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ABSTRACT

A stylized model of one-dimensional stochastic root-finding involves repeatedly querying an oracle as to
whether the root lies to the left or right of a given point x. The oracle answers this question, but the
received answer is incorrect with probability 1− p(x). A Bayesian-style algorithm for this problem that
assumes knowledge of p(·) repeatedly updates a density giving, in some sense, one’s belief about the
location of the root. We demonstrate how the algorithm works, and provide some results that shed light
on its performance, both when p(·) is constant and when p(·) varies with x.

1 INTRODUCTION

The deterministic root-finding problem aims to locate a point x∗ that solves the equation g(x∗) = 0 for some
function g. One setting is where g is unknown, but an oracle will return g(x) when queried at the point x.
If n calls to the oracle are allowed, a pivotal decision is at which points x1, . . . ,xn to evaluate the function
g, and how to gather information about x∗, so that the final estimate x̂n of x∗ is accurate, i.e., ‖x̂n− x∗‖ is
small.

In the one-dimensional case that we focus on in this paper, g is assumed to be monotone on an
interval containing x∗. The well-known bisection search algorithm can then locate x∗. If, in addition, g
is differentiable and the oracle not only returns the value g(x), but also g′(x), then the Newton-Raphson
algorithm provides a very efficient search method, though it is not as robust as bisection search. (See, for
example, Ben-Tal and Nemirovski 2001, Ruszczyński 2006 for detailed discussions of the deterministic
root-finding problem.)

In the stochastic root-finding problem (SRFP), the function g can only be observed with noise. Again, a
critical step in solving the SRFP is to decide at which points X1,X2, . . . ,Xn one should query the oracle and in
turn observe the random sequence Y1(X1),Y2(X2), . . . ,Yn(Xn) so that a good estimate of x∗ can be produced
based on the n noisy function evaluations. (Here we allow the points X1,X2, . . . ,Xn to be random since
they may depend on previous function estimates.) In this noisy setting, one can construct a bisection-like
algorithm based on a Bayesian viewpoint that efficiently locates x∗. This is the focus of this paper.

This algorithm sits in contrast with most existing SRFP algorithms that extend the Newton-Raphson
algorithm. The class of stochastic approximation algorithms follow an iterative scheme of the form

Xn+1 = Xn +anYn(Xn), (1)

where an is a sequence of step lengths that decreases with n. Such recursive algorithms were first introduced
in the seminal papers Robbins and Monro (1951) and Kiefer and Wolfowitz (1952). Since then an extensive
literature on the SRFP has emerged. See, for example, Kushner and Yin (2003), Lai (2003), Asmussen and
Glynn (2007), Broadie et al. (2011), Pasupathy and Kim (2011) and references therein for overviews and
recent developments. Under certain assumptions, stochastic approximation methods generate a sequence

4038978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Waeber, Frazier, and Henderson

of points Xn that converge to x∗ at an asymptotic rate that is of the order n−1/2, i.e., (n1/2|Xn−x∗| : n≥ 1)
is a tight sequence of random variables. Our theoretical and empirical results suggest that the probabilistic
bisection-search algorithm discussed herein has a geometric rate of convergence, i.e., for some c > 1,
(cn|Xn− x∗| : n ≥ 1) is tight. The improvement from a polynomial to an exponential asymptotic rate of
convergence is significant, but it comes about through the strong (and unrealistic) assumption that the
probability of observing an incorrect sign in the outcomes Yn(Xn) is known. Given that we make such a
strong assumption, this paper should be viewed as a call for research into practical algorithms, rather than
as the introduction of a new root-finding algorithm.

Bisection search under uncertainty has been studied in the information theory and computer science
literatures; see Horstein (1963), Burnashev and Zigangirov (1974), Rivest et al. (1980), Pelc (1989),
Karp and Kleinberg (2007), Ben-Or and Hassidim (2008), Castro and Nowak (2008), Nowak (2008), and
Nowak (2009). In this literature, the search space is usually discretized into n intervals and the goal is to
determine the interval containing x∗. We are instead interested in the behavior of the (continuous) residuals
Rn := X̂n− x∗, where X̂n is the current best estimate of x∗.

The idea behind the algorithm is to sequentially update a prior density on the location of x∗ according
to Bayes’ rule. The updated (posterior) density reflects our belief in the location of x∗. Under some
assumptions on the noise model, the introduced policy, which measures at the median of the posterior, is
optimal in the sense of minimizing the expected posterior entropy. The algorithm dates back to Horstein
(1963), although our observation of its entropic optimality and our convergence analysis on continuous
problems both appear to be new. Recently this approach has been adopted in Jedynak et al. (2011) for
similar problems appearing in computer vision. Proofs of the results presented in this paper and more
empirical examples are available in Waeber, Frazier, and Henderson (2011b).

2 PROBLEM STATEMENT

Let g : (0,1)→ R be such that there exists a unique point x∗ ∈ (0,1) with g(x) > 0 for all x < x∗ and
g(x)< 0 for all x > x∗. The goal is to locate the point x∗. The function g cannot be observed directly, so
we must instead learn about g via stochastic simulation where x is a control parameter of the simulator.
For any x ∈ (0,1) the simulator produces random outcomes Z(x) = g(x)+ε(x) ∈R, where ε(x) represents
stochastic noise. A common assumption is that E[ε(x)] = 0. However, we assume that the median of ε(x)
is zero. For symmetric noise distributions, the two assumptions coincide. The assumption of zero median
allows us to reformulate the problem by defining the function r(x,x∗) := P[Z(x)> 0], where r(x,x∗)> 1/2
for all x < x∗, and r(x,x∗)< 1/2 for all x > x∗. We include x∗ as an argument to r to emphasize that the
response depends on both the point queried x and the location of the root x∗. The noisy bisection algorithm
we introduce in Section 3 uses only Y (x) = sign(Z(x)) when learning about g. In this case, the information
exploited is simply whether x∗ is to the left or right of x, and this “direction” may be wrong. Discarding
information may seem counterproductive, because the magnitude of Z(x) contains additional information
about g(x,x∗). As we will see, however, this makes a Bayesian update tractable, and the resulting algorithm
appears to converge rapidly. Using reduced information may also provide a more robust estimator of x∗

when the noise ε(x) is heavy-tailed.
Define functions p(x,x∗) := max(r(x,x∗),1− r(x,x∗)) and q(x,x∗) := 1− p(x,x∗), so that p gives the

probability that the oracle provides a correct answer. By definition of the functions r and g, it follows
that p(x,x∗)> 1/2 for x 6= x∗, and p(x∗,x∗) = 1/2. Further, we assume that after sampling at x, the value
of p(x,x∗) is revealed. This is unrealistic, since in practice one must estimate p(x,x∗). Nevertheless, we
proceed under this assumption, leaving the situation where p(x,x∗) is not revealed for future research.

The goal is to select the points {X1,X2, . . . ,Xn} so as to obtain an estimate X̂n of x∗ with small absolute
error |X̂n− x∗|. The sampling points Xn can depend on the previously observed values Xm, Ym(Xm), and
p(Xm,x∗) for m < n and, optionally, some other independent random source (allowing for randomized
policies). A method for selecting these points is called a policy or an algorithm.
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In our analysis, we consider two settings: the frequentist setting, and the Bayesian setting. In the
frequentist setting, x∗ is fixed but unknown. In the Bayesian setting, rather than considering a single value
of x∗, we consider average case performance across a wide variety of x∗. This is done by supposing that,
before sampling begins, X∗ was drawn at random from a prior probability density f0 over (0,1). In the
Bayesian setting, we denote the root by X∗ rather than x∗ to indicate that it is modeled as a random variable.
Sampling then proceeds with the drawn value of X∗ (we do not re-draw X∗), and our goal is to find X∗.

The prior f0 may reflect one’s initial belief regarding the location of the root. If one has no strong beliefs,
then one may use a uniform (noninformative) prior f0(x) = 1{x ∈ (0,1)}, where 1{·} is the indicator
function. For the empirical examples in Section 4, we use this uniform prior.

To summarize, the problem structure considered in this paper is as follows:

• In the frequentist setting, X∗ = x∗ ∈ (0,1) is fixed. In the Bayesian setting, X∗ is drawn once, at
time n = 0, from the prior density f0.

• p : (0,1)× (0,1)→ [1/2,1] is a fixed function such that p(X∗,X∗) = 1/2 and p(x,X∗) > 1/2 for
all x 6= X∗. In the Bayesian setting, this statement is assumed to hold f0 almost surely, and in the
frequentist setting it is assumed to hold only for X∗ = x∗.

• There exists a stochastic simulator (oracle) that, given Xn, produces a random output Yn(Xn) ∈
{−1,+1}. The distribution of Yn(Xn) is given by three cases:

If Xn < X∗, Yn(Xn) =

{
+1, if Un < p(Xn,X∗),
−1, if Un ≥ p(Xn,X∗).

If Xn > X∗, Yn(Xn) =

{
+1, if Un ≥ p(Xn,X∗),
−1, if Un < p(Xn,X∗).

If Xn = X∗, Yn(Xn) =

{
+1, if Un ≥ 1/2,
−1, if Un < 1/2.

Here U = (Un : n≥ 1) is a sequence of iid U(0,1) random variables.
• Each Xn is chosen based on the information available at time n. Formally, each Xn is a random

variable satisfying Xn ∈Fn−1 = σ(Xm,Ym(Xm), p(Xm,X∗),Vk : 1≤m≤ n−1,0≤ k≤ n−1), where
V = (Vk : k ≥ 0) is a sequence of iid U(0,1) random variables introduced to allow randomized
policies. The sequences U and V are independent of each other. In the Bayesian setting, they are
also independent of the random variable X∗.

Also, we devote considerable attention to “the constant p case” where p(x,X∗) is equal to a constant
p ∈ (1/2,1] for all x 6= X∗, due to its tractability. In the Bayesian setting, this statement is understood in
the f0 almost sure sense, and in the frequentist setting it is understood as applying to X∗ = x∗.

3 PROBABILISTIC BISECTION ALGORITHM

Our approach to the problem described above is motivated by the bisection method. Using bisection without
accounting for random noise will fail in most cases, since a single wrong answer from the oracle leads the
search astray. We instead successively update a distribution giving our “belief” in the location of the root.

3.1 Bayesian Posterior

The algorithm that we consider below uses intuition derived from Bayesian analysis. In the Bayesian
setting, we may calculate a posterior distribution fn on X∗ at any time n. This posterior distribution is
the conditional distribution of X∗ given the information available at time n. In the constant p case, the
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posterior is given by the following recursive updating equations:

If Y =+1 and p(Xn,X∗) 6= 1/2, then fn+1(x) ∝

{
p(Xn,X∗) fn(x), if x > Xn,
q(Xn,X∗) fn(x), if x≤ Xn,

(2)

If Y =−1 and p(Xn,X∗) 6= 1/2, then fn+1(x) ∝

{
q(Xn,X∗) fn(x), if x > Xn,
p(Xn,X∗) fn(x), if x≤ Xn.

(3)

If p(Xn,X∗) = 1/2, then Xn = X∗, and the posterior at time n+1 is a point mass at Xn. In the Bayesian
setting, this last case occurs with probability 0.

Altering a density at a single point does not change the probability distribution, so we arbitrarily update
fn at the point x = Xn the same way we update x < Xn. Appendix A gives the derivation of the updating
equations and the proportionality constants. When p is not constant, the correct update is much more
intricate, but the algorithm discussed below adopts these same updating equations in the spirit of a heuristic.

3.2 Algorithm Description

The probabilistic bisection algorithm is motivated by the following Bayesian optimality analysis. This
analysis uses the entropy, which is a summary measure of how much information the density fn contains
about the root X∗. The entropy is defined for any density on (0,1) by H( f ) :=−

∫
[0,1] log2( f (x)) f (x)dx.

Using this measure and given a fixed simulation budget N ∈N, the optimality analysis seeks a policy that
minimizes the expected entropy of the posterior distribution at time N, Eπ∗ [H( fN)| f0] = infπ∈ΠEπ [H( fN)].
Here, a generic policy is denoted π , the space of all possible policies is denoted Π, and the expectation
under policy π is denoted Eπ . Solving this optimization problem for a general function p(·, ·) appears to
be difficult. However, the corresponding dynamic program can be solved explicitly in the constant p case.
Theorem 1 In the Bayesian setting with constant p, the policy that always measures at the median of fn
minimizes the expected entropy of fN for any N ∈ N.

See Waeber, Frazier, and Henderson (2011b) for a proof of Theorem 1. The density fn is positive
everywhere so has a unique median given by F−1

n (1/2), where Fn is the corresponding cumulative distribution
function (cdf). Hence, for the constant p case the optimal policy sets Xn+1 = F−1

n (1/2) for n≥ 0. Horstein
(1963) introduced this algorithm for the constant p case for application in transmitting information over a
noisy communication channel, but did not consider optimality results such as Theorem 1. This algorithm
is referred to as “probabilistic bisection” in Castro and Nowak (2008) and elsewhere.

Theorem 1 motivates the following generalization of the probabilistic bisection algorithm to the case
where p(·, ·) is not constant:

1. Choose prior density function f0 that is positive on (0,1).
2. for n = 1 to N−1

(a) Calculate the next measurement point: Xn = F−1
n−1(1/2), where Fn−1 is the cdf of fn−1.

(b) Call the simulator at point Xn, to obtain the random variables Yn(Xn)∈ {−1,+1} and p(Xn,X∗).
(c) If p(Xn,X∗) = 1/2 then Xn = X∗ and we can stop sampling. Otherwise, continue.
(d) Calculate the density fn+1 from fn, Xn, Yn(Xn), and p(Xn,X∗) using (2) and (3).

3. Return X̂N = F−1
N (1/2) as the estimate for x∗.

In the constant p case, the densities fn are the posterior densities. Otherwise, the posterior is different
from fn, but we use fn anyway as an approximation to the posterior in the spirit of a heuristic. Although
the algorithm is derived using a Bayesian analysis, it can be studied in the frequentist setting. In doing so,
the density f0 used by the algorithm is simply viewed as a parameter of the algorithm.

The final estimate X̂N is the median of fN , which is optimal if we want to minimize the expected
absolute error under the probability density fN , i.e., E[|X− X̂N |] where X is a random variable with density
fN . In this case, each median Xn is the best estimate of X∗ after n−1 calls to the oracle. Therefore, we
can drop the cumbersome notation X̂n and focus directly on the sequence (Xn)n∈N from here onwards.
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Figure 1 shows a sample path of the density fn after n = 0,1,2,3,50,100 calls to the oracle in the
constant p case where p = 0.6 and x∗ = 0.25. The prior density f0 is that of a U(0,1) random variable, i.e.,
f0(u) = 1{u ∈ (0,1)}. The vertical lines depict x∗ (dashed, green) and the current median Xn (solid, red).
The piecewise constant line (solid, blue) depicts the posterior density fn. Above every plot the (noisy)
answer of the oracle is given. For time step n = 1 the oracle is wrong. The posterior density appears to
converge to a point mass at x∗, and Theorem 2 confirms that this will happen.
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Figure 1: The density fn at time points n = 0,1,2,3,50,100 on a sample path.

3.3 Algorithm Analysis

We now turn to convergence properties of the algorithm. Roughly speaking, the first three results give
conditions under which (a) the sequence of medians converges to x∗ (Theorem 2), (b) the density fn
converges to that of a point mass at x∗ (Theorem 3), and (c) the density fn fails to converge to that of a
point mass (Proposition 4). The remaining results relate to the rate of convergence one might expect. For
proofs, see Waeber, Frazier, and Henderson (2011b).
Theorem 2 In the frequentist setting, suppose p(·,x∗) is bounded away from 1/2 outside any neighborhood
of the point x∗. Then the sequence of medians converges to x∗ almost surely, i.e., P(limn→∞ Xn = x∗) = 1.
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The condition on p(·,x∗) is quite weak, and should hold in practice. As a consequence of Theorem
2, the sequence of medians converges to x∗ in the L1-norm, i.e., limn→∞E[|Xn− x∗|] = 0, as follows from
bounded convergence since |Xn− x∗| ≤ 1 for all n. In the Bayesian setting, recall that the root X∗ is a
random realization from the prior density f0. Then almost sure convergence holds, i.e., P f0(limn→∞ Xn =
X∗) = E f0(P(limn→∞ Xn = X∗|X∗)) = 1, and convergence in L1 again follows from bounded convergence.
Theorem 3 In the Bayesian setting with constant p > 1/2, limn→∞ Fn(x) = 1(x≥ X∗) for all x 6= X∗ almost
surely.

Theorem 3 shows that, in the Bayesian setting with constant p, the posterior distribution converges to
a point mass at X∗ as n→ ∞ a.s. This immediately yields convergence in the frequentist setting where
the root x∗ is fixed, at least for f0 almost all x∗ in [0,1], by conditioning on X∗ = x∗. We believe that the
imperfection (where the convergence has not been proven for all x∗ ∈ [0,1]) is an artifact of the current
proof rather than a property of the algorithm.

In the general (nonconstant p) case, simple and natural examples exist where the posterior distribution
fails to converge to a point mass. Henceforth we often write p(·) for p(·,x∗) and p(·,X∗) for convenience.
Proposition 4 Consider the frequentist setting. Suppose that the algorithm begins with a uniform
prior, i.e., f0 = 1{x ∈ (0,1)}, p(·) is bounded away from 1/2 outside any neighborhood of x∗, and
0 < x∗ < 1/2. Suppose further that p(x)/x is non-increasing for x ≥ x∗ with strict decrease at x∗, i.e.,
p(x)/x < p(x∗)/x∗ = 1/2x∗. Then the sequence of medians converges to x∗ from the right, and the posterior
does not converge to a point mass.

Although Proposition 4 shows that the posterior may not converge to a point mass in the nonconstant
p case, recall that Theorem 2 shows that, irrespective of whether the posterior converges to a point mass
or not, the sequence of medians converges to the root. We turn next to the rate of convergence. Here we
have only limited results, but those results suggest that the rate of convergence is exponential. Theorem 5
below provides an upper bound on the expected first hitting time of a neighborhood of x∗.
Theorem 5 In the frequentist setting, let δ > 0 be such that A = [x∗− δ ,x∗+ δ ] ⊆ (0,1). Assume
p(·) = p > 1/2 outside A. Let τ(A) = inf{n≥ 0 : Xn ∈ A}, be the first time that the sequence of medians
hits the set A. Then, starting from the uniform prior on (0,1),

E [τ(A)]≤− log2(2δ )/r(p), (4)

where r(p) = p log2(2p)+(1− p) log2(2(1− p)).
Theorem 5 establishes that the sequence of medians hits a neighborhood of the root in expected time

that is logarithmic in the size of the neighborhood when p(·) is constant. When p = 1 the result reduces
to the usual time required for deterministic bisection to return an interval of width 2δ .

The next result shows that this exponential rate of convergence persists on sample paths, at least for
the minimum distance to the root seen to date.
Theorem 6 Consider the frequentist setting with constant p. Define Mn := minm=0,1,...,n |Xm− x∗|, the
minimum distance to x∗ seen by time n. Then cnMn → 0 a.s. as n→ ∞, for any nonnegative constant
c < 2r(p) = 2pp(1− p)1−p.

The upper bound on c in Theorem 6 is strictly greater than 1, so the closest median to date approaches
x∗ at an exponential rate. We have not been able to establish that the full sequence (Xn : n≥ 0) of medians
shares this property, although empirical results in Section 4 certainly suggest that this is the case. Such a
fast rate of convergence (for an admittedly stylized setting where p(·) is constant and known) is enticing,
since the best known rate of convergence in the setting of stochastic root-finding is n−1/2 rather than c−n.

Rate-of-convergence results for non-constant p(·) appear to be more difficult to establish. We turn next
to empirical results to gain some insight.
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4 EMPIRICAL RESULTS

The relative performance of different algorithms depends on both the specific problem at hand and the
simulation analyst’s risk tolerance (see Waeber et al. 2011a for a detailed discussion in the setting of
discrete simulation-optimization problems). Therefore, measuring the performance of a stochastic root-
finding algorithm is a challenging task.

To analyze the performance of the probabilistic bisection algorithm, we focus on the behavior of the
residuals Rn = Xn− x∗. More specifically, we compare the means, the 95%-quantiles, and histograms of
Rn for three different cases in this section. The first case has constant p and X∗ ∼U(0,1). The second
case has nonconstant p and X∗ ∼U(0,1). The third case has nonconstant p but x∗ ∈ (0,1) is fixed.

4.1 Constant p, X∗ ∼U(0,1)

Consider the constant p case. We are interested in the rate of convergence of the sequence Xn to X∗.
The right plot in Figure 2 shows a semilog plot of the estimated expected absolute residuals E|Rn| after n
iterations of the probabilistic bisection algorithm under a uniform prior. The logarithmic scale on the y-axis
means that a straight line in the plot would suggest a geometric rate of convergence, i.e., the existence of
some c > 1 such that cnE[|Xn−X∗|] is bounded in n. Here the line appears to be slightly curved upwards,
so a slower-than-geometric rate of convergence under the expectation operator might hold. Interestingly
however, we often observe very fast convergence for individual sample paths. For example, the left plot
of Figure 2 shows four arbitrary sample paths of the absolute residuals |Xn−X∗|, again in a semilog plot.
These figures suggest that a geometric rate of convergence might hold pathwise.
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Figure 2: Left: Four sample paths of the absolute residuals |Rn|= |Xn−X∗|.
Right: Estimated mean absolute residuals, E[|Xn−X∗|], as a function of n with constant p(·) = p = 0.6
under the uniform prior. The plot is the average of 10,000 runs and the maximal estimated relative error,
i.e., estimated standard deviation divided by the estimated mean, over all n is less than 0.1.

We conjecture that the true rate of convergence of the expected absolute residuals is subexponential,
perhaps due to the existence of sample paths that converge very slowly. The left plot in Figure 3 shows
a histogram of the residuals Rn = Xn−X∗ after n = 300 iterations of the probabilistic bisection algorithm.
The high peak at 0 indicates that after 300 iterations about 85% of the sample paths are very close to the
point X∗. However, a few outliers are still very far away from X∗, making the overall distribution of Rn
extremely heavy-tailed, and certainly not Gaussian. The right plot in Figure 3 gives the 95%-quantile of
the random variable |Rn|= |Xn−X∗| for various n. These quantiles show a geometric rate of convergence
of the quantile to zero. So we observe an extremely fast rate of convergence for the vast majority of sample
paths, but very bad performance on a few paths.
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Figure 3: Left: The histogram of the residuals Xn−X∗ after n = 300 iterations for constant p(·) = p = 0.6.
Right: The estimated 95%-quantile of |Rn| = |Xn−X∗| for constant p(·) = p = 0.6. The quantiles are
estimated by 10,000 simulated sample paths and the maximal estimated relative error over all n is less than
0.1. The standard deviation of the quantiles are estimated using bootstrapping.

4.2 Nonconstant p, X∗ ∼U(0,1)

We now conduct the same analysis for the nonconstant p case. Assume that for any sequence zn→ x∗ and
any x∗, the function p(zn,x∗) approaches 1/2 from above. (This is a natural assumption in the setting of
stochastic root-finding problems where the function g is continuous around x∗.) In particular, we consider
functions p(·,x∗) of the form p(x,x∗) = min{1/2+β |x− x∗|,1} for some β > 0. In this case, the sequence
of stepsizes (|Xn+1−Xn| : n≥ 0) appears to converge to zero much faster than in the constant p case. This
may cause the rate of convergence for non-constant p to be slower than for the constant p case. The rapid
decrease in stepsize appears to occur for the following reason: when Xn is close to X∗ then p(Xn,X∗)
is close to 1/2. Hence the updating equations cause very little change in the posterior density and the
new median Xn+1 will be very close to Xn. On one hand, this effect is desirable because the sequence of
estimators Xn therefore automatically stabilizes as we get closer to X∗. On the other hand, it can prevent the
posterior from converging to a point mass (see Proposition 4). In addition, the posterior entropy no longer
necessarily converges to −∞ and sampling at some point other than the median may better minimize the
expected posterior entropy when Xn is close to X∗. (Recall, that sampling at the median is only optimal
for the constant p case.) Nevertheless, the probabilistic bisection algorithm that samples at the median
performs quite well in terms of minimizing the residuals Rn.

Although the rate of convergence for non-constant p is expected to be slower than for constant p, similar
qualitative behavior are observed in both cases. Figure 4 shows the estimated mean absolute residuals,
E[|Xn−X∗|], on semilog (left plot) and log-log (right plot) scales for β = 1/2 and X∗ ∼U(0,1). The
semilog plot suggests that the rate of convergence is slower than geometric, while the log-log plot suggests
that the rate of convergence is faster than polynomial.

Again, it is useful to look at the distribution and quantiles of the residuals. In Figure 5, the histogram of
residuals shows extremely heavy tails. Furthermore, in contrast to the previous results for constant p(·), the
plot of the 95%-quantiles of the absolute residuals |Rn| does not support a geometric rate of convergence.
This suggests that a geometric rate of convergence of the quantiles might not hold uniformly for all root
locations x∗ ∈ (0,1), but the quantiles might still converge at a geometric rate for a fixed value x∗ ∈ (0,1),
as considered in the next section.

4.3 Nonconstant p, Fixed x∗ ∈ (0,1)

Now consider the behavior of the sequence Xn when x∗ ∈ (0,1) assumes a fixed value. We take x∗ to be
0.2655 (an arbitrary value) and the same function p(x,x∗) = min{1/2+β |x− x∗|,1} with β = 1/2 as in
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Figure 4: The estimated expected absolute residuals E[|Xn−X∗|] when p(·) varies, from 10,000 independent
sample paths. The maximal estimated relative error over all n is less than 0.05.
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Figure 5: Left: Histogram of the residuals for n = 300. The residuals are very heavy tailed.
Right: Convergence of the 95% quantile of the absolute residuals. A geometric rate does not appear to
hold. The quantiles are estimated by 10,000 simulated sample paths and the maximal estimated relative
error over all n is less than 0.05. The standard deviation of the quantiles are estimated using bootstrapping.

Section 4.2. Figure 6 provides four sample paths of the absolute residuals |Rn|= |Xn− x∗|. The first three
sample paths are chosen arbitrarily, while the fourth (bottom right) one is intentionally chosen to exhibit bad
finite-time behavior. Notice that although a geometric rate of convergence might hold for most individual
paths, sometimes it can take a very long time until the algorithm starts to converge to x∗. This observation
is further supported by the right plot in Figure 6, which shows the estimated mean absolute residuals
E[|Xn− x∗|]. The plot suggests a slower-than-geometric rate of convergence of the expected residuals,
again most likely due to the heavy-tailed behavior of the residuals shown in the histogram in Figure 7.
The right plot in Figure 7 shows the convergence of the 95%-quantile for a fixed x∗. Note, that for these
quantiles we do observe a geometric (or faster than geometric) rate of convergence. These results suggest
that sample paths converge at a slower-than-geometric rate with very low probability, or perhaps sample
paths converge at a random geometric rate, where the support of the random rate distribution includes 0.

As a side note, consistent with Proposition 4, the sequence of medians Xn approaches x∗ from the right,
so that all residuals Rn = Xn− x∗ are positive, as can be seen in the histogram in Figure 7.
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Figure 6: Left: Semilog plots of four sample paths of the probabilistic bisection algorithm with nonconstant
p and x∗ = 0.2655. Sometimes it takes a long time until a geometric convergence rate is observed.
Right: Semilog plot of the estimated mean residuals. This plot is based on 10,000 independent sample
paths and the maximal estimated relative error over all n is less than 0.1.

5 CONCLUSIONS AND ONGOING RESEARCH

We introduced a bisection-search method for stochastic root-finding problems based on updating a probability
density function according to Bayes’ rule and sampling at the median of the posterior. The algorithm
provides a consistent estimator of the root x∗. Theoretical and empirical results when the probability p(·) is
constant suggest an exponential rate of convergence. Empirical results suggest that the expected absolute
residuals E[|Xn−x∗|] converge to zero at a rate between polynomial and exponential, and that the pathwise
rate is geometric in most cases, but might be significantly slower for a small subset of sample paths.
Compared to other existing stochastic root-finding methods, which typically have a rate of convergence
O(n−1/2), a geometric rate of convergence O(c−n) for some c > 1 would be a tremendous improvement.

The probabilistic bisection algorithm is a novel approach to the stochastic root-finding problem and
further investigation is necessary to see whether a practical variant can be developed that retains rapid
convergence properties. The following is a subset of our ongoing research.

• We would like to prove or disprove the geometric rate of convergence suggested by our experiments.
• Why are the residuals Rn = Xn− x∗ of the medians so heavy-tailed?
• In reality, the probability of achieving the correct sign, p(·), is unknown. Estimating p(Xn) at each

Xn is therefore necessary and will inevitably slow down convergence, but to what rate is unclear.
• The policy of sampling at the median minimizes the expected posterior entropy in the constant

p case. In the general case, sampling at other points, for example another quantile of Fn, might
improve the rate of convergence of Xn to x∗ or ensure the posterior entropy converges to −∞.
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A UPDATING EQUATIONS

Lemma 1 The following statements hold in the Bayesian setting in the constant p case, on the event
p(Xm,X∗) 6= 1/2 for all m ≤ n: (i) The posterior density satisfies (2) and (3). (ii) The multiplicative
proportionality constant for (2) is γ−1, and for (3) is (1− γ)−1, where γ = (1− Fn(Xn))p(Xn,X∗) +
Fn(Xn)q(Xn,X∗) and Fn denotes the cdf of the density fn. (iii) If Xn is the median of fn, then γ = 1/2 and
the multiplicative constant for both (2) and (3) is 2.
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Figure 7: Left: The histogram of residuals for nonconstant p and fixed x∗ = 0.2655 when n = 300. The
sequence of medians Xn approaches the point x∗ from the right, so that all the residuals are positive.
Right: The estimated 95%-quantile of the absolute residuals as a function of n, estimated from 10,000
paths. The maximal estimated relative error over all n is less than 0.05. The standard deviation of the
quantiles are estimated using bootstrapping.

Proof. Define 2 events, A = {Yn(Xn) = +1, p(Xn,X∗) 6= 1/2} and B = {Yn(Xn) =−1, p(Xn,X∗) 6= 1/2}.
These events have the following conditional probabilities.

P(A|Xn < X∗,Fn−1) = p(Xn,X∗), P(A|Xn > X∗,Fn−1) = q(Xn,X∗), P(A|Xn = X∗,Fn−1) = 0,

P(B|Xn < X∗,Fn−1) = q(Xn,X∗), P(B|Xn > X∗,Fn−1) = p(Xn,X∗), P(B|Xn = X∗,Fn−1) = 0.

This allows us to compute the conditional distribution of A given Fn−1 as

P(A|Fn−1) = P(Xn < X∗|Fn−1)P(A|Xn < X∗,Fn−1)+P(Xn > X∗|Fn−1)P(A|Xn > X∗,Fn−1)

= (1−Fn(Xn))p(Xn,X∗)+Fn(Xn)q(Xn,X∗) = γ,

where the first equation follows from the law of total probability and P(X∗ = Xn|Fn−1) = 0. Similarly,

P(B|Fn−1) = (1−Fn(Xn))q(Xn,X∗)+Fn(Xn)p(Xn,X∗) = 1− γ.

The result now follows from Bayes’ rule. That is, on the event A, which corresponds to (2), we have

fn(x) =
P(A|Fn−1,X∗ = x) fn−1(x)

P(A|Fn−1)
=


γ−1 p(Xn,X∗) fn−1(x), if x > Xn,

γ−1q(Xn,X∗) fn−1(x), if x < Xn,

0. if x = Xn.

For compactness, we may then alter the density at x = Xn without altering the posterior distribution it
implies, obtaining (2). The expression (3) for fn(x), that holds on the event B, is derived similarly.
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