning of the
equipment trailer) does not influence the random disturbance (the location of the next work request). Even
if this assumption is not satisfied (i.e., the random disturbance depends on not only the state but also the
action), the algorithmic approach we propose in this paper can still be used with slight modifications and
the convergence analysis can be adapted for the modified approach.
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In designing our algorithm we use (Sampled) Fictitious Play concepts. FP is an iterative algorithm used
to imitate analysis by players engaged in learning each others’ behaviors in a game (Brown 1951, Robinson
1951) and it has been shown to converge to a Nash Equilibrium for identical interest games (Monderer
and Shapley 1996). At every iteration of FP, each player (or decision maker) calculates (“plays”) the best
reply, i.e., the action that optimizes his expected utility, assuming that the other players select their actions
independently at random according to the empirical distributions of their own best replies from the previous
iterations. This approach is computationally time consuming since finding, for each player, a best reply
that optimizes his expected utility can potentially require calculation of utility values of all combinations
of actions of all players. Lambert III et al. (2005) proposed a Sampled Fictitious Play (SFP) algorithm, in
which best replies to a sample of actions drawn from the history of best replies are calculated, and showed
that it converges to a Nash Equilibrium of identical interest games if the sample size is increased at an
appropriate rate. Computational requirements of each iteration of the SFP algorithm are dramatically less
than that of FP, especially while the sample sizes are sufficiently small.

To facilitate application of these concepts in our algorithm, we define a game on a homogeneous infinite
horizon MDP by treating the states and feasible actions in each state as the players and actions available
to each player, respectively. In this framework, a collection of actions played by all players defines a
stationary policy for the MDP problem. The identical payoff each player receives is then naturally defined
to be the expected total discounted reward (or cost) of this policy. (A related approach has been used in
applying SFP to finite horizon model-free stochastic DPs in Epelman et al. (2011).) A direct application
of SFP in this setting (using a sample of size 1 for illustration) would be to have each player sample an
action from his history of best replies and then to calculate, for each player, a payoff-optimizing action
given the policy induced by actions sampled by the other players. However, since we consider problems
for which the system dynamics are not readily available, estimating the relevant costs associated with each
policy would require extensive system observations or simulations in each iteration of SFP. Instead, in the
spirit of interactive learning, in the proposed algorithm we maintain estimates of the optimal values of
the states, along with estimates of relevant probability distributions, and use these estimates in best reply
calculations at each iteration.

Specifically, throughout the algorithm we maintain estimates of the probability that a given outcome
of state-dependent random disturbance occurs, and an estimate of the optimal value, as well as a history
of past best reply actions, for each state. At each iteration, we implement an action sampled from the best
reply history for the current state, and then observe the random disturbance. Based on this observation,
we update the estimate of the random disturbance probability, and then, using these updated estimates, as
well as the current value estimates, we calculate the new best reply action for the current state and add
it to the history. Finally, the value estimate of the current state is updated using the best reply action.
The system then transitions to the next state according to the implemented action and observed realization
of the disturbance. The resulting method is an off-policy algorithm, since the implemented actions are
different from the ones used in value estimate updates. On the other hand, the empirical distribution of
best replies can be viewed as a probabilistic estimate of the optimal action in that state, and adding the
new best reply action to the history serves as an update of this estimate, increasing the probability that this
action is sampled next time the system re-enters the state. This connection between the learning policy
and the value update method provides an unique balance between exploration and exploitation within the
reinforcement learning framework.

An additional distinction of the proposed algorithm is that it does not require the user to select and
“tune” any input parameters (e.g., step sizes in value updates or parameters of sampling distributions). This
makes the algorithm easier to implement, and possibly more robust in its performance.

This paper is organized as follows: in Section 2, notation and assumptions are given. In Section 3, the
algorithm is described. Section 4 discusses convergence. The algorithm is tested on dynamic location and
windy gridworld problems in Section 5, with conclusions following in Section 6.
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2 NOTATION AND ASSUMPTIONS

We consider an infinite horizon, discrete time, homogeneous Markov Decision Process (MDP) defined by
the collection of objects (S;As, p(·|s,a),c(s,a), ∀s ∈ S), where (see, e.g., Puterman 1994)

• S is the set of states (|S|< ∞, where |S| is the cardinality of set S);
• As is the set of feasible actions in state s ∈ S (|As|< ∞);
• p(s′|s,a) = Prob(st+1 = s′|st = s,at = a) is the probability the system transitions into state s′ at

time t +1 given the system is in state s and the action a ∈ As is chosen at time t;
• c(s,a) ∈ R is the immediate cost of choosing action a in state s.

Once an action a is chosen in state s, an exogenous random disturbance is realized and the system
transitions into state s′. We assume that the random disturbance depends on the current state s but is
independent of the action a chosen. As mentioned earlier, inventory control problem (Puterman 1994) and
dynamic location problems (Rosenthal et al. 1978) are examples of problems that satisfy this assumption. In
both of these examples, however, an action needs to be taken before the outcome of the random disturbance
is observed, which is the structure we assume throughout the paper. We use the following notation to
represent the random disturbance and the transitions in the system:

• ω(s) denotes the total random disturbance, which is assumed to be independent of action taken in
state s. Sample space Ω(s) of outcomes of ω(s) is assumed to be finite for every state s.

• p(ω(s) = ω̂(s)|s) denotes the probability that realization ω̂(s) ∈Ω(s) of random disturbance ω(s)
occurs when the system is in state s. We will use the shorthand p(ω̂(s)) to represent this probability.

• f (s,a, ω̂(s)) is the system evolution function. That is, given a realization ω̂(s) of ω(s) and action
a ∈ As, the system will transition from state s to the (deterministic) state f (s,a, ω̂(s)).

Using the notation defined above, the transition probabilities in the MDP can be written as follows:

p(s′|s,a) = ∑
ω̂(s)∈Ω(s)

p(ω̂(s))1{ f (s,a,ω̂(s))=s′},

where 1{·} is the indicator function.
In this paper, we focus on finding a stationary policy that minimizes discounted expected cost in the

above MDP, with γ ∈ (0,1) denoting the discount factor. (Contrast this with online learning, where the
total discounted cost incurred during learning is considered, Szepesvári 2010.) It is well-known (see, e.g.,
Puterman 1994, Bertsekas and Tsitsiklis 1996) that the optimal state values (or costs to go) J(s), s ∈ S,
satisfy Bellman’s equation

J?(s) = min
a∈A(s)

[
c(s,a)+ γ ∑

ω̂(s)∈Ω(s)
p(ω̂(s)) J?( f (s,a, ω̂(s)))

]
,

and the actions attaining the minimum form an optimal deterministic stationary policy.
We assume that feasible states, actions in each state of the problem and costs of these actions are

known, but little or no information is available about the probability distribution of the random disturbance.
That is, the distributions of random variables ω(s), s ∈ S, are not known, but a realization of ω(s) can
be observed every time the system visits state s. Thus, this problem fits into the reinforcement learning
framework as described by Sutton and Barto (1998).

3 SFP BASED LEARNING ALGORITHM (SFPL)

A learning approach for solving the problem in this setting is to observe and learn about the system dynamics
under an implemented policy, while updating this policy as more information about the system becomes
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available. To make the approach suitable for learning while interacting with the real system, updates are
coordinated with observations of transitions; therefore, the iteration count of the algorithm coincides with
the real time during which the system evolves. We use subscript t to refer both to the iteration of the
algorithm and the real time.

The following notation is used to describe the SFP-Based Learning Algorithm (SFPL):

• MDP denotes the infinite horizon homogeneous Markov Decision Process under consideration.
• Jt(·) : S→ R is the estimate of the optimal value function for MDP returned by the algorithm at

iteration/time t. (With a slight abuse of notation, we also refer to Jt ∈ R|S| as a value vector.)
• pt(·|s,a) and pt(ω̂(s)) denote estimates of, respectively, p(·|s,a) and p(ω̂(s)) at iteration/time t.
• MDPt is the Markov Decision Process defined on the same state and action space as MDP with

the difference that the transition probabilities are given by pt(·|s,a), ∀s ∈ S, a ∈ As. (Note that
Jt(s), s ∈ S do not denote the optimal state values in MDPt .)

• It(s) is the number of times the process has visited state s up to (and including) iteration/time t.
• H(s) is the history of “best reply” actions for state s (see algorithm description for more details).
• W (s) is the vector of realizations of ω(s) observed up to (and including) the current iteration.

By definition, the size of vectors W (s) and H(s) at iteration t is equal to It(s) for all s except possibly the
current state of the system (for which the associated objects are being updated during the current iteration).
Moreover, estimates pt(·|s,a) and pt(ω̂(s)) are related by

pt(ω̂(s)) =
# of times ω̂(s) is observed in state s up to and including iteration t

It(s)
=

∑
It(s)
i=1 1{Wi(s)=ω̂(s)}

It(s)
. (1)

SFPL is initialized at a random state (unless the starting state is already identified) and all histories are
set to be empty. In each iteration t ≥ 1, an action is selected by sampling (uniformly) an element from the
history vector for the current state st (if the history is empty, a feasible action is sampled) and the random
disturbance in the system is observed. Based on this observation, the estimates of the random disturbance
probabilities pt(ω̂(st)) are updated and a best reply a? for state st is calculated based on estimates pt(ω̂(st))
and Jt−1(·). The best reply action is then added to the history of st , and a new value estimate Jt(st) is
calculated utilizing a?. Finally, the system transitions into the next state given by f (st ,a?, ω̂(st)). Notice
that this is an off-policy method: the action sampled from history is implemented and thus affects the
transition, whereas the action used in updating the estimate of the value is a?.

SFPL is designed for problems which satisfy the assumption that the probability distribution of the
random disturbance is independent of the action. However, the algorithm can be modified if this assumption
is not satisfied, albeit possibly at the cost of additional storage requirements. For instance, post-decision
states (Powell 2007) may be used, or the count of random disturbance realizations will need to be recorded
for each state-action pair. Convergence analysis will need to be modified accordingly. Although these
modifications may increase the memory requirements of the algorithm, the computational requirements of
the algorithm would be similar.

3.1 Outline of Algorithm SFPL

Below, notation X ← [X ,x] represents the concatenation operation.

• Initialization:
– Assign initial values to J0(s) for all s ∈ S. Set H(s) = [ ], I0(s) = 0, W (s) = [ ] for all s ∈ S.
– Set t = 1 and observe s1 ∈ S. (This is the state where the process starts.)

• Iteration/time t ≥ 1 (below, st ∈ S represents the state at the beginning of iteration):
State:
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– It(st) =

{
It−1(st)+1 if s = st ,

It−1(st) if s 6= st .
Action:

– Select an action at uniformly at random among elements of H(st) (if H(st) is empty, select
an action at from Ast uniformly at random).

– Observe the realization ω̂(st)of the random disturbance ω(st); updateW (st)← [W (st), ω̂(st)].
Computation:

– Calculate the “best reply”:

a? = argmin
a∈Ast

{
c(st ,a)+ γ

1
It(st)

It(st)

∑
i=1

Jt−1( f (st ,a,Wi(st)))

}
, (2)

where Wi(st) is the ith component of vector W (st).
– Update the history H(st)← [H(st), a?].
– Set

Jt(s) =

c(s,a?)+ γ ∑
ω̂(s)∈Ω(s)

pt(ω̂(s)) Jt−1( f (s,a?, ω̂(s))) if s = st ,

Jt−1(s) otherwise,

where pt(ω̂(s)) is given by (1).
Transition:

– Set st+1 = f (st ,at , ω̂(st)).
– Update t← t +1.

4 CONVERGENCE OF SFPL

The following convergence result is proven in Sisikoglu (2009):
Theorem 1 Assuming that, regardless of the policy employed, every state is visited infinitely often due
to the inherent randomness in the system, lim

t→∞
Jt(s) = J?(s), with probability 1,∀s ∈ S.

The assumption is satisfied, e.g., if the markov chain induced under any stationary deterministic policy
in the MDP is irreducible. The proof of Theorem 1 uses the infinitely many visits to each state to show that
the estimates of probability distributions of the random disturbance in each state become asymptotically
accurate, leading in turn to asymptotically accurate estimates of each state’s optimal value.

There are various problem classes that satisfy the assumption of Theorem 1. For example, for the
version of the windy gridworld problem (Section 5) described in Şimşek and Barto (2006), any state
neighboring the current one can be visited in the next iteration with a constant probability. In a capacitated
inventory control problem, if negative demand represent returns and can be at any feasible level with
positive probability, this assumption would also be valid. A relaxed version of the assumption, where only
states that are recurrent under an optimal MDP policy are visited infinitely often is sufficient to prove that
value estimates for those relevant states converge to optimality.

Intuition suggests that SFPL is likely to find the optimal actions in the states recurrent under the optimal
policy by setting J0(s) < J?(s), ∀s ∈ S, and/or populating histories of each state by all feasible actions.
Since the action implemented at each iteration is sampled from history, each player/state will try to explore
and choose diverse actions initially. The numerical results on an instance of gridworld problem given in
Section 5 supports this intuition: SFPL visits the states in the recurrent class of the markov chain induced
by the optimal policy more often than other states, and quickly discovers the optimal actions and optimal
values of these states.
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5 NUMERICAL RESULTS

We use the dynamic location problem adapted from Rosenthal et al. (1978) and the windy gridworld
problem described in Sutton and Barto (1998) to test performance of the SFPL algorithm, and compare it
to simple versions of Q-learning and SARSA algorithms. All computations were performed in MATLAB
on a laptop with 2 GB RAM and 2.0 Ghz CPU (Intel Core II Duo Processor).

5.1 Dynamic Location Problem

The dynamic location problem analyzed in this section is adapted from Rosenthal et al. (1978); it is
also referenced in Puterman (1994). A workforce that serves Q facilities moves between these facilities
according to a stationary probability distribution given by probability transition matrix P, where Pi j is the
probability that the workforce moves from facility i to facility j. An equipment trailer can be located at
any of the facilities in Q. The cost of moving the trailer from i to j is denoted by Ri j. If the workforce is
located at facility i and the trailer is at facility j, then Ui j denotes the cost of obtaining equipment from the
trailer. The problem is modeled as an infinite horizon MDP by defining the states to be the tuple (w,r),
where w and r are the location of the workforce and the trailer, respectively.

We used an instance with 4 facilities, and thus 16 states, and the following costs and probabilities:

R =


0 100 200 300

100 0 100 200
200 100 0 100
300 200 100 0

 , U =


0 999 999 999

200 0 100 100
200 100 0 100
200 100 100 0

 , P =


0 0.5 0.5 0
0 0 0.6 0.4

0.1 0.4 0.1 0.4
0.25 0.25 0.25 0.25

 .

It is important to note that the probability distribution of the workforce location (i.e., the random disturbance)
given above is only used to simulate the system and to calculate the optimal solution of the problem. The
algorithms we tested do not have access to P; instead they estimate it by observing the system.

We compared SFPL to a simple version of Q-learning with the ε-greedy learning policy. Implementation
of Q-learning requires a choice of sampling parameter ε and a step size α used in value update. Convergence
properties the algorithm strongly depend on the choice of these parameters. George and Powell (2006)
list various step size parameters and discuss the effect of various choices. The results presented below
were obtained for the following “default” choices of parameters: ε = 0.1 and α = 1/I(s,a), where I(s,a)
is the number of times the value of state-action pair (s,a) has been updated. While we acknowledge
that parameter tuning can improve performance of Q-learning, such tuning was beyond the scope of our
experiments. Since SFPL requires no parameter tuning, this illustrates its ease of implementation.

To compare the performance of SFPL and Q-learning on the dynamic location problem, the two
algorithms were run for the same amount of CPU time. Figure 1 compares the values computed by SFPL
and Q-learning for state w = 1, r = 1 (which we label simply as State 1) as a function of CPU time elapsed
for problem instances with various discount rates (γ = 0.25, 0.50, 0.75, 0.9). The optimal value of State
1 in MDP (the system with the true probability distribution p(ω(s))) and in MDPt (the estimated system
at time t with the probability distributions pt(ω(s))) are also plotted for comparison. (Optimal solutions
of MDP and MDPt for all t were computed off-line.) This comparison provides valuable insights into the
performance of SFPL. For example, as shown in Figure 1, values returned by SFPL are very close to the
optimal solution of the estimated system MDPt after a short time. This implies that SFPL quickly starts
choosing the true optimal actions based on the current knowledge of the system. As can be seen from the
figures, Q-learning and SFPL are comparable for lower discount rates; however, performance of Q-learning
deteriorates for higher discount rates, while performance of SFPL is unaffected.

Figure 2 shows absolute value differences between the values returned by SFPL and Q-learning at
termination (given the same amount of CPU time) and the optimal values J?(s) of all states for γ = 0.5 and
γ = 0.75. As before, performance of the two algorithms is comparable for lower discount rates; however,
SFPL performs significantly better for higher discount rates.
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(b) γ = 0.50
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(c) γ = 0.75
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Figure 1: Progress of value estimates for State 1 of the dynamic location problem in SFPL and Q-learning,
and its optimal values in MDP and MDPt .
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Figure 2: Differences between the the optimal values of each state of the dynamic location problem and
the values returned by SFPL and Q-learning.
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5.2 Windy Gridworld

The windy gridworld problem involves traveling in a grid each column of which is subject to winds of
various strengths. We use the grid given in Sutton and Barto (1998), also shown in Figure 3a. The number
below each column represents the mean strength of the wind blowing towards North (upward) affecting
only that column. The strength of the wind is random and possibly changes every time a state in that
column is visited. We assume that in each column the wind strength can be one unit above, one unit below,
or at its mean value equally likely at any time; i.e., if the mean strength of the wind is 0 , then with 1/3
probability the wind blows South with strength 1, with 1/3 probability the wind blows North strength 1,
and with 1/3 probability there is no wind in effect. (Once again, the probability distribution of this random
disturbance is only used to simulate the system; it is not known to the algorithms compared in this section.)
In each state the feasible actions are to move in one of the eight possible directions, namely E, SE, S, SW,
etc. Once an action is chosen, the next state is determined by the current state (i.e., the current location),
the action in the current state (i.e., the movement direction) and the realization of the wind strength at this
time. If the resulting state is outside the boundaries of the grid, then it is mapped back to the closest state
within the boundaries. The goal is to minimize the expected travel time from point S to point F in the
grid. Thus, the cost of each decision is taken to be 1, and the objective is to minimize total expected cost.
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Figure 3: (a) Windy Gridworld Problem; (b) The value estimates of the initial state S returned by SFPL,
SARSA and by running value iteration on the intermediate estimated system MDPt . The optimal value
under the true probabilities is also included for comparison.

To apply SFPL to this problem with an absorbing state, the system was restarted at the initial state
(point S) once the destination (point F) was reached. One run, from S to F , is called an episode (see, e.g.,
(Szepesvári 2010)). Note that this problem does not satisfy the assumptions of Theorem 1: some states
may not be visited infinitely often under some policies. Moreover, γ = 1. As we will see, the numerical
results obtained support the intuitive argument in Section 4 that the values of the states in the recurrent
class of the induced markov chain under the optimal policy converge to the optimal values.

We compared SFPL with the SARSA algorithm (Sutton and Barto 1998). We used the implementation
code for SARSA(0) developed by John Weatherwax available online at (Weatherwax 2005). For the SARSA
algorithm we set the ε-greedy sampling parameter ε = 0.1 and the step size α = 1

I(s,a) , where I(s,a) is the
number of times the value of state-action pair (s,a) has been updated.

In SFPL, the values of all states are initialized at value 0. We ran SFPL and SARSA for one minute of
CPU time. During this time, SFPL completed around 2,000 episodes, whereas SARSA completed around
15,000 episodes. At the end of each episode of SFPL, we also calculated (off line) the optimal solution of
MDPt by running the classic synchronous value iteration algorithm with the most up-to-date estimate of the
probability distribution of the wind strength; these values are provided for comparison. Figure 3b shows
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value estimates of the initial state S returned by SFPL and SARSA at the beginning of each episode, as a
function of CPU time elapsed. The optimal value of S in MDP and MDPt are also plotted for comparison.
Note that SFPL finds values closer to the optimum faster than SARSA. Figure 4 shows the absolute value
difference between the final estimated values returned by SFPL and SARSA and true optimal values of the
states. The blue color (indicating high approximation accuracy) is dominant on the states that are to the
South of the states S and F, identified by dots, in both figures. This is because both algorithms sample the
optimal action, which is to move in the SE direction, more often than other available actions, and therefore
the value estimates of the states to the South of the grid get closer to the optimal values. These figures
also show that error of the value estimates obtained by SFPL is significantly smaller than that of SARSA
on all states (note that the color-wash scale had to be made different in the two figures; e.g., a dark red
square represents an error which is an order of magnitude smaller for SFPL than for SARSA). Another
way to compare these algorithms is to check if they successfully identify the optimal actions. Policies
returned by SFPL and SARSA are presented in Figure 5 (colors represent the nominal value of the wind
in each column). The red arrows in each state represent the optimal action, and the black arrows denote
the action returned by the algorithms; only the red arrow is shown if the two coincide. According to the
figure, SFPL found the correct actions for more states than SARSA.
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Figure 4: Absolute value difference of the final estimated state values returned by (a) SFPL and (b) SARSA
and the optimal values.

SFPL Policy Map
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SARSA Policy Map
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Figure 5: Policy returned by SFPL (a) and SARSA (b) (black arcs) vs. the optimal policy (red arcs).

In each iteration of SFPL, the best action in the current state is obtained by calculating and comparing
the expected value of each feasible action, cf. equation (2). Thus the computational workload per iteration
of SFPL is higher than for SARSA and Q-learning. Our presentation of algorithm progress as a function of
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CPU time allows for a fair comparison. Our results suggest that the magnitude of improvement obtained
in each iteration of SFPL is higher.

Another important property that affects an algorithm’s performance is its memory requirement. Q-
learning and SARSA maintain an estimate of the value of each state-action pair. Therefore, these algorithms
need to keep a data structure of size O(|S|×maxs |As|). In SFPL, the history of best replies and the history
of random disturbances are recorded. However, this data is only used to construct empirical distributions.
Therefore, the memory requirement of SFPL is O(|S| ×maxs(max{|As|, |Ω(s)|})). Depending on the
problem structure (specifically, maxs |Ω(s)|), the memory requirements of SFPL may be larger than those
of Q-learning and SARSA.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed SFPL — a learning algorithm designed, using SFP concepts, to solve homo-
geneous discrete MDPs with unknown transition probabilities. The algorithm can be seen as an off-policy
reinforcement learning algorithm. However, the particular learning policy used — in which implemented
actions are sampled from the history of best replies computed for each state — provides an unique balance
between exploration and exploitation within the reinforcement learning framework. Moreover, the algorithm
is free of any parameters that need to be selected and tuned, unlike most other reinforcement learning
methods, leading to simpler implementation.

Initial experiments with SFPL suggest that using the history of best replies to sample actions helps
to discover the states in the “recurrent class” of the induced markov chain under the optimal policy and
therefore find better value estimates for these states. Also, for a discounted MDP, SFPL performed robustly
for a range discount rates, unlike Q-learning and SARSA(0).

In the future, we intend to test SFPL on larger-scale problems, and compare it to more modern
reinforcement learning algorithms. On the theoretical side, we would like to find the weakest possible
forms of the assumption in Theorem 1 that make provable convergence possible. The possibility of a
rigorous analysis of the algorithm’s convergence rate is also an open question.
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