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ABSTRACT

In this paper, we consider black-box problems where the analytic forms of the objective functions are
not available, and the values can only be estimated by output responses from computationally expensive
simulations. We apply the sample average approximation method to multi-objective stochastic optimization
problems and prove the convergence properties of the method under a set of fairly general regularity
conditions. We develop a new algorithm, based on the trust-region method, for approximating the Pareto
front of a bi-objective stochastic optimization problem. At each iteration of the proposed algorithm, a
trust region is identified and quadratic approximate functions for the expected objective functions are built
using sample average values. To determine non-dominated solutions in the trust region, a single-objective
optimization problem is constructed based on the approximate objective functions. After updating the set
of non-dominated solutions, a new trust region around the most isolated point is determined to explore
areas that have not been visited. The numerical results show that our proposed method is feasible, and the
performance can be significantly improved with an appropriate sample size.

1 INTRODUCTION

Multi-objective optimization arises in a wide variety of applications, whenever it is necessary to make a
tradeoff between different important, but conflicting goals. Examples include portfolio optimization, where
we search for a position that optimizes both return and risk (Markowitz 1991), or new product design, where
we may need to simultaneously optimize several critical factors (Wilson et al. 2001, Tappeta et al. 2002,
Shan and Wang 2005). The usual concept of optimality from single-objective optimization is not directly
applicable in these settings, because it is impossible to optimize multiple conflicting objectives at the same
time. Rather, we seek a good tradeoff among the multiple objectives, which can be formalized using the
notion of Pareto optimality or Pareto efficiency, a well-known criterion of performance for multi-objective
optimization in economics and engineering.

We formulate the multi-objective optimization problem using the general form

min
x∈X

F(x) = ( f1(x), f2(x), ..., fq(x)),

where X is a closed subset of R
p, q is the number of objectives, and F : Rp → R

q is a vector valued
function. Pareto optimality for the problem with the above form is defined by the following dominance
relationship (Abraham, Jain, and Goldberg 2005):

Definition 1 Let xu, xv ∈ X be two decision vectors. F(xu) dominates F(xv) (denoted by F(xu)≺ F(xv)) if
and only if fi(xu)≤ fi(xv), for all i ∈ {1,2, ...,q} and there exists j ∈ {1,2, ...,q} such that f j(xu)< f j(xv).
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Definition 2 A point x∗ ∈ X is said to be globally Pareto optimal if and only if there is no x ∈ X such
that F(x)≺ F(x∗). F(x∗) is called globally efficient and the image of the set of globally efficient points is
called the Pareto front.

Multi-objective optimization is especially challenging because the goal is to find a set of solutions that
can accurately approximate the Pareto front, rather than search for a single solution. In particular, when the
Pareto front is disconnected or is highly nonlinear, we may only be able to find Pareto optimal solutions
within a local region. In addition, if the image of X under the mapping F is disconnected, the best we
can guarantee with local search methods is the local optimality of the solutions. Local Pareto optimality
is formally defined as follows:

Definition 3 A point x∗ ∈ X is said to be locally Pareto optimal if and only if there exists an open
neighborhood of x∗, N(x∗), such that there is no x ∈ N(x∗)∩X satisfying F(x) ≺ F(x∗). F(x∗) is then
called locally efficient and the image of the set of locally efficient points is called the local Pareto front.

The literature contains a number of methods for identifying a set of Pareto optimal solutions in
deterministic multi-objective optimization. One of the most widely used approaches to solve multi-
objective optimization problems works by converting the multiple objectives into one single objective. The
weighted sum method (WS) (Shan and Wang 2005, Cohon 1978) minimizes a convex combination of the
multiple objectives. Using different weights, it is possible to find multiple optimal solutions and use them
to approximate the Pareto front. However, the points produced by the WS method all lie on the convex part
of the Pareto front. Another drawback of the WS method is that different weight combinations often yield
the same optimal solution. Audet et al. (2008) focuses particularly on a class of bi-objective problems
and applies the mesh adaptive direct search (MADS) method to a series of single objective problems.
The algorithm is called BIMADS (Bi-objective MADS) and is designed to generate a set of solutions
on both convex and nonconvex parts of the local Pareto front. However, the convergence rate may be
slow for high-dimensional problems, a common drawback of direct search methods. Ryu and Kim (2011)
proposed a locally convergent trust-region method for the bi-objective black-box optimization problem.
This approach was demonstrated numerically to outperform BIMADS on a certain set of problems and
produce good performance in both convex and nonconvex settings. One can also apply an evolutionary
algorithm combined with the weighted sum method to large-scale, complex problems (Abraham, Jain, and
Goldberg 2005, Deb 1999). However, this algorithm has no convergence guarantees, and tends to evaluate
a very large number of non-Pareto set points, incurring a high computational cost.

The problem becomes even more complex and challenging with the addition of stochastic noise. The
literature on this problem class is very limited, particularly when the decision space of the stochastic multi-
objective problem is continuous. We consider black-box problems where we do not have analytic forms
for the objective functions fi, i = 1, . . . ,q. The objective values can only be estimated through expensive
simulations. The output of these simulations is subject to stochastic variation. We focus on multi-objective
stochastic problems with the form

min
x∈X

{
F(x) = ( f1(x), . . . , fq(x)) := E[F(x,ξ )] = E [ f1(x,ξ ), . . . , fq(x,ξ )]

}
. (1)

Here, ξ is a random vector defined on a probability space (Ω,F ,P) with support Ξ. The sample objective
functions fi(·, ·) : Rp×Ξ→ R, i = 1, . . . ,q, are real valued functions and their values are evaluated via
simulation. The value of the expected functions are finite and can be estimated via sample averages. We
assume that the objective functions f1, . . . , fq are in conflict with each other and have finite minimum values.

We use the sample average approximation (SAA) approach (Shapiro 2003, Shapiro et al. 2009) to
approximate the problem (1). Essentially, we replace the values of the expected function by the sample
average values, and use deterministic optimization to solve the ensuing problem. The SAA approximation
to (1) is given by
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min
x∈X

{
F̂N(x) =

(
f̂1(x), . . . , f̂q(x)

)
=

(
1

N

N

∑
l=1

f1(x,ξl), . . . ,
1

N

N

∑
l=1

fq(x,ξl)

)}
, (2)

where N is the sample size and ξ1, . . . ,ξN are N independent replications of ξ .
We find non-dominated solutions by modifying the trust-region method for multi-objective deterministic

optimization developed by Ryu and Kim (2011), and applying it to the SAA problem (2). In every iteration,
we create a trust region and build quadratic approximation functions for the expected objectives, using
the sample average values at design points that are selected within the trust region. We then construct a
single-objective optimization problem based on these approximations, and solve it to find non-dominated
solutions in the trust region. After updating the set of non-dominated solutions, we create a new trust
region around the most isolated point, to promote exploration of areas that we have not yet visited.

The present paper builds on Kim and hyun Ryu (2011), the first work to apply the trust-region idea
to stochastic multi-objective optimization. However, this work primarily focused on computational issues,
and proposed various practical heuristics (such as a variable sampling scheme) to improve the performance
of the algorithm. By contrast, this paper focuses on the theoretical aspects of the method, particularly
convergence, an issue that was not touched upon by Kim and hyun Ryu (2011). Our main contribution is
an outline of a proof of local convergence for SAA applied to multi-objective stochastic approximation.
We also present additional numerical results showing the practical potential of the algorithm.

This paper is organized as follows. In Section 2, we provide the convergence results of sample average
approximation method for multi-objective problems. Section 3 describes the proposed algorithm for solving
stochastic bi-objective optimization problems in detail. In Section 4, we conduct numerical experiments
to show the feasibility of our proposed method. Section 5 draws some concluding remarks.

2 CONVERGENCE OF SAA METHOD

Thus far, the SAA method has not been actively studied in the context of multi-objective optimization. We
focus on the convergence of the solutions of the SAA problem to those of the true multi-objective problem
(MOP). Let X ∗ and XN be the set of Pareto optimal solutions for the MOP (1) and the SAA problem
(2), respectively. The most desirable convergence result that we may want to achieve is the convergence
of the approximate solution set XN to the true solution set X ∗ with increasing sample size N. This result
is especially challenging because of the complex structure of the set of Pareto optimal solutions. The sets
XN and X ∗ are often disconnected, with continuous and/or discrete components, particularly when the
functions fi are highly nonlinear with multiple local minima and maxima.

A Pareto-optimal solution is not necessarily a minimizer of any one individual objective function, but
is determined by simultaneously comparing all the objective function values with all other solutions. This
makes it difficult to determine the Pareto optimality of the limit of XN . On the other hand, local optimality
can be achieved under a simpler condition and has been well studied for a deterministic MOP (Ehrgott
et al. 2005). The first-order necessary optimality conditions for MOP are as follows.

Definition 4 Consider MOP (1) and let fi be continuously differentiable at x̃ ∈ X . If x̃ is locally Pareto
optimal, then there exists some ı̌ ∈ {1, , . . . ,q} for any d in the tangent cone TX(x̃) such that ∇ fı̌(x̃)T d ≥ 0.
We call the point x̃ a first-order Pareto solution for MOP.

We leave the analysis on global convergence for future work. Instead, we focus on the local convergence
of the SAA method and develop an algorithm based on a scalarization method for generating the set of
optimal solutions. In particular, we use the following form of single-objective optimization proposed by
Audet et al. (2008):

min
x∈X

φ(x;r) =−
q

∏
i=1

{(ri− fi(x))+}2 , (3)
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where r = (r1, . . . ,rq) is a reference point in objective function space R
q. Note that φ(x;r) is continuously

differentiable at x̃ if F is. By changing the reference point r, one can find a series of Pareto optimal solutions in
the area of interest. Some efficient points may not be found with this single-objective formulation. However,
the numerical results show that this formulation generally works well for various types of Pareto efficient
fronts. If all objective functions fi, i = 1, . . .q are convex, then a solution of (3) is Pareto optimal. The
next proposition gives more general necessary condition of a Pareto optimal solution based on the above
formulation (3).

Proposition 1 (Audet et al. (2008)) If there exists a vector r ∈R
q such that x̃ is an optimal solution of the

problem (3) with φ(x̃;r)< 0 (or equivalently, F(x̃)< r), then x̃ is Pareto optimal for the MOP. Moreover,
assume that fi, i = 1, . . . ,q are continuously differentiable, and for a given r, x̃ is a first order critical point
of φ(x;r) such that φ(x̃;r)< 0. Then, x̃ is the first order Pareto solution of the MOP.

Let ξ1, ...,ξN be i.i.d. replications of the random vector ξ . Then, for any x ∈ X , the above function
φ(x;r) can be estimated by averaging values of the product of sample functions. The corresponding SAA
problem is defined as follows:

min
x∈X

φ̂N(x;r) =
1

N

N

∑
l=1

φ(x,ξl;r) (4)

where φ(x,ξ ;r) = −∏q
i=1 {(ri− fi(x,ξ ))+}2 . Under a set of conditions, we can ensure that the optimal

solution to the problem (4) converges to a true Pareto optimal solution. Let X∗(r) and XN(r) be the set
of optimal solutions for the problem (3) and (4), respectively. We define the distance from a point x to
a compact set A to be d(x,A) = infy∈A ‖x− y‖. For two compact sets A and B, D(A,B) = supx∈A d(x,B)
denotes the deviation of set A from the set B.
Theorem 2 Assume that for a given reference point r ∈ R

q,

(i) the minimum value of φ(x;r) is nonzero,
(ii) X∗(r) is nonempty and is contained in a compact set C ⊂ X ,

(iii) f1, . . . , fq are continuous and are finite valued on C,
(iv) for N large enough, XN(r) is nonempty and is contained in C with probability 1 (w.p.1), and
(v) φ̂N(·;r) converges to φ(·;r) w.p.1. as N → ∞ uniformly in x ∈C.

Then, for N large enough XN(r)⊂XN and D(XN(r),X∗(r))→ 0 w.p.1 as N → ∞.

Proof. The proof is immediate from Theorem 5.3 in Shapiro et al. (2009).

Assumption (v) is called the uniform law of large number, which is the key condition for the convergence
result. Assumption (iii) and (v) can be ensured by imposing continuity and integrability conditions to each
sample objective functions.

Proposition 3 Suppose that for a given reference point r ∈ R
q,

(i) for every z ∈Θ, fi(·,z), i = 1, . . . ,q are continuous on a compact set C,
(ii) fi(x,ξ ), i = 1, . . . ,q are dominated by integrable functions in x ∈C, that is, there exist nonnegative

valued integrable functions gi(ξ ) such that for every x ∈C | fi(x,ξ )| ≤ gi(ξ ) w.p.1, and
(iii) E[gi(ξ )]2q < ∞.

Then, fi(·) and φ(x;r) are finite valued and continuous on C, and F̂N(·) and φ̂N(·;r) converge to F(·) and
φ(·;r), respectively, w.p.1. as N → ∞ uniformly.

Proof. The proof is immediate from Proposition 7 in Shapiro (2003) combined with Hölder’s inequality.
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Suppose that we apply a locally convergent algorithm to the SAA problem (4). Then, the best we can
guarantee is convergence to the local Pareto optimal solutions for the true MOP. Let S∗ and SN be the set of
first-order Pareto solutions of the MOP problem (1) and the SAA problem (2), respectively. The following
results ensure the convergence of the first-order Pareto solutions to those of the true problem.

Theorem 4 Suppose that for a given reference point r ∈ R
q,

(i) X is a compact convex set,
(ii) for every z ∈Θ, fi(·,z), i = 1, . . . ,q are continuously differentiable on a neighborhood of X , and

(iii) the gradient components ∂
∂x j

fi(x,ξ )( j = 1, . . . , p) are dominated by an integrable functions hi j(ξ )
with E[hi j(ξ )]2q−1 < ∞.

Then,

(a) F(x) is continuously differentiable,
(b) ∇F̂N(x)→ ∇F(x) w.p.1. as N → ∞ uniformly, and
(c) D(SN ,S∗)→ 0 w.p.1 as N → ∞.

Proof. To show (a) and (b), first apply Proposition3 to the each component of the gradient and then apply
Proposition 3 to the sample gradient function. We prove (c) by contradiction. Suppose that D(SN ,S∗)� 0.
Since X is compact, by passing to a subsequence if necessary, we can assume that there exists xN ∈ SN
such that for some α > 0, d(xN ,S∗)≥ α for all N ≥ 1, and that xN tends to a point x∗ ∈ X . It follows that
x∗ /∈ S∗.

Each xN satisfies the first order Pareto optimal condition. Since X is convex, for any u ∈ X there exists
some ı̌ such that

∇ f̂ı̌(xN)
T (u− xN)≥ 0 w.p.1. (5)

On the other hand, for any u ∈ X and i = 1, . . . ,q,

∇ f̂i(xN)
T (u− xN)→ ∇ fi(x∗)T (u− x∗) (6)

w.p.1 as N→∞, by (b). Since x∗ /∈ S∗, for some u∈X and ε > 0, ∇ fi(x∗)T (u−x∗)<−ε/2 for all i= 1, . . . ,q.
By (6), for N large enough, ‖∇ f̂i(xN)

T (u−xN)−∇ fi(x∗)T (u−x∗)‖< ε/2, and hence ∇ f̂i(xN)
T (u−xN)< 0

for all i = 1, . . . ,q. This is a contradiction to (5).

3 BI-OBJECTIVE STOCHASTIC OPTIMIZATION ALGORITHM

In this section, we consider the bi-objective stochastic optimization problem and present an algorithm to
generate a set of Pareto optimal solutions based on the SAA single-objective optimization problem (4).
Instead of solving (4) multiple times for a pre-determined set of reference point r, we adaptively change r
at each iteration to improve the approximate Pareto front generated in previous iterations. The algorithm
iteratively applies a trust-region method (Ryu and Kim 2011) to the SAA problem (2) and finds a set of
non-dominated points within a local region. At each iteration, the most isolated point is selected among
the points that have thus far been determined to be non-dominated. This point is then defined as the current
iterate. A trust region centered at the current iterate is determined to maintain the uniformity of the optimal
solution set by exploring non-visited areas. Thus, the trust region iteratively moves according to the selected
iterate. Several design points in the trust region are chosen using a design of experiment technique, and
the sample average values at the design points as well as the iterate are computed. A quadratic regression
model for each objective function is constructed based on the sample average values at the design points
(Myers, Montgomery, and Anderson-Cook 2009), and a single-objective optimization problem is built to
search for non-dominated solutions within the trust region.
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3.1 Iterate Determination

We define
X

(k)
N = {x(k)j , j = 1,2, . . . ,J(k)}

to be the set of non-dominated points returned at the end of iteration (k− 1), where J(k) denotes the

cardinality of X
(k)

N . The non-dominated point x(k)j is associated with the following four parameters:

• F̂(k)
j =

(
f̂1
(k)
j , f̂2

(k)
j

)
: the vector of sample average objectives evaluated at x(k)j . For i = 1,2,

f̂ (k)i j = 1
N ∑N

l=1 fi(x
(k)
j ,ξil).

• Δ(k)
j : Suppose that x(k)j is detected at some iteration m < k. If Δ is the radius of the trust-region

computed by Step 6 in Section 3.3 at x(k)j at the iteration m, Δ(k)
j = Δ.

While we would like to identify solutions close to the Pareto front, we also want to generate well-spread
solutions in order to approximate as much of the Pareto front as possible. To this end, we select the most

isolated point x(k)c in X
(k)

N and search for new solutions around a region centered at the point. We introduce

a quantity γ(k)j that indicates the degree of isolation of point x(k)j , based on distance between the objective

vectors at x(k)j and its neighboring points. The distance is estimated with the sample average objective function

values at non-dominated points. The procedure to compute the isolation measure γ(k)j , j = 1,2, . . . ,J(k) and

to select the most isolated point x(k)c is as follows:

1. Sort points in X
(k)

N so that f̂ (k)11 ≤ f̂ (k)12 ≤ ... f̂ (k)
1J(k)

.

2. Let δ > 0 be a user-defined constant. We compute γ(k)j using the below formula:

γ(k)j =

⎧⎪⎨
⎪⎩

2‖F̂N(x1)− F̂N(x2)‖ if i = 1

2‖F̂N(xJ(k)−1)− F̂N(xJ(k) )‖ if i = J(k)

‖F̂N(xi−1)− F̂N(xi)‖+‖F̂N(xi)− F̂N(xi+1)‖ otherwise,

(7)

where ‖·‖ denotes the Euclidean distance.

3. Let γ(k)max = max{γ(k)j : j = 1,2, . . . ,J(k)}, j∗ = argmax{γ(k)j : j = 1,2, . . . ,J(k)}, and Δtol > 0 be the
convergence tolerance parameter of the trust-region method.

- If γ(k)max ≥ δ , c = j∗,
- else if Δ(k)

1 > max{Δtol,Δ
(k)
J(k)
},c = 1

- else if Δ(k)
J(k)

> max{Δtol,Δ
(k)
1 },c = J(k),

- else c = j∗.

If γ(k)max < δ , it follows that the solutions in X
(k)

N are all close to each other. In this case, either x(k)1

or x(k)
J(k)

is selected so that the iterate x(k)c moves toward the end part of the Pareto front. In this way, the
algorithm can generate well-spread solutions while searching for the minimizer of each objective as the
iteration k grows.

3.2 Quadratic Regression Model

Once the center point is defined, we would like to find the best trade-off solution between the two conflicting
objectives within the neighborhood of the center point. Let

B(x,Δ) = {y ∈ R
n : ‖y− x‖ ≤ Δ}
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denote the closed ball centered at x with radius Δ. The trust-region at iteration k is defined by B(k) =

B(x(k)c ,Δ(k)), where Δ(k) is the trust region radius determined by Step 3 in Section 3.3.
In order to find the best trade-off solution, we combine the two objectives using the single-objective

formulation (4):

f̂3
(k)
(x) =− 1

N

N

∑
l=1

2

∏
i=1

{
(r(k)i − fi(x,ξl))+

}2

where we set r(k)i = fi(x
(k)
c ), i = 1,2 in the algorithm.

We assume that f̂1 and f̂2 are not easy to optimize, so f̂3 is difficult as well. We would like to construct
local surrogate models on the trust region to search for local optimal solutions. The optimization of the
surrogate model should be easier than that of the original objective function, and yet the model has to be
accurate enough to obtain a reasonably good solution. One commonly used model is a quadratic function.
We sample points in B(k) by using a central composite design (Myers, Montgomery, and Anderson-Cook
2009) and evaluate the sample average objectives at the design point as well as the center point with the

sample size N. Let m(k)
i be the quadratic model for f̂i, i = 1,2,3, which can also be written in the following

form:

f̂ (k)i (x(k)c + s)≈ m(k)
i (x(k)c + s) = c(k)i + sTg(k)i +

1

2
sTH(k)

i s.

where x(k)c + s ∈ B(k), c(k)i are scalar, and g(k)i and H(k)
i are the gradient and the Hessian of the quadratic

model m(k)
i at x(k)c (i = 1,2,3).

3.3 Algorithm Description

I. Initialization: Choose the initial point x(0), the initial trust-region radius Δ0 > 0, and the value of
parameters Δmax > 0, Δtol > 0, δ > 0, 0 ≤ η < 1, τ ∈ (0,1), τinc > 1, μ > β > 0, and ω ∈ (0,1).

Evaluate f̂1(x(0)) and f̂2(x(0)) and set Δ(0)
c = Δ0 ∈ (0,Δmax).

Step 1 (next iterate selection) From the previous iteration, the set of non-dominated points X
(k)

N

is returned. Select x(k)c in X
(k)

N according to the procedure described in Section 3.1 and set

Δ(k)
icb = Δ(k)

c .

Step 2 (regression models) Using a poised set of sample points, Y = {y1,y2, . . . ,yd}, in the ball

B(x(k)c ,Δ(k)
icb), construct fully linear models micb

i , i = 1,2,3 as described in Section 3.2.

Step 3 (criticality step) If μ−1Δ(k) ≤ min
i=1,2,3

‖g(k)i ‖, then set Δ(k) = Δ(k)
icb and m(k)

i = micb
i , i = 1,2,3.

Otherwise, proceed as follows.

Initialization : Set ı̂ = 0 and m̃(0)
i = micb

i , i = 1,2,3.

Repeat Set ı̂ = ı̂+ 1. As done in Step 2, construct fully linear models m̃(ı̂)
i , i = 1,2,3 in the

ball B(x(k)c ,ω ı̂Δ(k)
icb):

m̃(ı̂)
i (x(k)c + s) = c̃(ı̂)i + sTg̃(ı̂)i +

1

2
sTH̃(ı̂)

i s.

Set Δ̃(k) = ω ı̂Δ(k)
icb.

Until Δ̃(k) ≤ min
i=1,2,3

μ‖g̃(ı̂)i ‖ or Δ̃(k) ≤ Δtol .

Then set

m(k)
i = m̃(ı̂)

i and Δ(k) = min

[
max

{
Δ̃(k), min

i=1,2,3
β‖g̃(ı̂)i ‖

}
,Δ(k)

icb

]
.
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Step 4 (three single-objective problems) Solve each single objective problem and let

x(k)i∗ = argmin{m(k)
i (x) : x ∈ B(x(k)c ,Δ(k))∩X},

where i∗ = J(k) + d(k)
tot + i, i = 1,2,3 and d(k)

tot = d× ı̂ denotes the total number of evaluated
design points in the current iteration.

Step 5 (reduction ratios) Compute ρi∗ , i = 1,2,3, for the model solutions from Step 4 such that

ρi∗ =
f̂i(x

(k)
c )− f̂i(x

(k)
i∗ )

mi(x
(k)
c )−mi(x

(k)
i∗ )

, i = 1,2,3.

Compute ρ̃ j for j = J(k) +1, . . . ,J(k) +d(k)
tot +3, such that

ρ̃ j =
f̂3(x

(k)
c )− f̂3(x

(k)
j )

m3(x
(k)
c )−m3(x

(k)
3∗ )

.

Step 6 (trust-region radius update) In the current iteration, the number of newly evaluated points

is (d(k)
tot +3). Set a new trust region radius corresponding to design points,

Δ(k)
J(k)+ j

= ‖x(k)c − x(k)
J(k)+ j

‖, j = 1, . . . ,d(k)
tot .

For the three model solutions, {x1∗ ,x2∗ ,x3∗},

Δ(k)
i∗ ∈

{[
Δ(k),min{τincΔ(k),Δmax}

]
if ρi∗ ≥ η

{τΔ(k)} otherwise.

Step 7 (non-dominated solution set update) Compare the vector values F̂(x), x ∈ {x(k)j , j = 1,2,

. . . ,(J(k) +d(k)
tot +3)} and determine the set of non-dominated points X

(k+1)
N .

Step 8 (iteration evaluation) If max{ρ̃ j : j = J(k) +1, . . . ,(J(k) +d(k)
tot +3)}< η and τΔ(k) > Δtol ,

set x(k+1)
c = x(k)c , Δ(k+1)

icb = τΔ(k), increase k by one, and then go to Step 2. Otherwise, increase
k by one and go to Step 1.

The deterministic version of the above algorithm is guaranteed to converge under a set of regularity
conditions such as the Lipschitz continuity of objective functions and full linearity of the surrogate models
mi (see Ryu and Kim (2011)). If for fixed z ∈ Ξ, the sample objective functions fi(·,z)(i = 1,2) are
Lipschitz continuous with Lipschitz coefficient Ki(z) and Ki(ξ ) is integrable, the objective functions fi are
also Lipschitz continuous.

4 NUMERICAL EXPERIMENTS

In this section, we test the proposed algorithm with several sampling schemes. The test problem, taken from
(Wilson, Cappelleri, Simpson, and Frecker 2001), is an unconstrained deterministic bi-objective problem
with a convex Pareto front. After adding noise to the decision variable x, our problem is formulated as
follows:

Minimize: E[ f1(x(1),x(2),ξ )] = E(x(1)−2ξ(1))2 +(x(2)−ξ(2))2]

E[ f2(x(1),x(2),ξ )] = E[(x(1))
2 +(x(2)−6ξ(3))2],
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Figure 1: Performance comparisons with 5,000 function evaluations.
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Figure 2: Performance comparisons with 20,000 function evaluations.
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where ξ = [ξ(1),ξ(2),ξ(3)], and ξ(1),ξ(2),ξ(3) are independent and identically distributed chi-square

random variables with degree 1. The starting point is x(0) = [5,5] and the initial parameters are set

by Δ(0) = 0.8, Δtol = 0.001, α = 0.98, η = 0.5, τ = 0.7, τinc = 1, and δ = 0.001. The Pareto front is
approximated by evaluating 401×701 uniformly-spaced points on [−2,2]× [0,7]. We find a set of solutions
H of around 2,500 non-dominated solutions that are uniformly-spaced.

To evaluate our method, we use the generational distance (GD) criterion (Veldhuizen and Lamont
1998). Suppose that the solution set is H = {x1, . . . ,xe}. Then, the GD is computed by

GD =

√√√√ e
∑
j=1

{
min

x∗j∈H
‖F(x j)−F(x∗j)‖

}2

e
.

This is a measure of the average distance between the objective value at the obtained solution and the true
Pareto front. Hence, smaller GD is preferable. Note that GD= 0 indicates that all the generated solutions
are Pareto optimal.

We tested the algorithm in Section 3.3 with sample size N = 5,10,50 and 100. The computation time
is measured in terms of function evaluations, and Figure 1 and 2 present the performance comparisons
with 5,000 and 20,000 function evaluations, respectively. All dots present the true objective function
values at all the visited points. Small and large dots represent the points determined to be dominated and
non-dominated based on the sample average function values, respectively. The solid line is the true Pareto
front. When N = 5 and 10, quite a number of points are generated near the Pareto front within 5,000
function evaluations (Figure 1, (a) and (b)). With 20,000 function evaluations, however, a large number
of dominated points cannot be screened out due to the sampling error, and they are eventually wrongly
determined as non-dominated points (Figure 2, (a) and (b)). In particular, with N = 5, nearly 50% of
solutions generated from the algorithm are dominated points. On the other hand, with N = 50 and 100,
almost all the generated points are near the Pareto front (Figure 2, (c) and (d)). However, the algorithm
was not able to generate solutions that cover all range of Pareto front. When the sample size N is large,
the algorithm evaluates a smaller number of points, and thus cannot fully explore the entire Pareto front.

We tested 100 replications of the SAA problem with N = 5,10,50 and 100 for the average performance
comparisons. Table 1 present the mean and standard error of GD and Table 2 present the number simulation
runs that returned a set of solutions with a certain level of GD. The results show that he efficiency of the
algorithm significantly depends on the sample size. From the both tables, we can observe that with 5,000
function evaluations, N = 10 performs the best, and with 20,000 function evaluations, N = 50 performs
significantly better than others. This implies that the sample size should be carefully determined taking
into account the computational budget.

Table 1: GD performance comparisons.

Nk
5,000 evaluations 20,000 evaluations

mean of GD standard error mean of GD standard error

5 0.4998 0.9987 0.3177 0.5762

10 0.2920 0.4895 0.2182 0.3003

50 0.5108 0.4661 0.1532 0.3395

100 9.6350 2.2765 0.1743 0.2965

5 CONCLUSION

We developed the framework of the SAA method for MOP and showed the convergence of the SAA
method under a set of fairly general regularity conditions. We applied an iterative algorithm for bi-objective
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Table 2: The number of runs with GD less than 0.1, 0.5, and 1, with 100 independent runs.

Nk
5,000 evaluations 20,000 evaluations

GD< 0.1 GD < 0.5 GD < 1 GD < 0.1 GD < 0.5 GD< 1

5 23 81 90 47 83 90

10 47 86 91 50 86 97

50 6 67 88 63 94 98

100 0 0 0 56 92 98

stochastic optimization problems, based on the trust region method, to the SAA problems. The algorithm
does not require any strong modeling assumptions, and has great potential to work well in various real-world
settings. The numerical results show that the our proposed method is feasible, and can perform robustly
with a large enough size N.

A subject for future work is the convergence of global Pareto solutions in a general context. To
improve the finite time performance of the algorithm, the sample size should be carefully determined
with consideration for the trade-off between sampling and optimization errors. The difference between the
solutions obtained from SAA and the solutions to the true problems can be reduced by taking a larger
sample size. On the other hand, as the number of iterations grows, the distance between solutions from
each iteration and the Pareto front decreases. We can consider an algorithm to solve a sequence of SAA
problems with increasing sample size. In the early stages of the algorithm, given a fixed number of function
evaluations, we use a smaller sample size to take a large number of iterations, allowing us to evaluate the
objective functions at more points with lower accuracy. In the later stages, with a larger sample size, we
make a greater effort to reduce the sample variance and find more accurate solutions. Currently, we are
analyzing these two errors for a certain class of problems and developing a heuristic sampling scheme that
may work robustly for those problems.
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