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ABSTRACT 

This paper presents research toward generalizing the optimization of the allocation of simulation replica-
tions to an arbitrary number of designs, when the problem is to maximize the Probability of Correct Se-
lection among designs, the best design being the one with the smallest probability of a rare event. The 
simulation technique within each design is an optimized version of the splitting method. An earlier work 
solved this problem for the special case of two designs.  In this paper an alternative two-stage approach is 
examined in which, at the first stage, allocations are made to the designs by a modified version of the Op-
timal Computing Budget Allocation. At the second stage the allocation among the splitting levels within 
each design is optimized.  Our approach is shown to work well on a two-tandem queuing model.  

1 INTRODUCTION 

It is well known that standard Monte Carlo (MC) techniques do not efficiently estimate the probability of 
rare events. Their inadequacy is exacerbated when simulations, subject to a computational budget con-
straint, are made over several designs, for the purpose of selecting the design with the smallest rare event 
probability. This paper explores methods to improve performance by optimizing the allocation of the 
computational budget among designs and, within each design, among the levels of a fixed effort splitting 
technique. 

The computational budget is defined in terms of time.  The problem of allocating this time optimally, 
in order to maximize the probability of correct selection (the probability of selecting the “best” design, 
however best is defined) is addressed by the Optimal Computing Budget Constraint (OCBA) (Chen et al. 
2000; He et al. 2007; Fu et al. 2007).  OCBA implicitly assumes that standard MC is the simulation tech-
nique used within each design.  It thus suffers, in the context of rare events, from the inefficiencies of 
MC. Applying OCBA, by itself, to optimize the allocation of the budget among designs offers only slight 
improvement over equal budget allocations, when MC is used to estimate rare event probabilities within 
the designs. 

There are several approaches to the problem of efficiently estimating rare events, within a single sys-
tem or design. L’Ecuyer, Demers, and Tuffin (2006), L’Ecuyer et al. (2009), and Asmussen and Glynn 
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(2007) provide overviews of such approaches.  Splitting techniques may be generally characterized as 
fixed splitting or fixed-effort splitting.  Fixed splitting refers to methods in which each run that hits its 
splitting level launches a fixed number of runs at the next level. See Villen-Altamirano and Villen-
Altamirano (2006) for an example of a fixed splitting method.  Lagnoux-Renaudie (2008) develops tech-
niques to improve the effectiveness of fixed splitting methods. Fixed-effort splitting refers to methods in 
which the number of runs at each level is pre-specified (L’Ecuyer, Demers, and Tuffin 2006). We adopt a 
version of the fixed effort splitting method which optimizes the allocation of the budget, for a single de-
sign, among its splitting levels (Shortle & Chen 2008; Fischer et al. 2010; Shortle et al. 2011).  It is called 
the Optimal Splitting Technique for Rare Event Simulation, or OSTRE.  (The optimization minimizes the 
variance of the design’s probability estimator.)  Success at selecting the best of several designs is consid-
erably enhanced by employing OSTRE within each design, even if no attempt is made to optimize the 
budget allocation between designs.  But we need not forego optimization between designs.  This paper 
proposes combining OCBA, which optimizes the allocation among designs, with OSTRE, which optimiz-
es within designs.  It is thus a two-stage approach, henceforth called OCBA+OSTRE. 

Without dwelling on the details of implementing the optimizing algorithm(s), one feature should be 
made clear. The optimization problem is posed in the standard form of an objective function to be mini-
mized, subject to a constraint.  But in practice that problem is not explicitly solved. The solution is found 
incrementally by (approximately) satisfying, within the implementation of the algorithm, its first-order 
optimality conditions, and by stopping the implementation when the budget constraint is reached. The al-
gorithm is implemented in stages. At each stage the task is to make a new (small) allocation to the appro-
priate design, and then to the appropriate splitting level, in order to nudge the optimality conditions to-
ward equality. The first stage is initialization, where modest allocations are made to all designs and levels 
to obtain preliminary estimates of all the parameters.  Using those estimates the optimality equations are 
evaluated, and the next (small) allocation made to the design/ level which best moves those equations to-
ward equality. The simulation then advances to the next update, a new allocation is made, etc. The alloca-
tions at each stage being small, the updating is frequent and tends, as our testing shows, to establish ap-
proximate equality of the optimality equations at the termination of the algorithm.    

Let nk j denote the number of runs for design k, at level j, and bk j the average time required for each 
such run.  The decision variables are  nk j.  At each step of the algorithm the next (small) set of runs will 
be allocated to one of the splitting levels of one of the designs.  Thus the optimization should, theoretical-
ly, be over all the nk j at once. We call that the global optimization. It is the gold standard – the “optimal” 
optimization. This paper proposes, instead, a two-stage optimization (OCBA+OSTRE) in which, at each 
updating step, an allocation is first made to a design, and then to a level.  The first decision (which de-
sign?) is made without knowledge of where it will go within the selected design (which level?).  

This two-step tango might seem more convoluted than a straightforward global optimization, and it 
might be mathematically inferior to global optimization, but it promises an attractive alternative. Global 
optimization becomes intractable as the number of designs/ levels increases. For anything beyond, say, 4 
designs and 4 levels global optimization becomes quite ponderous. A  two-stage approach promises to be 
more tractable, at least in higher dimensions, as it is broken into two bites, each more digestible than the 
whole.  

In this paper we derive the optimality conditions for the OCBA allocation between designs, and wed 
it to the OSTRE allocation within designs, yielding a two-stage method for the simplest case, two designs 
and two levels. We prove the mathematical equivalence of this two-stage method and global optimization, 
in this simplest case. We then present tests of the method, on a queuing model, for two and three designs.  

2 DERIVATION OF A TWO-STAGE METHOD FOR TWO DESIGNS, TWO LEVELS 

The two-stage method may be thought of as an OCBA step, then an OSTRE step. The OCBA step allo-
cates runs between designs. The OSTRE step then allocates the runs received by a design to its splitting 
levels. This section derives the OCBA allocation, in conjunction with the OSTRE allocation derived in 
Shortle et al. (2011). 
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OCBA was originally developed on the assumption of MC within the designs.  Its results are not di-

rectly applicable, without adjustment, in the context of splitting.  We derive the appropriate OCBA, and 
merge it with OSTRE, for two designs and two splitting levels. 
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Without loss of generality we assume  1 2p p .  To maximize the probability of correct selection: 
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It can be shown that ˆ kp  is an unbiased estimator of kp  even though 1ˆkp  and 2ˆkp  are not necessarily in-
dependent (see L’Ecuyer, Demers, and Tuffin 2006). 
  

Assuming that the probability of reaching level j , starting from any entrance state to level 1j  , does 

not depend on the entrance state, the variance of ˆkp  can be derived as 
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Given that the ˆkjp
 
are (approximately) normal, we assume that for large kjn their products are also ap-

proximately normal: 
 

                                                1 2ˆ ˆ ˆk k kp p p    ~    2
1 2, ,k k k kN p n n    
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Minimizing that probability is equivalent to maximizing  g , which is equivalent to  
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This is the global optimization problem.  To derive the OCBA step of OCBA+OSTRE we must trans-
form it into a minimization over 1N  and 2N , where  1 11 12 2 21 22,N n n N n n    .    

To obtain a simplified approximation of the optimal relationship between the kjn within each design, 

Shortle et al. (2011) consider an asymptotic solution, as kjn  .  In addition, the kjp being typically 

small, they set 1 1kjp  .  These assumptions will be made in all subsequent derivations.  Under them the 

OSTRE relationship they derive simplifies to 
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For large kjn the last term in the expansion of  2
1 2,k k kn n  is negligible, compared to the first two.  Ignor-

ing it and substituting for 1kn  and 2kn  reduces the variance to 
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The requirement that 2kN  , and that they be integers, is automatically satisfied by the implementa-
tion of the algorithm, where only positive integers are allocated, and there is, in the initialization phase, an 
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allocation to each level of each design.  For theoretical purposes we may treat the kN , and the kjn as con-

tinuous variables, the rounding, in practice, being inconsequential. Now the problem is 
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where   kb   the average time consumed by an allocation of one run to design k. 

From  1 1 2 2k k k k k kb N b n b n   and the relationship between the kjn  and kN  stated above we have 
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The optimality conditions of the minimization problem imply 
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Equation (1) is the OCBA relationship upon which runs are allocated to designs.  If, upon updating, 
the left-hand side is less than the right, design 1 gets the next (small) allocation of runs.  Otherwise it goes 
to design 2.  It is then assigned to level 1 or 2 of the receiving design, depending on the intra-design 

OSTRE relationship.   An allocation to design k flows to 1kn  if   1 1 1 2 2 2k k k k k kn b p n b p ,  2kn  other-

wise. 
Comparing this OCBA result, equation (1), with the original reveals how OCBA changes when 

OSTRE instead of MC is employed within the designs.  The original result (see Chen & Lee 2011) is  
                                                               
  2 2 2 2

1 1 2 2 2 1N b N b 
 

where  2
k  =  the variance of one MC run in design k.  A run hits the rare event with probability  kp  or 

misses with 1 kp , so its variance is   1k kp p : 

                                                                    2 2
1 1 2 2 2 2 1 11 1 (2)N b p p N b p p    

The OCBA in (2) differs from the OCBA in (1) because there is no OSTRE counterpart to one MC run 
generating a rare event with probability kp .  
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3 EQUIVALENCE OF OCBA+OSTRE & GLOBAL OPTIMIZATION 

In this section we show that the two-stage method is mathematically equivalent to global optimization.  
For two designs and an arbitrary number of splitting levels the global optimization problem has been 
solved by Shortle et al. (2011).  (They call it OSTRE2, meaning OSTRE applied to 2 designs.) For two 
levels the optimality equations, after making the simplifying assumptions noted above, are 

 

 

11 11 11 12 12 12
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21 21 21 22 22 22

21 22 21 22

11 11 11 21 21 21

11 12 21 22

n b p n b p

p p p p

n b p n b p
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p p p p







 

The first two are the intra-design OSTRE relationships.  They obviously hold in the two-stage method be-
cause we employed them in developing the OCBA step.  Thus the equivalence of OCBA+OSTRE and 
global optimization depends on the third equation.  The methods are equivalent if substituting 
 
  1 11 12 2 21 22and   N n n N n n     

in the OCBA+OSTRE optimality equation, and utilizing the intra-design OSTRE relationships, reduces it 
to the third global optimization equation.  It does so reduce, proving the theorem below. 
 
Theorem:  For 2 designs, 2 levels, the OCBA+OSTRE two-stage method is mathematically equivalent to 
global optimization (OSTRE2), under the same set of simplifying approximations. 
 
Proof:  See Appendix A. 
 

 Proving the general case is more challenging, and is ongoing research. 

4 TESTS 

We compare, for 2 designs, 2 levels, the performances of OCBA+OSTRE, global optimization 
(OSTRE2), and MC, and then apply OCBA+OSTRE to 3 designs, 2 levels.  The tests are on a queuing 
model with two servers in tandem.  The process begins with a customer in server 1, both queues and serv-
er 2 empty. It terminates when both queues are empty, or there are 100 customers in either queue. Arrival 
and service rates are chosen to make the second terminating state – 100 customers in either queue – a 
(relatively) rare event. (The probabilities of the rare event in each design are approximately 3.6e-6, 3.9e-
6, and 4.3e-6.)  Designs are differentiated by arrival and service rates, with design 1 the best. 

In these tests an “experiment” is the simulation of all designs, subject to a given budget constraint (in 
terms of time, for the set of designs), generating probability estimates for each design.  From these esti-
mates the minimum is selected.  The percentages of correct selections (design 1), over a large number of 
experiments at several budget levels, are plotted for each method.  Those percentages should, in general, 
increase with rising budgets.  We compare the methods over ranges of fairly small budgets, where choos-
ing the best design is, for any method, a considerable challenge.  
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4.1 2 Designs, 2 Levels 

The budget for the first test (2 designs, 2 levels) begins at 30 seconds and increases, by 10 second incre-
ments, to 5 minutes, with 1000 experiments at each budget level.  At these small budgets MC is hopeless, 
worth little more than coin tossing.  But both global optimization (OSTRE2) and OCBA+OSTRE  be-
come quite reliable.  After 5 minutes they both achieve 95% correct selection.  And they are essentially 
indistinguishable, as expected from their mathematical equivalence. Figure 1 shows the performance. 
 

 

                          
 

Figure 1: Performance of OCBA+OSTRE fore 2 Designs, 2 Levels 

4.2 3 Designs, 2 Levels 

For 3 designs we do not (yet) have a good implementation of global optimization, but we do have 
OCBA+OSTRE. (The  derivation is similar to that for 2 designs.)  Nor do we have proof that 
OCBA+OSTRE is equivalent to global optimization for 3 or more designs.  But OCBA+OSTRE performs 
well in practice.  

The next test pits OCBA+OSTRE against OSTRE by itself and OCBA by itself, across 3 designs. The 
starting time is increased to a minute, to accommodate OCBA (which requires relatively long initializa-
tion), and the budgets are extended to 7 minutes.  The observation that OCBA alone is only slightly better 
than MC suggests that most of OCBA+OSTRE’s punch should come from OSTRE. That is clearly seen 
in this test, as OCBA+OSTRE consistently, but only modestly, outperforms OSTRE alone.  Figure 2 
shows the performance in this case. 

5. CONCLUSION 

The problem is to select the best among a set of designs, where best means the design with the lowest 
probability of a rare event.  The probability of making the correct selection is marginally enhanced by 
employing OCBA to allocate runs (or time) among the designs. The probability of making the correct se-
lection is significantly enhanced by employing OSTRE, an optimized form of splitting, to estimate the ra-
re event probability of each design.  Combining OCBA with OSTRE – a two-stage optimization – should 
enhance the probability of making the correct selection more than either alone can do. The best approach 
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would be a single optimization over all decision variables – the runs (or time) allocated to each splitting 
level across all designs.  That optimization becomes very unwieldy as the number of designs (and levels) 
increases. The OCBA+OSTRE approach promises to be more tractable, and deliver results almost as 
good as single optimization. In fact, in the simplest case of 2 designs, 2 levels, OCBA+OSTRE is mathe-
matically equivalent to single optimization.  Whether or not equivalence holds in the general case (an ar-
bitrary number of designs and levels) is uncertain, a question for further research.     

 

                       

                                      Figure 2: Performance of OCBA+OSTRE for 3 Designs 

A THEOREM 

Theorem:   
 
For 2 designs, 2 levels, the OCBA+OSTRE two-stage method is mathematically equivalent to global op-
timization (OSTRE2), under the same simplifying approximations. 
 
Proof: 

 
Under the same simplifying approximations OCBA+OSTRE and OSTRE2 are equivalent if  
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The left and right-hand sides of both equations are symmetrical, differing only in the design index, so it 
suffices to show the LHS of OCBA+OSTRE reduces to the LHS of OSTRE2, namely   
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Make the following substitutions:  
 

  11 11 11 1 12
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Multiplying the numerator and denomination by 
12 12

1

b p
 and distributing the product appropriately 
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