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ABSTRACT 

Due to its wide application in many industries, discrete optimization via simulation (DOvS) has recently 
attracted more research interests. As industry systems become more complex, advanced search algorithms 
for DOvS are desired with higher expectation towards efficiency. In this research work, we combine the 
ideas of single-objective Convergent Optimization via Most-Promising-Area Stochastic Search 
(COMPASS) with the concept of Pareto optimality to propose multi-objective (MO) MO-COMPASS for 
solving DOvS problems with two or more objectives. Numerical experiments are illustrated to show its 
ability to achieve high efficiency. 

1 INTRODUCTION 

It is obvious that, recently, discrete optimization via simulation (DOvS) has had broad application in cer-
tain industries such as manufacturing, logistics and services, and is attracting more research interests as 
well. A simple reason is due to the fact that the performances of these systems largely depend on integer 
settings like the staffing or inventory level, number of equipments, products or customers. Besides, we 
noted that in some circumstances, continuous decision variables should also be considered in a discrete 
sense, for instance, the manufacturing time is usually calculated in number of shifts.  

In DOvS problems, quite often the increasing complexity is the key issue of concern and that is usual-
ly caused by complicated system designs. To be more specific, as the number of candidate designs is fac-
torized by each design criterion, it increases exponentially as more criteria are taken into consideration. In 
order to make in-time decisions for industries, DOvS needs more efficient search algorithms. 

The Convergent Optimization via Most-Promising-Area Stochastic Search (COMPASS) (Hong & 
Nelson, 2006) was proposed for this purpose. With this method, solutions are sampled stochastically 
within the most-promising-area, in which all solutions have shorter Euclidian distance to the current op-
tima than the distance to any current non-optima. The solutions are to be evaluated according to certain 
simulation allocation rule (SAR) and used to construct the next most-promising-area. It has been proven 
that the searching converges to the local optima regardless of the searching space being constrained. 

However, the COMPASS approach has the limitation that it can only be applied on single-objective 
problems. It is not sufficient, as nowadays systems often have multiple performance measurements. Alt-
hough some multi-objective problems can be converted to single-objective by assigning a weightage to 
each measurement, when there is no consensus about the weightage or in the situation that measurements 
are not compromising, it will make more sense to provide the Pareto Set, i.e., all non-dominating solu-
tions (Lee et al. 2006, 2008 and 2010) to the decision makers. 

A typical multi-objective DOvS application in aerospace industry is D-SIMSPAIRTM, a simulation-
based planning and optimization system developed by D-SIMLAB Technologies Pte. Ltd. (Chan et al. 
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2006; Lendermann et al. 2010). The main purpose of the system is to provide aircraft spare parts OEM or 
its designated service provider with the optimal inventory configuration that satisfies targeted service lev-
el at minimum cost, by evaluating the performance via simulation. Obviously, the inventory level of each 
part stored in stock locations are the integer decision variable we can manipulate, and at least two perfor-
mance criteria, namely the achieved service level (or the probability of achieving target level) and the re-
alized cost, are the objectives we are interested in. 

For big airlines or OEM companies, it is common that a flight network contains more than five pool 
stock locations for a spare part, and each part has an inventory level up to 30 at each location. Clearly, if a 
full-enumeration scheme is adopted, we need 305 trials to visit all possible solutions, which implies that if 
each visit take 1 second to run the simulation, the optimization process will complete only after 281 days. 
More severe situation arises when we take more stock locations into consideration, for example, with 6 
stock locations, 306 visits will takes 23 years. D-SIMSPAIRTM has been adopting heuristics-based ap-
proach to reduce this complexity, hence speeding-up the optimization process. But to bring the capability 
(scalability in problem size) of D-SIMSPAIR to a new level, a revision to the optimization algorithm is 
required. 

D-SIMSPAIRTM is one of the example showing a strong call from industries for high efficiency algo-
rithm in solving multi-objective DOvS problems. Since COMPASS works well for single-objective 
DOvS, this research follows its idea together with the fundamentals of solving multi-objective (MO) 
problems. We propose a MO-COMPASS algorithm that adapts to multi-objective circumstances and il-
lustrate numerical examples to show its ability in achieving the desired efficiency. 

2 BACKGROUND 

Before explaining the algorithm of MO-COMPASS, it is important to gain some basic knowledge about 
the working mechanism of single-objective COMPASS and the concept of Pareto optimality.  

2.1 Single-Objective COMPASS 

The introduction of single-objective COMPASS is based on Hong & Nelson (2006). 
For a fully constrained problem, consider the searching space is   and for each x


 the expected 

single performance measurement is  xg


, which is estimated by aggregated sample average  xG


 from 

simulation results. Without any preliminary knowledge, the most-promising-area C  is initially set to  . 
Let V  be the set of all visited solutions. Every iteration, stochastically select m solution from C  to 

be included in V  and apply SAR on it to find the solution with the minimum aggregated sample average, 
and use it to refine the most-promising-area, i.e., 

 xGx
Vx




 minargˆ* , 

 yxxxxyVyxxC
  ** ˆ,ˆ,,| . 

 
We should take note that the selection of SAR affects the efficiency of search algorithms, as the 

search algorithm determines which solutions to visit while the SAR decides how much simulation budget 
to spend on each visit. According to Hong & Nelson (2006), a valid SAR for COMPASS should satisfy 
two conditions: (1) the simulation budget allocated to newly visited solution should not be zero; (2) as to-
tal budget approaches infinity, the budget allocation to each visited solution should approach infinity as 
well.  

In Xu, Nelson & Hong (2010), it is stated that fixed schedules or OCBA (optimal computing budget 
allocation) ideas can be adopted for COMPASS. Moreover, some SARs are integrated with search algo-
rithm. For example, He et al. (2010) propose an integrated cross-entropy method with OCBA. 
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It is proven that repeating the process will lead the estimated *x̂


 converge to the local optima (Hong 
and Nelson 2007). The searching process can be terminated either when simulation budget is exhausted or 

all neighboring solutions of *x̂


are visited. The process can be illustrated by Figure 1. 
 

 

Figure 1: Illustration of single-objective COMPASS 

For a partially or unconstrained problem, searching starts from a constrained subset and follows the 
similar steps as for fully constrained problems, but the boundaries of the subset are revised accordingly 

for each iteration so as to reserve certain buffer in each direction from *x̂


when it is available. 

2.2 Pareto Optimality 

To compare two multi-objective solutions, besides looking at the weighted sum of various measurements 
as a single compromising solution (Butler, Morrice, and Mullarkey 2001; Swisher, Jacobson, and Yüce-
san 2003), it is more suitable to compare measurement for individual objective (Lee et al. 2006 and 2010). 
A solution is claimed to dominate another if and only if all its objective measurements are superior to the 
other’s. Thus, in optimization, instead of looking for a single best solution among  , we are more inter-
ested in finding a set of solutions that are not dominated by the others. We claimed those solutions as best 
among  and the set is referred as the Pareto set: 

 
    xgygyxx





,,|\   
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Similar to single-objective problems, it is difficult to obtain a full Pareto set especially in a huge solu-

tion space, since most of the time we are not able to deny the possibility that the current Pareto solution 
being dominated by some unvisited solutions. Whereas,  according to following definition, we can claim a 
local Pareto optimality without visiting all feasible solutions. 

The definition of local Pareto set for a continuous problem has been proposed by Deb (1999), and the 
definition of local optimality has been adopted by single-objective COMPASS (Hong & Nelson, 2006). 
Similarly, we can define local Pareto optimality for a multi-objective discrete problem. 

 
Definition 1 For a discrete problem defined on  , a solution set P  is claimed as local Pareto 

set (LPS) if and only if none of its element is dominated by any other solutions in P , or any neighboring 
solutions that has unit Euclidean distance to P  (i.e., to the nearest solution in set P ). 

 
Or, in mathematical form we can define LPS as: 
 

  xzzyzPyxP





,1,,|   

 
An illustration can be shown by the 4th part of Figure 2 (i.e., Iteration K). As all the circled solutions 

are incomparable with each other, and all their un-circled neighbors are visited and shown to be non-
dominating (simply because the circled ones are interim Pareto solutions among all visited), any set of 
circled solutions can be claimed as a LPS. 

However, in multi-objective optimization we usually require the Pareto solutions to be more explora-
tive. Thus we extend the definition of LPS as follows. 

 
Definition 2 For a discrete problem defined on  , an LPS P  is claimed as closed local Pareto set 

(CLPS) if and only if each neighboring solution that has unit Euclidean distance to any element of P , ei-
ther belongs to P  or be dominated by some solution in P . 

 
Again in part 4 of the Figure 2, the set of all circled solutions are claimed as a CLPS as it satisfies the 

conditions in Definition 2. 
Aiming to identity a closed local Pareto set for a multi-objective DOvS with high efficiency, we ex-

tend the single-objective COMPASS algorithm to the multi-objective framework. 

3 MO-COMPASS ALGORITHM 

The MO-COMPASS algorithm can be structured following the basic principle of single-objective 
COMPASS, meaning the most-promising-area is constructed according to Euclidean distances to both 
“good” and “bad” solutions.  

The only difference is that in multi-objective problem, “good” solutions refer to those contained in in-
termediate Pareto set. Since they are incomparable among each other, the most-promising-areas are con-
structed for each Pareto solution and are treated indifferently in terms of the chances of sampling new so-

lutions. To be more specific, assuming k  is the Pareto set at iteration k  and kV  is the set of all visited 

solutions, the most-promising-area kC  is defined as: 

 

 




kz
kkk yxzxVyxxC



 ,\,|  

 
Then the algorithm is described as follows: 
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Step 0: Let iteration count 0k , 0C  and 0V .  

Step 1: Let 1 kk . Sample a set of unvisited solution kX  from 1kC  with batch size 

 11 \,min  kkk VCmX and let kkk XVV  1 . For all solutions in kV , apply SAR to collect simula-

tion observations and identify the Pareto set k accordingly.  

Step 2: Based on k  and kV , construct kC  and go to Step 1. 

 
Similar to the single-objective COMPASS, the iteration can be repeated until simulation budget is 

exhausted or the CLPS is identified. It should be noted that, k  is the set of non-dominated soluteons 

among all visited solutions at any iteration k ; thus, if all feasible solutions are visited upon termination, 
the obtained CLPS becomes the global Pareto set (GPS). The algorithm is illustrated by Figure 2. 

However, since in MO-OCMPASS we are looking for a set of Pareto solutions instead of a single op-
tima, it is possible that the solutions in the neighborhood of a Pareto solution are also involved in the set. 
To avoid duplicated sampling we only count newly visited solutions into the batch size m , which is dif-
ferent from single-objective COMPASS. 

 
 

 

 

Figure 2: Illustration of MO COMPASS 
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The MO-COMPASS is able to apply a method for dealing with partially constrained or unconstrained 

problems that is similar to single-objective COMPASS, by updating the boundaries of hyper-rectangular 
searching subset to reserve buffer area for each Pareto solution when it is available. 

For random selection from kC , Hong & Nelson (2006) proposed a revised Mix-D (RMD) method, 

that was only applicable to problems with convex solution set. Since in MO-COMPASS kC  can be non-

convex, we divide the selection into two steps: firstly uniformly select a Pareto solution kz   and then 

apply RMD on the subset    yxzxVyxxzP kkk

  ,\,| . It is obvious that, 

 




kz
kk zCC



  and each  zCk


 is a convex set. By doing so, although each  zCk


  has equal probabil-

ity to be selected, solutions lying in overlapping areas tends to have larger chances. Intuitively, it is con-
sistent with our design principle as multiple approaches to one Pareto solution may imply higher probabil-
ity of it also being a Pareto solution.  

Based on RMD, Xu, Nelson & Hong (2010) improve the sampling procedure further by reducing re-
dundant linear constraints that form the convex set. The same concept can be adopted for MO-COMPASS. 

4 NUMERICAL EXAMPLE 

4.1 Multi-Objective Quadratic Problem 

The algorithm can be tested by constructing a multi-objective mathematical problem defined on 

  mdd
n nZ  ,0  where each objective is a quadratic function formulated as  

   



d

j
ijji xxxf

1

2*
 for mi 1 , 

in which *
ix


, the true optima for i th objective is selected uniformly in d
nZ . 

Without knowing the formulation but only the returned objective values based on given solution, we 

apply the MO-COMPASS on d
nZ . In this experiment, we are testing the algorithm efficiency in term of 

number of visits before reaching the closed local Pareto set (CLPS, see Definition 2), but not the simula-
tion budget spent on it. So the problem is formulated as deterministic, meaning there is no noise term in-
cluded. 

Besides, according to the problem we constructed, it is easy to observe that even when the number of 
objectives m  remains the same, the size of CLPS increases geometrically as dimension d  becomes 
higher. Thus in the experiment, for easy test and comparison, we control CLPS size as 2 by setting 2m  

and selecting adjacent  *
0x


 and *
1x


that satisfies 1*
1

*
0  xx


, thus CLPS  *

1
*
0 , xx
 . Since the CLPS 

contains all Pareto solutions in the searching space, we note that it is also the GPS. 
Varying the dimension d  and scalar n , we test 30 independent applications of MO-COMPASS by 

initiating with different random seeds. The average number of visits before reaching the CLPS is shown 
in Figures 3-4 and Table 1. 

Note that the Pareto solution *
0x


 and *
1x


 are set randomly for each d  and n , but remains the same 

across independent MO-COMASS trials. Thus, the overall trend is not biased by the location of CLPS. In 
addition, the result also indicates that the effect of differing CLPS locations is smaller, as the trend versus 
d  and n  can be clearly identified. 
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Figure 3: Average number of visits before reaching CLPS, as nvaries 

 

 

Figure 4: Average number of visits before reaching CLPS, as d varies  
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Table 1: Proportion of solutions visited before reaching CLPS, as d varies (%) 

 d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10 

n=10 62.7 16.8 2.97 6.02x10-1 9.47x10-2 1.50x10-2 2.06x10-3 3.56 x10-4 4.56 x10-7 6.37x10-8 

n=20 39.1 4.85 4.84x10-1 4.37x10-2 3.47x10-3 2.89x10-4 2.12x10-5 1.67x10-6 1.11x10-7 8.00x10-9 

n=30 28.9 2.51 1.57x10-1 9.25x10-3 5.25x10-4 2.84x10-5 1.44x10-6 7.60x10-8 3.28x10-9 1.58x10-10 

n=40 22.7 1.47 7.24x10-2 3.17x10-3 1.37x10-4 5.45x10-6 2.12x10-7 8.39x10-9 2.73x10-10 9.90x10-12 

n=50 19.5 1.02 3.99x10-2 1.38x10-3 4.76x10-5 1.50x10-6 4.85x10-8 1.47x10-9 4.13x10-11 1.23x10-12 

 
From Figure 3 we observe that when dimension remains the same, the number of visits before reach-

ing CLPS increases with the scalar at a rate that is slower than linear. While, if the scalar is kept un-
changed, the increasing rate becomes steeper as the dimension is higher (Figure 4). Also, when the size 
the solution space is taken into consideration, the proportion of visited solutions will converge to zero 
(Table 1).  

Besides, all the results from our numerical settings have shown that, in a deterministic case, MO-
COMPASS is able to terminate in a CLPS with finite iterations. 

4.2 Industrial Application 

For testing its ability in solving industrial problems, we apply the MO-COMPASS in D-SIMSPAIRTM 
mentioned in Section 1. As there are two phases for its optimization procedure, namely Enumeration and 
Navigation (Lendermann et al. 2010), our testing addresses only the Enumeration phase that aims to find 
all best configurations for a part in terms of high service level and low cost. The Navigation phase, which 
is to form the optimal aggregating plan, is not addressed in this test. 

The same simulator incorporated in D-SIMSPAIRTM was used for evaluating the service level and 
cost. Besides, a simple SAR was adopted such that each design was only assigned one sufficiently long 
replication that was ensured to estimate the true performance measures with no error. 

As mentioned previously, a heuristic suggested by expert experience is adopted by D-SIMSPAIRTM 
to narrow down the searching space. For fair comparison, we incorporate the same heuristic with MO-
COMPASS, meaning that if a visited solution is considered as non-promising by the heuristic, we exclude 
it from any intermediate Pareto sets, without running the simulation. 

Table 2: Number of visits and simulations before reaching CLPS for each trial 

Random 
Seed 

Num. of Visits before 
reaching LPS 

Num. of Simulations 
before reaching LPS 

0 642 428 

1 1060 297 

2 985 284 

3 955 353 

4 752 195 

5 1032 374 

Average 904 322 

 

4077



Lee, Chew, and Li 
 
For a testing scenario containing 5 stock locations, 188,109 promising solutions are enumerated and 

simulated by the current algorithm. Applying six trials with different random seeds, we observe that on 
average 904 solutions are visited by MO-COMPASS and only 322 are simulated before reaching a CLPS 
(Table 2). In other words, 0.48% of current simulation budget is consumed for not incorporating the heu-
ristic, and 0.18% for doing so.  

At the same time, the testing result also shows that it has around 2/3 of chance to obtain the same op-
timal solutions found by the current method (since a CLPS is not necessarily the global optimal). And for 
the other 1/3 of times, the difference of the solutions, in terms of minimized cost at the same service level, 
is less than 0.01%. 

5 CONCLUSION 

In this paper, we explored an advanced search algorithm COMPASS for solving discrete DOvS problem 
together with some fundamental knowledge for solving multi-objective problems, based on which we 
proposed an extension for COMPASS to multi-objective circumstances, named as MO-COMPASS. 

With numerical example from either mathematical formulation or industry application, we have 
shown that not only MO-COMPASS is able to converge to a CLPS with finite iterations, it is also capable 
of solving large scale problems with a high efficiency. 

However, current research is under deterministic settings only, as we believe that number of visited 
solutions would be a good measure when we focus on the search algorithm instead of associated SARs. It 
may also allow us to compare fairly with other generic multi-objective search algorithms such as MO-
GAs (Deb 1999) in times to come.  

Future research will address the stochastic noise by integrating it with proper SARs, such as MOCBA 
with indifference-zone (Teng et al. 2010; Lee at al. 2010). Moreover, we may enhance it for a global con-
vergent search, similar to the single-objective industrial strength COMPASS proposed by Xu et al. (2010) 
for achieving higher convergent rate. With the extended research effort, MO-COMPASS will improve 
both its accuracy and efficiency in solving DOvS, and gain a wider industrial application. 
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