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ABSTRACT

Importance sampling in the setting of heavy tailed random variables has generally focused on models with
additive noise terms. In this work we extend this concept by considering importance sampling for the
estimation of rare events in Markov chains of the form

Xn+1 = An+1Xn +Bn+1, X0 = 0,

where the Bn’s and An’s are independent sequences of independent and identically distributed (i.i.d.) random
variables and the Bn’s are regularly varying and the An’s are suitably light tailed relative to Bn. We focus
on efficient estimation of the rare event probability P(Xn > b) as b↗∞. In particular we present a strongly
efficient importance sampling algorithm for estimating these probabilities, and present a numerical example
showcasing the strong efficiency.

1 INTRODUCTION

The estimation of very small probabilities via Monte Carlo simulation is an important problem that has
generated a very large amount of scientific literature over the past two decades (see, e.g., (Glasserman and
Wang 1997, Glasserman and Kou. 1995, Dupuis and Wang 2007, Dupuis and Wang 2009). In the setting
where the rare event is driven by random variables with heavy tails there has also been a significant amount
of work done (Asmussen, Binswanger, and Hojgaard 2000, Asmussen and Binswanger 1997, Dupuis, Leder,
and Wang 2006, Blanchet and Glynn 2008, Blanchet, Glynn, and Liu 2007). These works and others have
studied the problem of rare even simulation for a large class of problems involving heavy tailed random
variables. However, all of the work until now on the subject has focused on the setting of purely additive
noise. Naturally, the ability to study rare events in models with additive and multiplicative noise is very
important in many applications. Based on this we study rare event simulation for Markov chains of the
form

Xk+1 = Ak+1Xk +Bk+1, X0 = 0, (1)

where Ak and Bk are independent i.i.d. sequences. We assume that Bk is regularly varying with index α > 0
and that Ak satisfies

EA2α+ε

k < ∞, (2)

3829978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Blanchet, Hult, and Leder

for some ε > 0. In this paper we are focused solely on the efficient estimation of the probability pb =P(Xn > b)
for b very large and n fixed, in a following work we will present simulation algorithms for estimating infinite
horizon probabilities associated with the Markov chain. In this work we present an unbiased importance
sampling estimator p̂b of pb that is strongly efficient as b→ ∞, i.e.,

sup
b<∞

E[p̂b]

p2
b

< ∞.

2 RANDOM WALK MODEL

Before studying the Markov chain in (1) we consider rare event estimation for a simpler process. In
particular, again let {Bk}n

k=1 be an i.i.d. sequence of random variables with regularly varying tails, then
we define a Markov chain Yn as

Yk+1 = Yk + ck+1Bk+1, Y0 = 0,

for some positive constants c0, . . . ,cn. We denote the density of Bk by f , and its tail probability by F̄ . The
goal of this section will be to develop strongly efficient estimators of the probability rb = P(Yn > b). Of
course in order to establish that an estimator is strongly efficient it is necessary to know the asymptotics
of rb. From the subexponential property of the increments we know that (see, e.g., Asmussen 2000)

rb ∼
n

∑
k=1

P(Bk > b/ck). (3)

Our method for establishing strong efficiency will be the construction of a Lyapunov function and then
the verification of a Lyapunov inequality, for more details on this method see, e.g., (Blanchet, Glynn,
and Liu 2007). A Lyapunov function will be a function of time and space, Vb( j,x) that approximates
P(Xn > b|X j = x)2, then using a verification argument it will be possible to control the second moment of
our importance sampling estimator. The basic intuition for the construction of the Lyapunov function is to
make it nearly proportional to the asymptotic approximation of P(Xn > b|X j = x)2.

Based on these ideas and (3) we propose the following Lyapunov function

Vb( j,x) = min

d j

(
n

∑
k= j+1

P(B > (b− x)/ck)

)2

,1

 , (4)

for some constants d j. Since Vb(·, ·) ultimately will serve as a bound for the second moment of our estimator,
the d j’s must be chosen as small as possible but large enough so that Vb( j,x)< 1 implies b− x > 0.

2.1 Sampling Measure

The construction of the sampling measure will be based on the heuristic that rare events in sums of heavy
tailed random variables are caused by one large jump. Therefore the increments of our random walk
will be sampled using a mixture. The mixture samples the random variables Bk according to either their
nominal distribution, or induces an extremely large value in the random variable. The method we will use
to generate the large value in Bk will be to sample the random variables conditional on one of them taking
a large value.

Our sampling density of B j+1 given X j = x is

g j+1(y|x) = f (y)I{x ∈ Γ
c
j+1}

+
p( j+1,x) f (y)

P{B > a(b− x)/c j+1}
I{y > a(b− x)/c j+1}I{x ∈ Γ j+1}

+
(1− p( j+1,x)) f (y)

P{B≤ a(b− x)/c j+1}
I{y≤ a(b− x)/c j+1}I{x ∈ Γ j+1}.
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Here Γ j+1 is interpreted as the set of x-values where we perform importance sampling and we have that

Γ j = {x : Vb( j,x)< 1}.

If X j = x is already close to b, then the event Xn > b is not considered to be rare and importance sampling
is not needed. Therefore B is sampled according to its original density f if x ∈ Γc

j+1. If x ∈ Γ j+1 then we
sample B according to the mixture distribution, which is the original distribution conditioned on not being
too large (with probability 1− p( j+1,x)) and the original distribution conditioned on being large enough
to nearly bring the sum near the threshold b (with probability p( j+1,x)). The phrase ‘nearly’ is present
because of the parameter a ∈ (0,1) that serves as a cushion.

2.2 Analysis of Sampling Measure

Our analysis of the sampling measure will be carried out via the Lyapunov function Vb( j,x). In particular
we will seek to establish the following inequalities

Vb( j,x)≥ E
[ f j+1| j(X j+1 | X j)

g j+1| j(X j+1 | X j)
Vb( j+1,X j+1)I{Xn > b}

∣∣∣X j = x
]
, (5)

Vb(n,x)≥ I{x > b},

where f j+1| j is the transition kernel of Yk under the original measure, and g j+1| j is the transition kernel of
Yk under the sampling measure. For the random walk model and sampling measures {g j} we can write
this ratio as

f j+1| j(X j+1 | x)
g j+1| j(X j+1 | x)

=
f ((X j+1− x)/c j+1)

g j+1 ((X j+1− x)/c j+1 | x)
.

If we establish the Lyapunov inequalities, (5), then we can use a verification argument to establish the
result
Lemma 1 Suppose there are constants β j, j = 0, . . . ,n−1 such that β j ≥ 1 and for j = 1, . . . ,n

E
[

Vb( j+1,X j+1)

Vb( j,x)
f j+1| j(X j+1 | x)
g j+1| j(X j+1 | x)

∣∣∣X j = x
]
≤ β j+1,

then,

E

[
n−1

∏
j=0

f j+1| j(X j+1 | X j)

g j+1| j(X j+1 | X j)
I{Xn > b}

]
≤
( n−1

∏
j=0

β j+1

)
Vb(0,0).

A proof of this result can be found in our forthcoming work (Blanchet, Hult, and Leder 2011).
In order for this lemma to be useful in establishing strong efficiency we need the property

sup
b<∞

Vb(0,0)
r2

b
< ∞.

Looking at the definition of Vb( j,x), and the asymptotics of rb in (3) the previous result is obvious. Therefore
if we establish the following result we will have established the strong efficiency of the importance sampling
estimator based on {g j}n

j=1.

Theorem 2 There exists non-negative constants {β j}n
j=1 greater or equal to 1 such that for j = 0, . . . ,n−1

and x ∈ R
E
[

Vb( j+1,X j+1)

Vb( j,x)
f ((X j+1− x)/c j+1)

g j+1 ((X j+1− x)/c j+1 | x)

∣∣∣X j = x
]
≤ β j+1.
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We will provide just a sketch of the ideas behind this proof, the interested reader is referred to our
forthcoming work (Blanchet, Hult, and Leder 2011).

Proof. Assume that Vb( j,x)< 1 or x ∈ Γ j+1. Then we can decompose the likelihood ratio as

J1( j,x) = E
[

Vb( j+1,x+ c j+1B j+1)

Vb( j,x)p( j+1,x)
I{c j+1B j+1 > a(b− x)

]
P{c j+1B j+1 > a(b− x)}

J2( j,x) = E
[

Vb( j+1,x+ c j+1B j+1)

Vb( j,x)(1− p( j+1,x))
I{c j+1B j+1 ≤ a(b− x)

]
P{c j+1B j+1 ≤ a(b− x)}.

The control of both terms reduces to bounding ratios of the form(
P(B > γ(b− x))

P(B > b− x)

)2

, (6)

for a positive constant γ (that will depend on the constant a), uniformly over all b and x such that b−x is
bounded above 0. Since we assume that B has regularly varying tails these ratios can be controlled by the
use of Potter bounds, see Theorem 1.5.6 of (Bingham, Goldie, and Teugels 1987), i.e.,

P(B > γ(b− x))
P(B > b− x)

≤ Amax{γ−α+δ ,γ−α−δ},

for constant A > 1 and δ > 0.

It follows that the constants {β j} from theorem 2 are controlled by the ratio in (6).

3 STOCHASTIC RECURRENCE EQUATION

Building on the analysis of the previous section, we are now able to study the Markov chain or stochastic
recurrence equation (1). First from Breiman’s theorem we know that

pb = P{Xn > b} ∼ P{B1 > b}
n−1

∑
k=0

E[(An . . .An−k)
α ] (7)

see, e.g., Lemma 2.2 of (Konstantinides and Mikosch 2005)
Observe that the state of the Markov chain at time step n can be written as

Xn = Bn +AnBn−1 + · · ·+An · · ·A2B1.

Conditioning on A1 = a1, . . . ,An = an it follows that

X j+1 = X j + c j+1B j+1,

c j+1 = an · · ·a j+2. (8)

Then, by first simulating A1, . . . ,An from the original distribution the random walk algorithms can be
implemented, conditional on A1, . . . ,An. With the constants ck defined in terms of the values of A1, . . . ,An,
we can use the Lyapunov function from the previous section (4). We then verify that this function is
sufficiently small at the origin.
Lemma 3 The Lyapunov function Vb(·, ·) is sufficient for establishing bounded relative error for estimating
pb, that is,

sup
b<∞

E[Vb(0,0)]
p2

b
< ∞.
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Proof. Referring to formula for Vb(0,0), (4), we see that

E[Vb(0,0)]≤ d0E

(
n

∑
k=1

F̄(b/Ck)

)2

,

where Ck = An · · ·Ak+1, k = 1, . . . ,n. Using Potter bounds again we see that given δ > 0 there exists
K(δ )> 1 such that

F̄(b/Ck)

F̄(b)
≤ K(δ )Cα+δ

k ,

where δ > 0 is chosen so that E[A2+δ ]< ∞. Therefore

E[Vb(0,0)]≤ d0F̄(b)2E

(
n

∑
k=1

K(δ )Cα+δ

k

)2

,

the lemma then follows by comparing this result with the tail probability asymptotics in (7).

Observe that in order for our algorithm to efficiently estimate p̂b we needed the moment assumption
(2).

We start by analyzing the algorithm based on the conditional distribution for the stochastic recurrence
equation. Our algorithm for generating a sample of Xn is as follows.

• Set {d j} j = 1n according to (4)
• Sample A1, . . . ,An from their original distribution. Output is called a1, . . . ,an.
• Set c j+1 = an · · ·a j+2 for j = 0, . . . ,n−1.
• Choose p j+1 ∈ (0,1) for j = 0, . . . ,n−1.
• Set x = c0 and j = 0.
• Repeat the following until j = n−1.

– If Vb( j,x)≥ 1,
∗ Sample B j+1 from original distribution B j+1→ b j+1.

– Otherwise
∗ Draw U from uniform on [0,1]. If U ≤ p j+1 draw B j+1 from density

fB(y)
P{B > a(b− x)/c j+1}

I(y > a(b− x)/c j+1),

otherwise sample B j+1 from density

fB(y)
P{B≤ a(b− x)/c j+1}

I(y≤ a(b− x)/c j+1).

Store output as b j+1.
– Update j→ j+1 and x→ x+ c j+1b j+1.

The vector of multiplicative terms will be denoted A = (A1, . . . ,An), with this notation we can write
the likelihood ratio from one step of the process X as

LC
j+1(B j+1|A,X j = x) = I(x /∈ Γ j+1)+

F̄(a(b− x)/C j+1)

p( j+1,x)
I(B j+1 > a(b− x)/C j+1)I(x ∈ Γ j+1)

+
1− F̄(a(b− x)/C j+1)

1− p( j+1,x)
I(B j+1 ≤ a(b− x)/C j+1)I(x ∈ Γ j+1),
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for j = 0, . . . ,n−1, where C j+1 = An · · ·A j+2. Based on this we can write the importance sampling estimator
for pb based on our algorithm as

p̂b = I(Xn > b)
n−1

∏
j=0

LC
j+1(B j+1|A,X j). (9)

We now present our theorem regarding the performance of the importance sampling measure
Theorem 4 The importance sampling estimator p̂b, defined in (9), estimates the probability pb with
bounded relative error, i.e.,

sup
b<∞

E[p̂b]

p2
b

< ∞.

The proof largely follows the random walk example. We omit the details of this proof, the interested
reader can consult (Blanchet, Hult, and Leder 2011).

3.1 Choice of Mixture Probabilities

In the statement of the algorithm we did not discuss the selection of the mixture probabilities. The reason
for this is that the algorithm is strongly efficient for any choice of mixture probabilities p j+1 ∈ (0,1). In
our numerical simulations presented in Table 1 we choose the mixture probabilities for j = 0, . . . ,n− 1
according to the formula p j+1 = v j+1/(1+ v j+1) where

v j+1 =
√

d
n

∑
i= j+1

(
aci

c j+1

)α

. (10)

In addition we numerically verified that the algorithm is relatively robust to the selection of the mixture
probabilities. For details on the optimal selection of the mixture probabilities please see our forthcoming
paper (Blanchet, Hult, and Leder 2011).

4 NUMERICAL EXAMPLES

In the table below we present numerical results from our algorithm. The bounded relative error property
is clearly observed by looking at the performance of the algorithm for increasing values of b.

Table 1: In the table below we display the results for estimating the probabilities p̂b for a variety of the
values of b.The random variables Bi have symmetric two sided Pareto distributions with α = 2, the Ai have
exponential distribution with mean 1/2, we set n = 25, and all results use 106 Monte Carlo replications.
In addition, we set a = 0.95, d j = 0.26, and chose p j+1 via (10).

b Estimate Std. Error Rel. Error Comp. Time
1e+09 1.00e-18 5.22e-21 0.0052 21.66
1e+12 1.01e-24 9.88e-27 0.0098 21.88
1e+15 9.98e-31 4.18e-33 0.0042 21.61
1e+18 9.97e-37 6.56e-39 0.0066 21.57
1e+21 1.01e-42 1.10e-44 0.011 21.56
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