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ABSTRACT

Management policies for disease outbreaks balance the expected morbidity and mortality costs versus the
cost of intervention policies. We present a methodology for dynamic determination of optimal policies in
a stochastic compartmental model with parameter uncertainty. Our approach is to first carry out sequential
Bayesian estimation of outbreak parameters and then solve the dynamic programming equations. The latter
step is simulation-based and relies on regression Monte Carlo techniques. To improve performance we
investigate lasso regression and global policy iteration. Comparisons demonstrate the realized cost savings
of choosing interventions based on the computed dynamic policy over simpler decision rules.

1 INTRODUCTION

Management and design of cost-effective intervention policies to mitigate disease outbreaks is one of the
central goals of public health biosurveillance. Random interactions between individuals make the overall
outbreak progression stochastic. In addition, health surveys cover only a fraction of total population, and
parameters governing outbreak severity are only known in retrospect. As a result, inference of outbreak
state, such as the current number of infecteds, is a significant statistical problem. For the aim of designing
intervention policies, sequential inference is necessary and has been studied among others in Dukic, Lopes,
and Polson (2010), Merl, Johnson, Gramacy, and Mangel (2009).

Management of disease outbreaks constitutes a multi-period control problem. Given the multiple
levels of uncertainty and stochasticity, adaptive policies are desired. We propose to adopt a Bayesian
stochastic control setup which takes the full posterior of outbreak parameters and population types as the
system hyper-state. This leads to a high-dimensional problem for which standard methods of Dynamic
Programming and Stochastic Dynamic Programming are infeasible. To overcome this challenge we construct
a simulation-based algorithm that relies on techniques from high-dimensional regression.

For concreteness we focus on a popular stochastic SIRD model which is appropriate for diseases
with short incubation periods and relatively high mortality, such as pandemic influenza (Ludkovski and
Niemi 2010, Patel, Longini, and Halloran 2005) or measles (Ludkovski and Niemi 2011, World Health
Organization 2010). In terms of interventions we focus on the interplay between information collection
and direct action (especially vaccination). Indeed, parameter uncertainty obscures true outbreak dynamics
but can be actively managed by “probing” the system to gather more information through increased survey
proportions. Such actions can reduce uncertainty and expected costs and allow to quantify precisely the
value of information.

One of our aims in this paper is to assess a number of current data gathering practices and determine
whether it may be worthwhile to invest in biosurveillance systems that provide more rapid or accurate
assessment of the current outbreak state. For example, most surveillance methods provide little information
on recovereds. However, the recovery rate is key for determining the basic reproductive ratio R of the
outbreak which controls the proportion of the susceptible population that will become infected. But if there
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is already enough a priori information about the recovery rate, then this data collection is unnecessary. In
addition to the importance of recovery rate information, another key factor is timeliness of information.
Current biosurveillance systems have data delays around a couple of weeks. For outbreaks such as measles
that occur on the scale of weeks, this could have devastating impacts from morbidity and mortality incurred
due to delayed interventions, which must be weighed versus the cost of speeding up data delivery.

To answer these questions, we extend and improve the Monte Carlo framework of Ludkovski (2009)
and Ludkovski and Niemi (2010). In particular, we design (i) a new global policy iteration mechanism to
facilitate convergence and (ii) propose the use of shrinkage regression, such as lasso, during the prediction
step. These ideas allows us to significantly speed-up the performance of the algorithm and consider more
sophisticated model specifications than in the past. Moreover, our approach can be straightforwardly
adjusted for many other outbreak specifications.

2 MODEL

In this section, we describe our model that is based on discrete-time surveillance observations of the numbers
of individuals who have become infected or recovered since the last surveillance data. The corresponding
inferential procedure incorporates learning of outbreak parameters at a rate that is proportional to the
population sampling rate and the variability of this sampling procedure.

We assume a stochastic susceptible-infected-recovered-deceased (SIRD) model for disease outbreak
(Andersson and Britton 2000). Thus, individuals transition between four possible states Xt = (St , It ,Rt ,Dt)
according to a continuous-time jump-Markov process within a population of constant size N = St + It +
Rt +Dt . The transition rates are summarized by four reaction channels with intensity functions

S+ I θ1h1−−→ I h1 = kφ I
t

I StIt

I θ2h2−−→ R h2 = It

S
θ3h3−−→ R h3 = φ

V
t St

I θ4h4−−→ D h4 = It


, (1)

which respectively correspond to infection, recovery, vaccination and death. The a priori unknown outbreak
parameters Θ can be interpreted as: infectiousness (θ1), mean recovery time (1/θ2), vaccination rate (θ3),
and death rate (θ4). A key quantity is the basic reproduction number R := θ1/(θ2 +θ4). The φt’s are the
interventions described in Section 3 (φ = 0 indicates no intervention).

Simulation of the SIRD model can be accomplished using Gillespie’s SSA algorithm. Since in our
applications N is moderately large (on the order of 104) and our method is simulation-intensive, we employ
the tau-leaping approximation (Gillespie 2001). Accordingly, total transitions over an interval of length
tau, taken to be 1 for simplicity, are given by the Poisson rates

Ĩt ∼ Po(θ1h1), R̃t ∼ Po(θ2h2), (2a)

Ṽt ∼ Po(θ3h3), D̃t ∼ Po(θ4h4), (2b)

where Po(λ ) represents the Poisson distribution with mean λ . The compartmental populations are then
updated as

St+1 = St −∆It −∆V t (3a)

It+1 = It +∆It −∆Rt −∆Dt (3b)

Rt+1 = Rt +∆Rt +∆V t (3c)

Dt+1 = Dt +∆Dt , (3d)
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where to ensure that S, I,R,D remain non-negative we place the constraints

∆It = min(Ĩt ,St) (4a)

∆Rt ∼ Bin(It +St ,θ2/[θ2 +θ4]) if R̃t + D̃t > It +∆It (4b)

∆V t = min(Ṽt ,St −∆It) (4c)

∆Dt = R̃t + D̃t −∆Rt , (4d)

with Bin(n,q) representing the binomial distribution with n trials and success probability q. These transitions
ensure that 1) only available susceptibles become infected, 2) recovered and deceased are not greater than
the number of infecteds plus susceptibles (which implies that in the temporal dynamics an individual can
become infected and either recover or die in the same time period), 3) the number of recovered and deceased
individuals are proportioned appropriately, and 4) if an individual is vaccinated and infected in the same
period, they still become infected.

Biosurveillance programs do not observe S, I,R,D but instead collect information through sampling
models, assumed to be independent of the system. Given sampling proportions p̃i, the observations are
~Yt = (Y1,t , · · · ,Y4,t) with

Y1,t ∼ Bin(∆It , p1) p1 = p̃1 + k∆Iφ
∆I
t (5a)

Y2,t ∼ Bin(∆Rt , p2) p2 = p̃2 + k∆Rφ
∆R
t (5b)

Y3,t ∼ Bin(∆V t , p3) p3 = p̃3 (5c)

Y4,t ∼ Bin(∆Dt , p4) p4 = p̃4, (5d)

where k∆I,k∆R are known constants and φ ∆I , φ ∆R are associated with the controls discussed in Section 3.

2.1 Inference

Ideally, inference would be performed accounting for uncertainty in parameters, as well as the underlying
SIRD states. Unfortunately, the highly computational nature of the stochastic control procedure introduced in
Section 3 precludes the additional computational overhead involved with Monte Carlo techniques. Therefore,
we strive to retain as much uncertainty as possible while still maintaining computational tractability in
construction of an optimal control policy.

We assume the state of the system is fully observed, but parameter posteriors are only updated utilizing
sampled transition data. This allows us to maintain conjugacy relations but still capture sampling noise.
Assuming independent gamma priors for the model parameters, the posterior distributions also have the
gamma distribution provided by the approximate conjugate updating in equation (6):

p(θ) =
4

∏
i=1

p(θi;αi,0,βi,0) =⇒ p(θ |y1:t+1) =
4

∏
i=1

p(θi;αi,t + yi,t+1,βi,0 + pihi(Xt)). (6)

With these assumptions, the current information available at time t by which a decision can be made is
summarized by the Markov hyper-state

Xt := (St , It ,Dt ,α1,t ,β1,t ,α2,t ,β2,t ,α3,t ,β3,t ,α4,t ,β4,t). (7)

Since the number of recovereds is simply Rt = N−St− It−Dt , it is omitted for the remainder of the paper.
The state space of X is of mixed type: ∆3

N×(Z+×R+)
4, where ∆3

N = {(x1,x2,x3)∈Z3 : xi ≥ 0,∑i xi ≤N}.
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3 STOCHASTIC CONTROL

We assume the available public health interventions are 1) increasing the sampling rate for new infecteds,
2) sampling newly recovereds, 3) isolation of infected individuals, and 4) vaccination. Each of these
interventions is controlled by a parameter φ which is 0 when the intervention is not in effect and 1 when the
intervention is. Table 1 provides a summary of the interventions, their control parameter, and associated
costs.

Table 1: Table of interventions and costs .

Costs
Intervention φ Effect Fixed Running
Raise new infecteds’ sampling φ ∆I ∈ {0,1} k∆I = 0.9 K∆I = 100 c∆I = 100
Sample new recovereds φ ∆R ∈ {0,1,2} k∆R = 0.4 K∆R = 100 c∆R = 100φ ∆R

Isolation and quarantine φ I ∈ {0,1} kI = 0.6 KI = 1000 cI = 5It +400
Susceptibles vaccination φV ∈ {0,1} KV = 50,000e−t/7 +5000 cV = 500
Outbreak Morbidity d1

t = It +0.01[max(It − I−,0)]2

Outbreak Mortality d2
t = 500(Dt+1−Dt)

The costs are broken up into two general categories: fixed and running. The direct costs of the outbreak
are provided in the last two lines of the table where I− = 400 is a threshold that converts the cost from linear
to quadratic. Fixed costs K j are incurred immediately when an intervention is initiated, while running costs
c j are incurred the entire time an intervention is active. The cost over one period [t, t +1] is, therefore,

Ct+1
t (φt+1) = ∑

j
K j1{φ j

t+1 6=φ
j

t }
+∑

j
c jφ

j
t +d1

t +d2
t , (8)

where the sums are over all possible control policies j ∈ {∆I,∆R, I,V}. The total cost of the outbreak and
interventions, denoted as Cτ

0 , is the sum over all time points of these costs, where τ is the horizon of the
outbreak (i.e., first time when It = 0; due to finite population every outbreak eventually stops). Additional
constraints on possible intervention sequences can be incorporated via the sets F(φ) which denote possible
policies given that previous policy was φ .

Since data are gathered sequentially in time, any decision policy is really a policy map Φ(t,Xt ,φt)
that describes the decision that should be made at time t based on the latest hyper-state Xt and currently
implemented policy φt , representing the vector of all controls at time t. Due to the Markov property, Xt
in fact summarizes all the relevant information up to t. If information is collected with a delay δ , then
Φ is based on Xt−δ . While controls φ I and φV influence the transitions of (St , It ,Rt ,Dt), the controls φ ∆I

and φ ∆R influence the hyper-parameters αi,t and βi,t , so the entire X is effectively controlled.

3.1 Dynamic Programming

The policy objective can be stated as the impulse control problem for X ,

inf
φ0:T

E
[
CT

0 (φ)
∣∣X0 = x0

]
, φ0 =~0, (9)

where the sub- and super-scripts on C correspond to outbreak realizations from time 0 to cut-off horizon T
and the expectation is both over future observations~Yt and future outbreak realizations Xt , t ∈ {1,2, . . . ,T}.
Since the total control space is finite (discrete in time and discrete at each time-point), the infimum in
equation (9) is achieved and an optimal management policy exists. To solve (9) we take advantage of the
Markov nature of X to re-formulate it using the dynamic programming principle. Namely, the continuation
cost C satisfies (cf. Bertsekas (2005), Fleming and Soner (1993))

C(t,Xt ,φt) := min
φt+1:T

E
[
CT

t (φ)
∣∣∣Xt

]
= min

φt+1∈F(φt)

{
E
[
Ct+1

t (φt+1)|Xt
]
+E [Ct+1(φt+1)|Xt ]

}
. (10)
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To lighten notation and highlight the role of the current policy, we simply write Ct(φt) = C(t,Xt ,φt). We
interpret Ct(φt) as the minimal expected costs on [t,T ] given starting state Xt and initial policy φt . The
original objective starting with no interventions is thus to compute C0(~0).

Standard dynamic programming consists of solving (10) via backward recursion starting with the
terminal condition CT (φ) ≡ 0. However, given that X is 11-dimensional, standard space-discretization
methods are not computationally feasible. Instead, the idea of regression Monte Carlo methods is to
compute the solution on a stochastic mesh corresponding to a collection of simulated paths x(k)0:T of X ,
k = 1, . . . ,K.

Recall that in a basic Monte Carlo method, the one-step-ahead expectations in equation (10) are
approximated by the empirical average E

[
Ct+1(φt+1)

∣∣∣Xt = x(k)t

]
≈ 1

n ∑
n
j=1 c̃[ j]t+1, where c̃[ j]t+1, j = 1, . . . ,n

are i.i.d. realizations of Ct+1(φt+1)|x(k)t . To avoid having to generate such a Monte Carlo forest for each node
x(k)t in the stochastic mesh, we rather generate just a single realization c(k)t+1∼Ct+1(φt+1)|x(k)t . We then replace

empirical averaging by a cross-sectional regression of the c(k)t+1’s against chosen outbreak statistics Bi(x
(k)
t ),

i∈ I at the mesh points x(k)t . In other words, we take the projection of Ct+1(φt+1)|Xt onto span(Bi(x), i∈ I)
and approximate this projection through empirical regression. The obtained regression coefficients ~αφ

t+1
provide a prediction for expected future costs based on today’s intervention φt+1. Minimizing over all
possible φt+1 ∈ F(φt) gives the new policy map Φt at date t. Iterating this procedure backwards using (10)
we eventually obtain C0. Note that the policy maps Φt are pre-computed, and the policy maker only needs
access to the coefficients ~α to implement the computed strategy based on the current Xt .

The overall computational complexity of our method is O(T 2 ·K ·D) where T is the number of decision
epochs, K is the number of Monte Carlo simulations used, and D is the number of maximal control
combinations (24 in our example). Importantly, in the algorithm the inference step must be performed
T 2KD times, which requires fast inference techniques and motivates our selection of the conjugate updating
setup in (6). Theoretically, as K → ∞, this approach is guaranteed to obtain the optimal policy maps
(Ludkovski 2009). Practically, three crucial steps must be addressed to obtain acceptable performance.
These concern how to (i) generate the stochastic mesh (x(k)t ); (ii) select regression basis functions (Bi(x))i∈I;
(iii) control accumulation of errors during backward recursion.

3.2 Scenario Re-simulation

Repeated approximations in (10) can lead to rapid error accumulation. To mitigate this problem, we focus
on approximating the policy maps Φ rather than the continuation costs C. More precisely, at each step t,
we re-simulate one forward outbreak path x̃(k,φ)t+1:T starting from x(k)t , using control φ at t, and implementing
future controls based on the already constructed policy maps from time t+1 to T . Summing the associated
costs gives the pathwise cost c(k)t+1 which is exact for this scenario modulo wrong future policy decisions.
Thus, approximation of (10) only contributes an error when it leads to incorrect ranking of optimal future
interventions. The justification for such re-simulation to reduce noise can be found in Ludkovski and Niemi
(2010) and goes back to the seminal idea of Longstaff and Schwartz (2001).

3.3 Shrinkage Regression

The choice of basis functions Bi(x), i ∈ I directly influences the shape of the policy maps Φ. For instance,
if Bi consist of degree-2 polynomials in the components of X then policy maps will consist of parabolic
boundaries. To achieve flexibility, a large number |I| (exponential in dim(X )) of basis functions is desired.
Conversely, large |I| may lead to overfitting or instability during the regression step, especially in the
presence of outliers that randomly arise from Monte Carlo sample noise. This effect is widespread in our
experience. To have a uniform bound on the variance of the regression coefficients α , the number of paths
K must be exponential in |I|.
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We resolve this issue by implementing shrinkage regression during the prediction step. In particular,
the lasso methods (Hastie et al. 2009) introduce an L1 penalty on the regression coefficients ~α ,

~α
φ

t = argmin
~α∈R|I|+1

K

∑
k=1

[
ck,φ

t −~α ′B
(

x(k)t

)]2
+λ

|I|

∑
i=1
|α i|. (11)

Intuitively, shrinkage allows to pick a large basis dictionary I and then adaptively select a sparse subset I0⊂ I
of the most relevant basis functions for the fitting at hand. Lasso regression is furthermore computationally
efficient and can be done in same time complexity as regular least-squares. We find that reducing the L1

norm of ~α by a factor of 3−5 (relative to pure L2-projection when λ = 0) works well. In (Ludkovski and
Niemi 2011) we also investigated the use of multivariate adaptive regression splines (MARS) (Hastie et al.
2009, Ch. 3), which is another nonparametric method for robust regression in high dimensions.

3.4 Base-Case Policy Iteration

The goal of the regression step is to approximate the map (xt ,φt) 7→ E [Ct+1(φt+1)|Xt = xt ,φt ]. As with
any regression, accuracy of predictions is highest in neighborhoods where many scenarios reside. But, to
have a good approximation to the true solution, we need the regression to be accurate in the neighborhood
where the optimal X ∗

t is likely to be found (e.g. if optimally managed outbreaks always stay below 50
infecteds, our forward-simulated scenarios should reflect this fact) —which is a priori unknown. Indeed,
during the forward re-simulation steps we need x̃s to lie close to the original x(k)s ; otherwise the use of
policy map would require extrapolation and lead to potentially large errors.

All of the above suggests that we generate the original stochastic mesh (x(k)0:T ) by simulating a large
outbreak scenario database starting with known initial condition X0 and a base-case policy map Φ0. This
Φ0 will influence the accuracy of the solution. Accordingly, we employ policy iteration coupled with a
cooling schedule. We begin with a guess for Φ0 and then re-run the entire algorithm using the computed
policy Φ as the next stage base-case policy. To be able to judge non-optimal control sequences that are
considered during backward recursion, we allow deviations from Φ( j−1) when constructing x(k, j)t . Namely,
to generate x(k, j)t+1 we use the recommended intervention Φ( j−1)(t,x(k, j)t , ·) with probability 1− q j, and
an arbitrary intervention with probability q j. In analogue to other cooling schedules, q j decreases over
cycles of policy iterations j. Practically, we find that three or four such global policy iterations with, e.g.,
q j = 0.2−0.05 j suffice to achieve convergence. The resulting Algorithms are summarized in the Appendix.

4 RESULTS

As an example we took costs as in Table 1 and priors ~α·,0 = (22.5,15,4,200),~β·,0 = (30,30,80,1000) with
N = 20,000 and I0 = 20,R0 = D0 = 0. This roughly corresponds to a recent outbreak of measles in Harare,
Zimbabwe (World Health Organization 2010). While Harare is a multi-million metropolis, the unvaccinated
(mostly young) population susceptible to measles was much smaller. Using K = 4×104 simulations, and
|I|= 17 basis functions, we computed the optimal solution.

The resulting frequency of intervention actions over time is shown in Figure 1. To generate that
figure, we employed lasso regression with shrinkage factor of 4. We found that use of shrinkage regression
reduces temporal fluctuations in~α(t) that are observed with ordinary least-squares regression (some residual
fluctuations can still be observed in the sampling policy frequency in Figure 1). This corresponds to more
robust approximations of the continuation costs C and less sensitivity to Monte Carlo simulation noise.

The minimized expected costs were about 2.62 · 104. To better judge the contribution of different
aspects of the model, Table 2 shows the impact of several possible policy constraints on optimal costs. In
particular, we observe the importance of timely information collection but also that with above priors, the
value of information about recovereds is quite low.
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Figure 1: Frequency of different intervention actions over time. Average over 40000 outbreak paths
generated based on computed policy map Φ(4). Since more than one intervention can be undertaken
simultaneously, the frequencies sum to more than 1.

Table 2: Impact of policy constraints on optimal costs. Last column compares the effect of constraints on
expected costs relative to the base case.

Constraint Optimal costs (×104) Relative costs
Base case 2.62 –
φ ∆R ≡ 0 2.76 105%

φ ∆I = φ ∆R ≡ 0 3.52 134%
Delay δ = 1 2.78 106%
Delay δ = 2 2.98 114%

To understand the performance of our dynamic policy produced by the scheme in Section 3, we examine
it relative to other possible policy alternatives. Beyond the disastrous do-nothing choice that had expected
costs of over 55 · 104, we have also tried φ (I), which corresponds to immediate and permanent isolation
measures; φ (II), that makes a single intervention based on information available after 7 periods; φ (III),
which does a single intervention but at arbitrary date t, and, finally, an (optimized) threshold strategy φ (IV )

which starts isolation as soon as It > 28 and begins a vaccination campaign as soon as It > 45. All of the
above cases can be seen as simplifications of our full dynamic setup and have been computed using the
same numerical procedure. Table 3 shows that our policy essentially matches the threshold strategy and
vastly outperforms all other choices. Note that the threshold policy is based on heuristic arguments and
the threshold levels were optimized by hand; in contrast our dynamic approach is a ‘black box’ that in this
case can be seen as validating such heuristics. Without this black box we would not know how to validate
such choices; conversely this example shows that there is room for improvement of our method since the
returned result is clearly not yet globally optimal.

Figure 2 further visualizes the performance of our dynamic policy vis-a-vis several alternatives. Besides
comparing the corresponding cost distribution CT

0 (φ), we also look at total deaths Dτ , number of infected
days ∑t It , and duration of outbreak τ . The isolation-only strategy φ (I) is often highly efficient but has
an extreme right tail that arises when the reproduction ratio is high. In the latter case, all the outbreak
metrics are very large and the resulting costs are enormous. In other words, φ (I) does not manage the risk
of extreme outbreaks. The other three strategies all exhibit bimodal cost distributions which correspond to

3855



Ludkovski and Niemi

Table 3: Comparison of optimal policy to simpler alternative strategies.

Strategy Costs (×104)

Isolation forever 11.31
Single Decision at t = 7 3.64
Single Adaptive Decision 3.59
Threshold strategy 2.61
Optimal Dynamic Policy 2.62

cases where isolation alone/isolation and vaccination are required. We observe that the optimal dynamic
strategy is best able to mitigate worst-case outbreaks (thinnest right tail) and ends the outbreak fastest.
Counter-intuitively we find that it does not minimize the average number of infected days, which highlights
the ongoing trade-off between intervention and morbidity costs. Overall, we see that the complexity of
the problem makes it difficult to directly predict properties of optimal policies, showcasing the need for
automated software to provide guidance.
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Figure 2: Cost distributions for different strategies. The rows correspond to four alternative policies φ (I),
φ (III), φ (IV ), and the dynamic φ ∗, respectively. The columns show histograms of four different outbreak
metrics over 40,000 simulations. Note the varying scales in the third and fourth columns.
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A APPENDICES

A.1 Sequential Flu Management Algorithm

Algorithm 1 creates the (approximately) optimal policy map Φ(t,xt ,φt−1) for all time points t ∈ {0,1, . . . ,T−
1}. As input, the algorithm requires 1) the number of simulations K to perform at all time points, 2) a
vector of outbreak statistics B(xt) to use in the regression step, and 3) a default policy map Φ0 for initial
simulation. The algorithm returns the regression coefficients α

φ

t .

Algorithm 1 Optimal policy map creation
for k ∈ {1,2, . . . ,K} do

Simulate x(k)1:T using default policy map Φ0 by repeated calls to Algorithm 2
end for
for t = (T −1), . . . ,1,0 do

for each policy φ do
for k ∈ {1,2, . . . ,K} do

Simulate x̃(k,φ)t+1 and calculate costs ck,φ
t starting from x̃(k)t = x(k)t using Algorithm 2 and implementing

φ .
for s = t +1, . . . ,T −1 do

Simulate x̃k,φ
s+1 and record costs c̃(k,φ)t starting from x̃(k)s using Algorithm 2 and implementing

Φ(s, x̃(k)s ,φs−1).
Calculate cumulative costs c(k,φ)t = c(k,φ)t + c̃(k,φ)t .

end for
end for
Compute the regression coefficients according to (11). This provides the policy map

Φ(t,xt ,φt−1) = argmin
φ∈F(φt−1)

(α
φ

t )
′B(xt)

end for
end for
return Return regression coefficients α

φ

0:T for all φ .

A.2 Forward Simulation and Associated Costs

Algorithm 2 consists of simulating one-step of a future controlled outbreak scenario and calculating the
realized cost. The required inputs are a control φ and initial information xt . The algorithm returns updated
information xt+1 and one-step costs ct+1.

Algorithm 2 Simulate an outbreak scenario from time t to time t +1 using policy map Φ(t,xt ,φt−1) and
calculate costs ct+1.

Sample θ ∼ p(θ |xt), i.e. equation (6).
Simulate one step of an outbreak scenario using equations (2)-(5) and control φ .
Update hyperparameters using equation (6).
Calculate costs ct+1
return Simulated outbreak information Xt+1 and cost ct+1.
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