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ABSTRACT

Simulation-based ordinal optimization has frequently relied on large deviations analysis as a theoretical
device for arguing that it is computationally easier to identify the best system out of d alternatives than to
estimate the actual performance of a given design. In this paper, we argue that practical implementation
of these large deviations-based methods need to estimate the underlying large deviations rate functions of
the competing designs from the samples generated. Because such rate functions are difficult to estimate
accurately (due to the heavy tails that naturally arise in this setting), the probability of mis-estimation
will generally dominate the underlying large deviations probability, making it difficult to build reliable
algorithms that are supported theoretically through large deviations analysis. However, when we justify
ordinal optimization algorithms on the basis of guaranteed finite sample bounds (as can be done when
the associated random variables are bounded), we show that satisfactory and practically implementable
algorithms can be designed.

1 INTRODUCTION

Suppose that a simulationist is faced with the problem of determining the ‘best’ of d alternative designs for
a system, on the basis of Monte Carlo simulation of each of the designs. This describes the basic ‘ordinal
optimization’ problem, in that our goal is only to identify the best design and not to actually estimate the
performance. More precisely, we assume that the simulationist is comparing each of the d different designs
on the basis of an associated (random) performance measure X(i), i ≤ d, and that the goal is to identify
the parameter i∗ (assumed unique) for which

µ(i∗) = max
1≤ j≤d

µ( j),

where µ( j) , EX( j),1 ≤ j ≤ d. We further assume that the simulationist has the ability to generate
independent and identically distributed (iid) realizations of each of the d random variables (rv’s) X( j),1≤
j ≤ d.

A great deal is known about the construction of appropriate algorithms when the X(i)’s are Gaussian
rv’s (i.e., normally distributed); see, for example, Goldsman and Nelson (2001), Kim and Nelson (2003),
Nelson et. al. (2001), Branke, Chick and Schmidt (2005). Our goal, in this paper, is to describe a framework
for the study of such ordinal optimization problems when the underlying rv’s are non-Gaussian, as is typical
in the simulation context.
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We discuss two different types of algorithms for ordinal optimization in the nonparametric setting,
the first based on large-sample asymptotics as the theoretical justification and the second based on the
use of additional problem structure to construct guaranteed bounds that hold for any sample size. We
introduce this differentiation between algorithms that come with guarantees and those based on large-sample
approximations in Section 2, in the simpler and more easily understood context of confidence interval
construction. In Section 3, we turn to the ordinal optimization problem, and point out that there are two
natural asymptotic regimes that arise in this setting and that can be used as theoretical justification for
guiding the construction of ordinal optimization algorithms. One is based on asymptotics that arise when
the ‘indifference margin’ is small (and can be analyzed through central limit approximations), whereas
the other arises in settings where one is insisting that the probability of incorrectly eliminating the best
system be small (leading to consideration of large deviation asymptotics). Our principal interest here is in
the second context. We argue that any reasonable algorithm will need to estimate the final probability of
incorrect selection from the sample, thereby leading to a requirement that the large deviations rate functions
for the underlying random variables be estimated from the data. However, the empirical quantities that
arise in estimating rate functions tend to be heavy tailed, making it problematic to estimate the probability
of incorrect selection without introducing errors of a (much) larger order of magnitude than that associated
with the probability of incorrect selection. As a consequence, ordinal optimization algorithms that are
justified through large deviations asymptotics face fundamental difficulties in their implementation. On
the other hand, we argue in Section 3 that when additional problem structure is imposed (e.g. assuming
the underlying random variables are bounded), it is easy to derive probability guarantees that hold for
all sample sizes, thereby providing ordinal optimization algorithms that meet the probability of incorrect
selection requirement.

2 THE BASIC FRAMEWORK FOR SIMULATION-BASED PERFORMANCE EVALUATION

We review here the basic approach used within the simulation community to study simulation-based
algorithms for purposes of performance evaluation. This discussion will help set the stage for our ordinal
optimization framework.

Suppose that we wish to use Monte Carlo simulation to compute EX to a given precision ε . Because
the estimator for EX contains sampling-based randomness, this uncertainty is usually communicated via
a confidence interval for EX . In particular, given ε > 0 and δ ∈ (0,1), our goal is to then produce a
confidence interval [L,R] for which |L−R| ≤ 2ε and

P(EX ∈ [L,R])≥ 1−δ . (1)

A commonly described (two-stage) algorithm for producing such confidence intervals is discussed next.

Algorithm A1

1. Find z so that P(N(0,1)> z) = δ/2, where N(0,1) is a Normal rv with mean zero and unit variance.
2. Choose m large (say, m = b1/εc).
3. Generate m iid copies X ′1, . . . ,X

′
m of the rv X and compute

s2
m =

1
m−1

m

∑
i=1

(X ′i −
1
m

m

∑
i=1

X ′j)
2

4. Set n = b(z2/ε2)s2
mc.

5. Generate n iid copies X1,X2, . . . ,Xn of the rv X , and compute

X̄n =
1
n

n

∑
i=1

Xi.
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6. Return L = X̄n− ε , and R = X̄n + ε .

The theoretical support for the above algorithm is provided by the following result; see (Nakayama
1994) for related literature.
Proposition 1 Suppose that 0 < varX , σ2 < ∞. Then, R−L = 2ε , and

lim
ε↓0

P(EX ∈ [L,R]) = 1−δ .

Note that this theoretical support is only asymptotic. This is not surprising as much of stochastic analysis
relies on asymptotic simplifications to make the analysis tractable. However, from an algorithmic viewpoint,
this is somewhat unsatisfactory, as one has no guarantee that for a given instance of X , and specified values
of ε and δ , that [L,R] does indeed satisfy (1). Nevertheless, the simulation (and statistics) communities
have generally accepted Proposition 1 as adequate theoretical support for methods like Algorithm A1.

If one desires an algorithm for which the guarantee (1) can be made, one needs to assume more about
the distribution of X . Such guarantees are easy to derive when X is a bounded rv for which the simulationist
has knowledge of bounds a and b for which P(X ∈ [a,b]) = 1, provided that one suitably modifies Algorithm
A1.

Algorithm A2

1. Choose n = d (b−a)2

4ε2δ
e.

2. Generate n iid copies X1,X2, . . . ,Xn of the rv X , and compute

X̄n =
1
n

n

∑
i=1

Xi.

3. Return L = X̄n− ε and R = X̄n + ε .

The support for A2 is derived from Chebyshev’s inequality. Observe that

P(|X̄n−EX |> ε)≤ var X
nε2 .

In order that var X
nε2 ≤ δ , we must require that

n≥ var X
δε2 .

But, as is well known, var X ≤ (b−a)2/4 for a rv supported on [a,b], since the maximum variance rv has
mass 1/2 on both a and b. This discussion can be summarized via our next proposition.
Proposition 2 Suppose P(X ∈ [a,b]) = 1. If [L,R] is constructed through Algorithm A2, then R−L = 2ε

and
P(EX ∈ [L,R])≥ 1−δ .

An improved version of A2 can also be supplied.

Algorithm A3

1. Choose n = d (b−a)2 log(2/δ )
2ε2 e.

2. Generate n iid copies X1,X2, . . . ,Xn of rv X , and compute

X̄n =
1
n

n

∑
i=1

Xi.
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3. Return L = X̄n− ε and R = X̄n + ε .

The theoretical support for A3 rests upon Hoeffding’s inequality for bounded rv’s:

P(|X̄n−EX |> ε)≤ 2exp(− 2nε2

(b−a)2 ).

This inequality immediately leads to the following guarantee for Algorithm A3.
Proposition 3 Suppose P(X ∈ [a,b]) = 1. If [L,R] is constructed through Algorithm A3, then R−L = 2ε

and
P(EX ∈ [L,R])≥ 1−δ .

Algorithms A2 and A3, despite their coverage guarantees, are rarely used in practice because they
impose a significant additional cost on the simulationist in terms of extra sampling. In particular, when ε

is small, the value of n dictated by A1 satisfies

n∼ var X
z2

ε2

as ε ↓ 0 ((aε : ε > 0) is said to be asymptotic to (bε : ε > 0), denoted by aε ∼ bε as ε ↓ 0, if limε↓0
aε

bε
= 1).

Because
P(N(0,1)> x)≤ exp(−x2/2)/2

for x > 0 (see, e.g., Feller 1971), evidently the z value satisfying P(N(0,1) > z) = δ/2 is such that
z≤

√
2log(1/δ ). Consequently, for ε small, the sample size n of A1 grows no faster than var X 2

ε2 log(1/δ ).
Of course, when X lies in [a,b], var X ≤ (b−a)2/4; the resulting bound (b−a)2 · ( 1

2ε2 ) log(1/δ ) is smaller
than the sample sizes determined by either A2 or A3. The key point is that the typical choice made by
simulationists is to dispense with the coverage guarantee in order to obtain a smaller sample size (and
thereby faster computation times). Of course even without the coverage guarantee, one still has asymptotic
coverage as described in Proposition 1.

3 AN ORDINAL OPTIMIZATION FRAMEWORK

We now turn to the ordinal optimization setting that is our principal interest in this paper. We shall adopt
an indifference zone perspective, so that goal is to screen the d alternative designs so as to eliminate from
further competition those that are clearly not optimal (by an amount ε).

Specifically, given sample sizes n1,n2, . . . ,nd ,we independently simulate ni iid copies X1(i),X2(i), . . . ,Xni(i)
of the rv X(i), and form the sample mean

X̄ni(i) =
1
ni

ni

∑
j=1

X j(i)

for 1≤ i≤ d. For ε > 0, we then set

P̂ = {i : X̄ni(i)≤ max
1≤k≤d

X̄nk(k)− ε};

P̂ is the (estimated) set of eliminated alternatives. Given ε > 0 and δ > 0, our goal is to develop an
algorithm for which

P(i∗ ∈ P̂)≤ δ ; (2)

of course, P(i∗ ∈ P̂) is the probability that we incorrectly eliminate the true maximizer i∗ from further
consideration as a result of our screening process.
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In parallel with our development of Section 2, we consider first an asymptotic regime in which we
can potentially apply asymptotic analysis to offer theoretical support for our screening algorithm. One
possibility is to consider the behavior of the algorithm when ε ↓ 0. When the ‘indifference margin’ ε

becomes small, we need to accurately estimate the magnitude of the difference between µ(i∗) and µ( j)
in order to determine j′s membership in the set of eliminated alternatives. This puts us in a setting in
which the algorithmic design parameters will be determined by central limit theorem (i.e., mean/variance)
considerations. However, as mentioned in the Introduction, the ordinal optimization philosophy is one in
which one wishes to take advantage of the fact that one is interested only in identifying i∗ and not in
estimating its actual performance. As a consequence, much of the stochastic simulation literature on ordinal
optimization has utilized large deviations theory rather than central limit arguments to conduct asymptotic
analysis; see e.g., Ho, Sreenivas and Vakili (1992), Dai (1996), Glynn and Juneja (2004), Chen et. al.
(2000). In such settings, the large deviations rate function (as opposed to just mean and variances) now
plays a key role both in theoretical analysis and in algorithmic design.

The asymptotic setting in which such large deviations becomes relevant is one in which we send
the probability of incorrect selection to zero, so that this is of principal interest in settings in which
we desire a very high probability that our screening algorithm has not inadvertently eliminated the best
design from further consideration. Suppose, in particular, that the rv’s X(1), . . . ,X(d) are light-tailed, so that
E exp(θX(i))< ∞ for θ in a neighborhood of the origin, and that ni ∼ npi as n→∞, where p1+ · · ·+ pd = 1
and 0 < pi < 1, 1≤ i≤ d. In this setting, it is easy to establish (see, Glynn and Juneja 2004 for a closely
related analysis) under suitable additional hypothesis that

1
n

logP(i∗ ∈ P̂)→−I (3)

as n→ ∞, where I can be computed easily from the large deviations rate functions asssociated with each
of the rvs X(1), . . . ,X(d). Hence, by setting

n = d1
I

log(1/δ )e, (4)

we can offer theoretical support for (2). Specifically, with this choice of n,

logP(i∗ ∈ P̂)∼ log(δ ) (5)

as δ ↓ 0; this limit theorem is, in some sense, an analog to that of Proposition 1.
However, there is an important distinction to be drawn here. Note that A1 includes steps 1-4; these

steps are used to compute a value of n that will meet (at least approximately) the coverage requirement (1).
The analog, in the current setting, would be a corresponding set of steps at which I would be estimated
(via Î, say) through a set of trial runs, imposing an additional computational burden of at most order
log(1/δ ) or smaller (for, otherwise, the trial runs would dominate the entire calculation from a computer
time perspective). Observe that on the event {Î > I+ γ},(γ > 0), one would compute too small a value of
n from the sample version of (4), this suggests that (5) would fail for the second stage runs, conditional on
this event. In order that the resulting algorithm’s overall false selection probability satisfy (5), this would
therefore require that

logP(Î > I + γ) = O(log(δ )) (6)

as δ ↓ 0, where function g(x) is said to be O( f (x)) if there exists a constant K > 0 and an x0 > 0 such that
|g(x)| ≤ K| f (x)| for all 0 < x < x0.

The difficulty is that the natural sample estimator for Î involves the empirical moment generating function
of the rv’s X(1),X(2), . . . ,X(d). Consider, for example, the setting in which X(i) has an (asymptotically)
exponential right tail, so that

P(X(i)> y)∼ cie−λiy
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as y→ ∞. In this case,

P(eθX(i) > y) = P(X(i)>
1
θ

logy)

∼ cy exp(−λi

θ
logy)

= ciy−λi/θ

as y→∞. It follows that when the X(i)′s have asymptotically exponential right tails, eθX(i) is heavy-tailed
for θ > 0. If 0 < θ < λi, E exp(θX(i))< ∞ and for y > EeθX(i),

P(
1
n

n

∑
j=1

eθX j(i) > y)∼ nP(eθX(i) > ny)

as n→ ∞; see, e.g., Borovkov and Borovkov (2008). As a consequence, the empirical estimator of the
moment generating function EeθX(i) based on a sample of size n makes an error of (absolute) magnitude
γ ′ with a probability of order n1−λi/θ . Hence, if n is of order log(1/δ ), an error of size γ ′ is incurred with
a probability of order log(1/δ )1−λi/θ . Since we expect the event {Î > I + γ} to occur when one or more
of the moment generating functions EeθX(i),(1 ≤ i ≤ d) is mis-estimated by an amount γ ′, this suggests
that P(Î > I+ γ) is of order log(1/δ )−β (for some β > 0). This, in turn, suggests that logP(i∗ ∈ P̂) is (at
least) of order −β log log(1/δ ). This contradicts (5), which requires that logP(i∗ ∈ P̂)∼− log(1/δ ) as
δ ↓ 0.

The above heuristic argument strongly suggests that the need to estimate the rate constant I leads to
an algorithm that is in violation of (5). The basic problem is that that because the empirical moment
generating function is much more heavy tailed than is X(i) itself, one makes errors in estimating I (via Î)
with a probability of much larger order then the theoretical probability δ of incorrect selection as dictated
through (2).

One might hope to circumvent this difficulty through a posterior error estimate. Specifically, suppose
that we decide a priori to put ni = dlog(1/δ )e for 1≤ i≤ d, run the corresponding simulations for each of the
d designs, and compare P̂ . The relation (3) then applies to the P̂ so constructed. While this is an interesting
fact theoretically, the simulationist (practically speaking) needs an estimate for the probability P(i∗ ∈ P̂)
of incorrect selection in order that the algorithm be useful. In this setting, the obvious a posteriori estimate
for P(i∗ ∈ P̂) is exp(−nÎ), where Î is an estimator for I constructed from the ddlog(1/δ )e simulations
conducted. Of course, for the same reasons as discussed above, we expect that the estimator Î for I will
differ from I by at least γ with a probability far exceeding the desired probability δ of incorrect selection.

The above discussion suggests that supporting an ordinal optimization algorithm on the basis of an
asymptotic analysis in which δ ↓ 0 is problematic. An alternative is to consider more restricted problem
contexts in which guarantees can be made (rather than through a small δ approximation).

Specifically, suppose that X(i) ∈ [a,b] with probability one for 1≤ i≤ d, and ni = dn/de for 1≤ i≤ d.
Then, X(i)−X( j) has a distribution with support in [a−b,b−a], so that
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P(i∗ ∈ P̂) = P(X̄ni∗ (i
∗)≤ max

1≤k≤d
X̄nk(k)− ε) (7)

≤ ∑
k 6=i∗

P(X̄ni∗ (i
∗)≤ X̄nk(k)− ε) (8)

= ∑
k 6=i∗

P(X̄ni∗ (i
∗)− X̄nk(k)− (µ(i∗)−µ(k))≤−ε− (µ(i∗)−µ(k))) (9)

≤ ∑
k 6=i∗

P(X̄ni∗ (i
∗)− X̄nk(k)− (µ(i∗)−µ(k))≤−ε) (10)

≤ ∑
k 6=i∗

P(|X̄ni∗ (i
∗)− X̄nk(k)− (µ(i∗)−µ(k))| ≥ ε) (11)

≤ 2(d−1)exp(− nε2

2(b−a)2 ), (12)

where we used Hoeffding’s inequality at the last inequality. This calculation, suggests the following
algorithm

Algorithm B1

1. Set n = dlog(2(d−1)/δ )2(b−a)2/ε2e.
2. For 1≤ i≤ d, independently generate dn/de iid copies X1(i),X2(i), . . . ,Xdn/de(i) of X(i).
3. Form

X̄(i) =
1
dn/de

dn/de

∑
i=1

X j(i)

for 1≤ i≤ d.
4. Return P̂ = { j : X̄( j)≤max1≤k≤d X̄(k)− ε}.

Given the calculation leading to (12), the following result is immediate.
Proposition 4 If P(X(i) ∈ [a,b]) = 1 for 1≤ i≤ d, then the set P̂ constructed through the algorithm B1
satisfies

P(i∗ ∈ P̂)≤ δ .

A key element in Proposition 4 is that the total number n of samples taken is of order log(1/δ ) as
δ ↓ 0 so that the sample size increases slowly with 1/δ .

Of course, a similar growth in n (of order log(1/δ )) would ensue if the sample size n were instead
determined at Step 1 of Algorithm B1 on the basis of normal approximations to the distribution of the
X̄(i)′s. (This is essentially the approximation used within ‘selection of best system’ algorithms.) The
problem is that because the central limit approximation fails for large deviations probabilities of the type
that arise when δ ↓ 0, the resulting algorithm would fail to satisfy (2) or (5).

We conclude that Algorithm B1 is a suitable ‘ordinal optimization’ analog to Algorithm A3.
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