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ABSTRACT

We study the problem of estimating small failure probabilities for elastic random material described by a one
dimensional stochastic elliptic differential equation with certain external forcing and boundary conditions.
Gaussian random functions are used to model the spatial variation of the material parameters. The failure
event of the bulk material is simply characterized by the exceeding of certain thresholds for the maximum
strain in the material. Using large deviation heuristics, we provide an intuitive description of the most
probable realization of the random material parameters leading to critical situations of material failure. An
efficient Monte Carlo method to compute such probabilities is presented.

1 INTRODUCTION

When a slowly increasing external load is applied to a composite material, how does the heterogeneous
microstructure inside affect the mechanism of fracture and failure of the bulk material? This question is
of great importance, technically and theoretically, and an entire branch of material science is devoted to
its study (Lawn and Wilshaw 1975). In the structural design of engineering materials, one major problem
is the uncertainty in the safety factors for structural strength, i.e., to determine the statistics of the material
strength, the maximum load the material can resist before showing macroscopic breakdown.

Physically, material failure is a progressive and localized structural damage that initiates at a microscopic
level, controlled by inter-atomic bond breaking, as a result of crack nucleation and growth. It is very hard
to simulate the failure process at the most detailed level, in particular when such events have a very small
probability to occur. An alternative approach is the probabilistic analysis of the complexity and heterogeneity
inherent in materials in the language of random media. In this description, continuum mechanics is still
used but macroscopic material behavior is derived in an averaged or “effective” sense. This is the viewpoint
taken in homogenization theory (Bensoussan, Lions, and Papanicolaou 1978, Papanicolaou and Varadhan
1982, Jikov, Kozlov, and Oleinik 1994, Pavliotis and Stuart 2008). However, for the study of material
failure, which are usually rare events, standard homogenization theory is not enough and the associated
central limit theorem (Bal 2008) is not complete and general yet. This note is a tentative step toward an
analytical and numerical study of material failure by focusing on a simple one dimensional model problem.
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The model we consider is the classical continuum mechanical model in the form of the following
elliptic partial differential equation, {

−∇ ·σ(x) = f (x),
σ(x) = a(x)∇u(x).

(1)

The solution to the above equation u is the displacement field of the material, ∇u is the strain, σ is
the stress tensor, and f is the external body force. The notation ∇ ·σ(x) is the divergence of the tensor
σ(x). The elasticity tensor a(x) (which is positive definite at every point x) in the constitutive relation
σ(x) = a(x)∇u(x), is determined by the property of the specific material. In this note, we only consider
the one dimensional problem. In this case, (1) becomes

(a(x)u′(x))′ =− f (x), x ∈ [0,1], (2)

where a(x) is a positive random function in C([0,1]R+) and the force f is deterministic.
The first issue that we have to address is a quantitative measure for failure. It turns out that this is not

an easy task and several working definitions are in use in the engineering community. Here we propose
one possibile failure criteria, which is consistent with general notions used in the engineering community
and which has its own mathematical interest. We define failure as the event that the maximum strain,
max

x
|∇u(x)|, exceeds a certain threshold value b > 0. Our goal is to characterize the probability of failure,

i.e., to estimate
pb , P(max

x
|u′(x)|> b). (3)

There are several natural ways characterizing the properties of the random field a(x), depending on the
specific cases of interests. In this note, we assume that the random function a has log-normal distribution:

a(x) = a0(x)eαξ (x)

where a0(x) is a deterministic function and ξ (x) is a homogeneous Gaussian random field with zero mean
and given covariance. The noise level α > 0 is assumed to be a constant.

There are two interesting asymptotic regimes. First, for a fixed threshold value b, we let α tend to
zero. Alternatively, one may fix α = 1 and let b tend to infinity. Both regimes are interesting under specific
scenarios. In this paper, we consider the second regime, that is, sending the threshold value to infinity for
a fixed level of noise.

The paper is organized as follows. In the next section, we state our main results on the upper and
lower bounds for pb. We also discuss an efficient Monte Carlo methods for computing P(maxx u′(x)> b) .
In Section 3 we present numerical results. The proofs are given in Section 4.

2 MAIN RESULTS

2.1 The Asymptotic Results

We consider two types of boundary conditions for (2).

1. u(x = 0) = 0 and σ(x = 1) = P where the load P is a known constant.
2. Dirichlet boundary condition: u(x = 0) = u(x = 1) = 0.

The solutions with these boundary conditions are given respectively by:

u1(x) =
∫ x

0

F(1)−F(y)+P
a(y)

dy, (4)

u2(x) =
∫ x

0
F(y)a−1(y)dy−

∫ x

0
a−1(y)dy

∫ 1
0 F(y)a−1(y)dy∫ 1

0 a−1(y)dy
, (5)
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where F(x) =
∫ x

0 f (y)dy. The corresponding strain u′(x) is

u′1(x) = a−1(x)(F(1)−F(x)+P), (6)

u′2(x) = a−1(x)

(
F(x)−

∫ 1
0 F(y)a−1(y)dy∫ 1

0 a−1(y)dy

)
. (7)

To simplify our discussion, we assume that both f and P are non-negative. For u1(x), the high values
of the strain maxx∈[0,1] u′1(x)> b are given simply by maxx∈[0,1] logu′1(x)> logb. With a(x) = a0(x)eξ (x),
logu′1(x) is a Gaussian process with spatially varying mean (depending on a0(x) and F(x)). The asymptotic
distribution of the the supremum of a Gaussian process over a compact set has been studied intensively
(Adler, Blanchet, and Liu 2011, Adler and Taylor 2007). For the large deviation results on u1(x), which
takes the form of an integral of the exponential Gaussian process, see (Liu 2011, Liu and Xu 2011).

In this paper, we focus on the solution to the Dirichlet boundary condition, u2(x). Note that the tail
behavior of maxx u′2(x) depends very much on the specific form of F(x). We consider one specific case
that

F(x) = I(x≥ x∗), (8)

with x∗ ∈ (0,1), which corresponds to the situation that a force is applied at one point of the material. To
simplify our analysis, we only consider the one-sided tail that

P
(

max
x

u′2(x)> b
)
. (9)

The analysis of P(maxx(−u′2(x))> b) is completely analogous.
The following theorems establish some non-trivial bounds for the quantity in (9).

Theorem 1 Assume that a(x) = e−ξ (x), where ξ (x) is a zero-mean, unit variance, and continuous Gaussian
process. Let u(x) be the solution to (2) with boundary condition that u(0) = u(1) = 0 and F(x) be defined
as in (8). Then we have

P

(
sup

x∈[0,1]
u′(x)> b

)
≤ He−(logb−a)2/2

for some constant H,a > 0 and all b > 1.

Theorem 2 Assume that the conditions in Theorem 1 hold. Assume in addition that ξ (x) is a homogeneous
and almost surely three times differentiable Gaussian random field such that the covariance function satisfies
the local expansion

C(x), E(ξ (x)ξ (0)) = 1− 1
2

x2 +
C4

24
x4 +o(x4). (10)

as x→ 0. In addition, assume that C(x) is a monotonically decreasing function on [0,+∞). Use Z to denote
a standard normal random variable. Let

δ∗ = argsup
δ

P(Z ≤ δ )e−δ 2/2,

and r be defined as
P(Z ≤ δ∗)er−δ 2

∗ /2 = b.

Then, we have the lower bound of pb

P

(
sup

x∈[0,1]
u′(x)> b

)
≥ εP(Z > r),

for b sufficiently large and some ε > 0.
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Remark 1 In the above theorem, we assume that the field ξ (x) is at least three times differentiable, which
implies that the covariance function is at least 6 times differentiable. In addition, the first, third, and fifth
derivatives of C(x) evaluated at the origin are all zero. The expansion in (10) is of that form up to the
first four terms. In addition, we normalize the second derivative C′′(0) = −1, equivalently the spectral
moment of order two is unity, which implies that Var(ξ ′(x)) = 1. This normalization can be obtained by
reparameterizing the index x ∈ [0,1]. The constant C4 is the spectral moment of order four.
Remark 2 We strongly believe (especially based on the intuition given momentarily) that the lower bound
in Theorem 2 is asymptotically sharp in the sense that there exists a constant H∗ such that

P

(
sup

x∈[0,1]
u′(x)> b

)
= (H∗+o(1))P(Z > r).

This will be pursued in future work.

2.2 Intuitive Mechanism for the Large Excursions of u′(x)

The intuitive interpretation of these two theorems is as follows. The event {supx u′(x)> b} is very much
similar to the event {supx ξ (x)> logb}. This is the basis for proving the upper bound in Theorem 1. On
the other hand, for x > x∗, since the factor in (7) satisfies

0 <

(
F(x)−

∫ 1
0 F(y)a−1(y)dy∫ 1

0 a−1(y)dy

)
< 1, (11)

it requires that supx ξ (x) go above a higher level than logb. Suppose that ξ (x) attains a large value at
τ ∈ [0,1] with value ξ (τ) = r. Note that (ξ (x),ξ (τ)) is a bivariate normal random vector with zero mean
and covariance matrix (

C(0) C(x− τ)
C(x− τ) C(0)

)
.

Then, the conditional distribution of ξ (x) given ξ (τ) = r is a normal distribution with mean rC(x−τ)
C(0) and

variance C(0)(1− (C(x−τ)
C(0) )2). Then, using (10), we know that

ξ (x) = E(ξ (x)|ξ (τ) = r)+h(x− τ) = rC(x− τ)+h(x− τ),

where h(t) is a mean-zero Gaussian process and E(h2(t)) = 1−C2(t). Since the variation of h is independent
of r, we may ignore h(t) and write ξ (x)≈ rC(x− τ) as r→ ∞. Then, the normalized density

a−1(x)∫ 1
0 a−1(y)dy

≈
√

r√
2π

e−
r(x−τ)2

2 (12)

is approximately normal with mean τ and variance r−1. Given that r→ ∞ and that the maximum of u′(x)
is only attained on the set [x∗,1], it is necessary to have τ close to x∗. Otherwise, if τ > x∗+ ε then the
factor in (11) is close to zero (for x ≥ x∗); if τ < x∗− ε then supx>x∗ ξ (x) ≈ r(1− ε2/2)� r. Then, we
want to solve for the optimal τ . Using the above heuristic derivation and the rescaling τ = x∗−δ/

√
r, we

approximate the factor as follows

(11)≈ 1−P(τ +Z/
√

r > x∗) = P(Z ≤ δ ),

which is monotone increasing with δ .
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With these heuristic approximations, we now ask: Given that maxx u′(x)> b, where does u′(x) attain
its maximum and where does ξ (x) attain its maximum? Because of (11) and the fact that u′(x) attains its
maximum on the interval [x∗,1], for each δ < 0 (correspondingly τ > x∗), we have that

sup
x∈[x∗,1]

u′(x)≈ erP(Z ≤ δ ).

which is a monotone increasing function of δ . This suggests that it is more likely to have δ > 0
(correspondingly, τ < x∗). For each δ > 0, note that

sup
x∈[x∗,1]

u′(x)≈ u′(x∗)≈ er− δ2
2 P(Z ≤ δ ).

Let δ∗ be the maximizer of P(Z ≤ δ )e−δ 2/2. We conclude that given supx∈[0,1] u
′(x) > b, it is very

likely that the maximum of u′(x) is attained at (or very close to) x∗. The global maximum of ξ (x) is likely
to be attained at (or very close to) x = x∗−δ∗/

√
r at the level of r which is defined as

er−δ 2
∗ /2P(Z ≤ δ∗) = b.

This is how we prove the lower bound in Theorem 2.

2.3 Computational Method

We now present an efficient Monte Carlo algorithm for computing

P
(

max
x∈[0,1]

u′(x)> b
)

via importance sampling, based on the following change of measure

P(A) = EQ
(

dP
dQ

IA

)
, (13)

where Q is an alternative measure and the Radon-Nykodym derivative dP
dQ is finite on the set A. If the

measure Q is well chosen, the variance of dP
dQ IA (under the measure Q) can be substantially reduced. In

particular, if one chooses Q∗(·) = P(·∩A)/P(A) to be the conditional measure given the occurrence of A,
then dP

dQ IA is almost surely a constant under Q∗. The measure Q∗ is usually referred to as the zero-variance
change of measure. Therefore, one guide of importance sampling under the setting of rare-event simulation
is to design a simulatable and computable change of measure that approximates Q∗.

In what follows, we present one generic family of change of measures

dQ
dP

=
∫ 1

0

g(ξ (x))
ϕ(ξ (x))

h(x)dx, (14)

where ϕ(w) is the marginal density function of ξ (x) and h(x) is some density function on [0,1]. The above
definition of Q is rather abstract. There is another description of Q, that is, how one simulates a random
field under Q. The description of the simulation consists of three steps

1. Generate a random variable τ ∈ [0,1] according to density h(τ).
2. Generate ξ (τ) according to density g(ξ (τ)).
3. Generate {ξ (x) : x 6= τ} according to its original conditional distribution given (τ,ξ (τ)).
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It is not difficult to verify that the above three-step simulation procedure is consistent with the definition
of (14). One may have problem-specific choices of the distributions h and g. Under the scenario that ξ (x)
is homogeneous with mean zero and unit variance, the original density function is

ϕ(w) =
1√
2π

e−
w2
2 .

We choose

h(x) = I[0,1](x), and g(w) =
1√
2π

e−
w2
2

I(w > logb−1/ logb)
P(Z > logb−1/ logb)

. (15)

That is, h is the uniform distribution over [0,1] and g is the conditional distribution of a standard Gaussian
random variable given that it exceeds level logb−1/ logb. Then, with some elementary calculations, the
Radon-Nykodym derivative in (14) takes the form

dQ
dP

=
mes(Alogb−1/ logb)

P(Z > logb−1/ logb)
,

where mes(·) is the Lebesgue measure and Aγ = {x : ξ (x)> γ}. Note that dQ/dP> 0 on the set {maxx ξ (x)>
logb} and {maxx u′(x) > b} ⊂ {maxx ξ (x) > logb}. Therefore, the identity (13) makes sense and our
importance sampling estimator for P(maxx u′(x)> b) is

Lb ,
P(Z > logb−1/ logb)

mes(Alogb−1/ logb)
I(max

x
u′(x)> b). (16)

To prove that the estimator defined by (16) is indeed “efficient”, we need the following result (Adler,
Blanchet, and Liu 2011).
Theorem 3 (Theorem 7.5 in Adler, Blanchet, and Liu 2011) Assume that ξ (x) is an almost surely twice
differentiable Gaussian process on [0,1]. We choose h and g as in (15). Let

L∗b =
P(Z > logb−1/ logb)

mes(Alogb−1/ logb)
I(max

x
ξ (x)> logb).

Then,
sup
b>0

e(logb)2
EQ(L∗b)

2 < ∞.

Note that Lb ≤ L∗b, then supb e(logb)2
EQ(Lb)

2 < ∞ is also true. In the literature of rare-event simulation,
the efficiency measure is typically based on the so-called relative error. In particular, an estimator Lb is
said to be weakly efficient in computing probability pb if EQLb = pb and

lim
b→∞

logEQL2
b

2log pb
= 1.

Note that by Jensen’s inequlity EQL2
b ≥ (EQLb)

2, one always has logEQL2
b

2log pb
≤ 1. It is sufficient to show that

liminfb→∞

logEQL2
b

2log pb
≥ 1. Thanks to Theorems 2 and 3, we obtain that for any ε > 0,

lim
b→∞

− logEQL2
b

−2log pb
≥ lim

b→∞

C1 +(logb)2

C2−2logP(Z > r)
≥ lim

b→∞

C1 +(logb)2

C2−2logP(Z > (1+ ε) logb)
=

1
(1+ ε)2 .

Therefore, under the conditions of Theorem 2, the estimator Lb defined in (16) is weakly efficient in
computing pb = P(maxx u′(x)> b).
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3 NUMERICAL RESULTS

In this section we apply the algorithm discussed to a homogeneous field with mean zero and covariance
function

C(x) = e−
x2
2 ,

and
F(x) = I(x≥ 0.5).

To implement the algorithm we need to discretize T . We let xi = i/100 for i = 1, ...,100 and ξi = ξ (xi).
In this situation, the detailed simulation scheme is as follows.

• Generate a random variable m∼ Uniform{1,2, ...100}
• Simulate xm according to a normal given that it exceeds logb−1/ logb.
• Simulate {xi : i 6= m} according to the conditional distribution given (m,xm).

The estimator takes the form that

P(Z > logb−1/ logb)
1

100 ∑
100
i=1 I(ξi > logb−1/ logb)

I(max
i

u′(xi)> b).

Note that

u′(xi) = eξ (xi)

(
F(xi)−

∫ 1
0 F(y)eξ (y)dy∫ 1

0 eξ (y)dy

)
consists of an integral, which we use the Simpson’s rule to approximate. We increased the number of
discretization points to 1000 and observed that the change of the estimates is within one estimated standard
error for 104 samples. This is an indication that a discretization of size 100 is enough given the current
accuracy level.

The estimated tail probabilities P(maxu′(x) > b) along with the estimated standard deviation are
presented in Table 1 based on 104 independent simulations. The standard deviation reported in the third
column are the estimates of SDQ(Lb). The standard deviation of the estimates reported in the second
column equals SDQ(Lb)/100.

Table 1: Numerical results based on 104 independent simulations. The standard error reported in the third
column is the estimated SDQ(Lb).

logb Estimate Std. Std./Est.
2 8.37E-03 2.51E-02 3.00
3 4.07E-04 1.51E-03 3.70
4 7.84E-06 3.63E-05 4.62
5 6.90E-08 3.53E-07 5.12

4 PROOFS

Proof of Theorem 1. According to (7), we have

u′(x) = exp(ξ (x))(F(x)−Qξ (Y ≥ x∗)),

where Y is a random variable with density function (under Qξ )

eξ (y)I[0,1](y)∫ 1
0 eξ (s)ds

.
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Note that
P(sup

x
u′(x)> b)≤ P(sup

x
eξ (x) > b) = P(sup

x
ξ (x)> logb)≤ He−(logb−a)2/2,

for all b > 1 and some positive constant a. The last inequality can be obtained by the Borel-TIS inequality
(Borell 1975, Tsirelson, Ibragimov, and Sudakov 1976, Adler and Taylor 2007).

Proof of Theorem 2. Let τ = x∗−δ∗/
√

r. It is sufficient to show that there exists ε > 0 such that

P(supu′(x)> b|ξ (τ)> r)≥ ε

for all b > b0 with b0 chosen sufficiently large.

The conditional process. We first provide some calculations of the conditional distribution of ξ (x)
given (ξ (τ),ξ ′(τ),ξ ′′(τ)). Conditional on (ξ (τ),ξ ′(τ),ξ ′′(τ)), we expand the random function

ξ (x) = E
[
ξ (x)|ξ (τ),ξ ′(τ),ξ ′′(τ)

]
+g(x− τ) (17)

= ξ (τ)+ξ
′(τ)(x− τ)+

1
2

ξ
′′(τ)(x− τ)2 +g3(x− τ)+Rξ (x− τ)+g(x− τ),

where
g3(x− τ) =

1
6

E
[
ξ
′′′(τ)|ξ (τ),ξ ′(τ),ξ ′′(τ)

]
(x− τ)3.

Note that ξ ′′′(τ) is independent of (ξ (τ),ξ ′′(τ)) and

E
[
ξ
′′′(τ)|ξ (τ),ξ ′(τ),ξ ′′(τ)

]
=−C4ξ

′(τ).

g(x) is a mean zero Gaussian random field such that Eg2(x) = O(|x|6) as x→ 0. In addition, the distribution
of g(x) is independent of ξ (τ),ξ ′(τ), and ξ ′′(τ). Rξ (x−τ) = ξ (τ)O(|x−τ|4) is the remainder term of the
Taylor expansion of E [ξ (x)|ξ (τ),ξ ′(τ),ξ ′′(τ)]. In addition, the covariance function can be expanded as

C(x) = 1− 1
2

x2 +
C4

24
x4 +RC(x), (18)

where RC(t) = o(|x|4).

The lower bound. Note that (ξ (τ),ξ ′(τ),ξ ′′(τ)) is a mean zero multivariate Gaussian random
vector with covariance matrix  1 0 −1

0 1 0
−1 0 C4

 .

To simplify notation, we let w , ξ (τ)− r, y , ξ ′(τ), and z , ξ ′′(τ)+ r. Conditional on ξ (τ) > r, the
overshoot w is asymptotically exponentially distributed with expectation r−1. We then localize the event
by letting

L =

{
|w| ≤ A, |y| ≤ A, |z| ≤ A, sup

x
|g(x)|/|x|3 ≤ A

}
for some A > 0. Note that the set L in fact depends on b. To simplify notation, we omit the index of b
in L . It is not hard to show that there exists some ε0 so that

P(L |w > 0)> ε0
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for all b large enough. Then it is sufficient to provide a lower bound for

P(u′(x∗)> b,L |w > 0).

In what follows, conditional on the specific values of (w,y,z), we consider the probability P(u′(x∗)>
b,L |w,y,z). Note that

u′(x∗) = eξ (x∗)(1−Qξ (Y ≥ x∗)).

We first investigate

Qξ (Y ≥ x∗) =
∫ 1

x∗

eξ (x)∫ 1
0 eξ (s)ds

dx.

We insert the expansions of ξ (x) into the above formula and obtain that on the set L

ξ (x) = r+w+ y(x− τ)− r− z
2

(x− τ)2 +O(y|x− τ|3)+O(r|x− τ|4)

= r+w+
y2

2(r− z)
− r− z

2

(
x− τ− y

r− z

)2

+O(y|x− τ|3)+O(r|x− τ|4).

To obtain the above expansion, we need the fact that g(x) = O(|x− τ|3) on the set L . Therefore, on the
set L , ∫ 1

0
eξ (s)ds =

√
2π√

(r− z)
er+w+ y2

2(r−z)+O(r−1)

Moreover, ∫ 1

x∗

eξ (x)∫ 1
0 eξ (s)ds

dx = eO(r−1)P
(

τ +
y

r− z
+Z/

√
r− z > x∗

)
,

where Z is a standard normal random variable. For a detailed derivation and the specific form of O(r−1)
in the above display, refer to the work of one of the authors (Liu 2011).

By the condition that τ = x∗−δ∗/
√

r, we have

∫ 1

x∗

eξ (x)∫ 1
0 eξ (s)ds

dx = eO(r−1)P
(

Z > δ∗

√
1− z

r
− y√

r− z

)
.

Therefore, on the set L , we obtain that

F(x∗)−Qξ (Y ≥ x∗) = eO(r−1)P
(

Z ≤ δ∗−
y√

r− z
+O(r−1)

)
,

= eO(r−1)P
(

Z ≤ δ∗−
y√
r
+O(r−1)

)
.

In addition, on the set L , we have that according to (17)

ξ (x∗) = r+w+ yδ∗/
√

r−δ
2
∗ /2+O(r−1)

= r+w− 1
2
(δ∗− y/

√
r)2 +O(r−1).

Lastly, given that
P(Z ≤ δ∗)er−δ 2

∗ /2 = b,
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we obtain that

u′(x∗) = er+w− 1
2 (δ∗−y/

√
r)2+O(r−1)P

(
Z ≤ δ∗−

y√
r
+O(r−1)

)
≥ b

if and only if

ew− 1
2 (δ∗−y/

√
r)2+O(r−1)P

(
Z ≤ δ∗−

y√
r
+O(r−1)

)
≥ e−δ 2

∗ /2P(Z ≤ δ∗) . (19)

Define function h(δ ) = e−δ 2/2P(Z ≤ δ ). The left hand side of the above inequality equals to

ewh(δ∗− y/
√

r+O(r−1)).

Given that δ∗ maximizes h(δ ), we have that

h(δ∗− y/
√

r+O(r−1)) = h(δ∗)+
1
2

h′′(δ∗)(y2/r+O(r−2)) = eO(r−1)h(δ∗).

Together with (19), we obtain that, on the set L , u′(x∗) ≥ b if and only if w+O(r−1) ≥ 0. Note that,
conditional on w > 0, r×w⇒ Exp(1) as r→∞ where “⇒” denotes convergence in distribution. Therefore,
for some ε sufficiently small, we obtain that

P
(

sup
x

u′(x)> b| f (τ) = r+w > r
)
≥ P(u′(x∗)≥ b|w > 0) = P(r ·w > O(1)|L ,w > 0)P(L |w > 0)≥ ε.

This concludes the proof.
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