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ABSTRACT

Stochastic volatility models capture the impact of time-varying volatility on the financial markets, and
hence are heavily used in financial engineering. However, stochastic volatility is not directly observable
in reality, but is only “partially” observable through the inference from the observed asset price. Most of
the past research studied American option pricing in stochastic volatility models under the assumption that
the volatility is fully observable, which often leads to overpricing of the option. In this paper, we treat
the problem under the more realistic assumption of partially observable stochastic volatility, and propose a
numerical solution method by extending the regression method and the martingale duality approach to the
partially observable case. More specifically, we develop a filtering-based martingale duality approach that
complements a lower bound on the option price with an approximate upper bound. Numerical experiments
show that our method reduces overpricing of the option with a moderate computational cost.

1 INTRODUCTION

American options give the holder the right to sell or to buy an underlying asset at a pre-determined price
before the expiration date. Most of the research on pricing American options assumes that the volatility is
a constant or follows some stochastic process that is fully observable. Even with these assumptions, the
problem usually does not have a closed-form solution, so various numerical methods have been developed,
among which those based on Monte Carlo simulation enjoy the advantage of robustness and the hope to
overcome the curse of dimensionality. Some important work along this line includes (Tilley 1993, Carriere
1996, Raymar and Zwecher 1997, Broadie and Glasserman 1997, Tsitsiklis and Roy 2001, Longstaff and
Schwartz 2001, Garcia 2003, Ibanez and Zapatero 2004, Broadie and Glasserman 2004). In particular,
(Longstaff and Schwartz 2001) and (Tsitsiklis and Roy 2001) proposed approximate dynamic programming
techniques based on the regression idea, to obtain a suboptimal exercise policy with a low-biased estimator
for the option price. (Rogers 2002) and (Haugh and Kogan 2004) proposed a martingale duality approach
to complement a lower bound with an upper bound. (Andersen and Broadie 2004) later developed an
alternative duality-based method, which generates the suboptimal martingale based on the approximate
polices rather than the approximate value functions as in (Haugh and Kogan 2004). (Jamshidian 2007)
studied multiplicative duality, which was comprehensively compared with the former three additive duality
methods by (Chen and Glasserman 2007). One computational disadvantage of these duality approaches is
the expensive nested simulation (sometimes also called “simulation within simulation”), so (Glasserman and
Yu 2002) and (Belomestny, Bender, and Schoenmakers 2009) suggested non-nested simulation methods:
the former uses a choice of basis functions that preserves the martingale property, while the latter utilizes the
martingale representation theorem. A different type of approaches based on Jensen’s inequality, including
the random tree method by (Broadie and Glasserman 1997) and the stochastic mesh method by (Broadie
and Glasserman 2004), generates both low-biased and high-biased estimators for the option price with
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a proven asymptotic convergence. On a higher level, the two different types of approaches based on
martingale duality and Jensen’s inequality can be both viewed as special cases of information relaxation
(Brown, Smith, and Sun 2010), utilizing future information to gain a high-biased estimator of the value
function. A nice summary of Monte Carlo methods for American option pricing can be found in the book
(Glasserman 2004).

In reality, stochastic volatility is not directly observable, but is only “partially” observable in the sense
that it can be inferred from the observation of the asset price. Under the assumption that the volatility
is fully observable, pricing an American option is equivalent to solving an optimal stopping problem,
and the resultant optimal exercise policy is a function of the state variables, i.e., the asset price and the
volatility. This exercise policy cannot be replicated in reality due to the unavailability of the volatility, and
hence it often leads to overpricing of the option. On the contrary, under the more realistic assumption of
partially observable stochastic volatility, it is a partially observable optimal stopping problem, for which
the resultant optimal exercise policy only depends on all the available observations of the asset price, and
hence it is replicable in reality. To the best of our knowledge, only (Pham, Runggaldier, and Sellami
2005), (Florescu and Viens 2008), (Ludkovski 2009), and (Rambharat and Brockwell 2010) have studied
American option pricing under the assumption of partially observable stochastic volatility. (Florescu and
Viens 2008) proposed a multinomial tree method that combines with particle filtering; (Ludkovski 2009)
and (Rambharat and Brockwell 2010) also utilize the particle filtering technique, and incorporate it into the
regression-based approximate dynamic programming approach; whereas (Pham, Runggaldier, and Sellami
2005) used a grid-based method to approximate the filtering distribution.

All of the above four approaches provide approximate solutions, and some are proven to converge
asymptotically to the true option price in the limit. However, in practice with a finite computational power,
the difference between their approximate solutions and the true value is not known. So it motivates us to
develop a lower-and-upper-bound approach such that the gap between the two bounds gives an indication of
the quality of the approximate solution. To guarantee a high-quality approximate solution, we can increase
the computation until the gap between the two bounds decreases to a desirable tolerance level. To this end,
we first use a regression-based method following the idea of (Longstaff and Schwartz 2001) to generate
a suboptimal exercise policy and the associated lower bound, and then complement this lower bound
with an approximate upper bound by a filtering-based martingale duality approach, which we propose for
the partially observable optimal stopping problem. Our lower-bound algorithm is similar to the methods
proposed in (Ludkovski 2009) and (Rambharat and Brockwell 2010), but the main difference is that our
method guarantees a true lower bound so that it can be used in pair with an upper bound.

The rest of the paper is organized as follows. In Section 2 we describe the problem formulation of
pricing American options under partial observation of the stochastic volatility. In Section 3 we briefly
introduce the theory of dynamic programming and filtering that is underpinning of our method. In Section 4,
we describe the regression-based method for finding a suboptimal exercise policy and the corresponding
lower bound on the option price. In Section 5, we develop the filtering-based martingale duality approach
to generate an approximate upper bound on the option price. We present some numerical examples in
Section 6 and finally conclude in Section 7.

2 PROBLEM FORMULATION

Let (Ω,F ,P) be a probability space. The asset price St satisfies the following stochastic differential
equation (SDE)

dSt = St(rdt +σ(Xt)dW 1
t ), (1)

where r is the constant interest rate, {W 1
t } is a Wiener process, and the volatility σ(Xt) is the deterministic

function σ(·) of the stochastic process Xt that evolves as

dXt = α(Xt)dt +β (Xt)dW̃ 2
t , (2)
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where {W̃ 2
t } is another Wiener process. The two processes {W 1

t } and {W̃ 2
t } are correlated such that

dW 1
t dW̃ 2

t = ρdt with ρ ∈ [−1,1]. Hence, {W̃ 2
t } can be written as a linear combination of two independent

Wiener processes {W 1
t } and {W 2

t } in the form of W̃ 2
t = ρdW 1

t +
√

1−ρ2dW 2
t .

To fix ideas in the following, we consider a more specific form of the above model: the function
σ(Xt) = exp(Xt) in (1), and (2) is an Ornstein-Uhlenbeck process

dXt = λ (θ −Xt)dt + γdW̃ 2
t , (3)

where the constant λ is the rate of reversion, the positive constant θ is the mean reversion value, and γ is
another constant.

Assume that the asset price is observed at equally-spaced time points t0, t1, · · · , tT , simply denoted by
0,1, · · · ,T , with time period δ = ti+1− ti. Following the analytical solutions to (1) and (3), they can be
discretized as follows:

Xt+1 = Xte−λδ +θ(1− e−λδ )+ γ

√
1− e−2λδ

2λ

(
ρZ1

t+1 +
√

1−ρ2Z2
t+1

)
, t = 0, · · · ,T −1, (4)

St+1 = St exp
{(

r− σ(Xt+1)
2

2

)
∆+σ(Xt+1)

√
δZ1

t+1

}
, t = 0, · · · ,T −1, (5)

where {Z1
t } and {Z2

t } are two independent sequences of independent and identically distributed (i.i.d.)
random variables with standard normal distribution. Then the transition probability P(Xt |Xt−1) and the
observation probability P(St |Xt ,St−1) are determined. We assume that the initial price S0 is a known
constant, and the initial volatility X0 follows a known distribution π0, which in practice can be chosen as
the conditional distribution of X0 given the historical data.

Let J = {1,2, · · · ,T}. Denote by F S
t = σ{S1, · · · ,St} the filtration generated by the process (5). In

the setting that we cannot observe the volatility directly, the price of the American option with payoff
function g(t,St) is

V0(s0,π0) = sup
τ∈J ,{F S

t }−adpted
E[g(τ,Sτ)|S0 = s0,X0 ∼ π0]. (6)

Please note that τ is a {F S
t }-adapted stopping time, i.e., the exercise decision at time t only depends

on the observations of the asset price up to time t. For an American put option with strike price K, the
payoff function g(t,St) = max

(
e−rδ t(K−St),0

)
.For convenience, in the following we use g(St) and g(Sτ)

to be short for g(t,St) and g(τ,Sτ). In the rest of the paper, We will not differentiate “stopping time” and
“exercise policy” in the rest of the paper.

3 TRANSFORMATION

The above partially observable problem can be transformed to an equivalent fully observable one by
introducing a new state variable, often referred to as the filtering distribution, which is the conditional
distribution of Xt given the observations of the asset price {S0,S1, . . . ,St}. Given a set A in the Borel
σ -algebra on R, define

Πt(A), P(Xt ∈ A|S0, . . . ,St ,X0) =
∫

A
πt(xt)dxt , t = 1, · · · , T .

Given a realization {s0,s1, . . . ,st}, the filtering distribution evolves as follows:

πt(xt) = p(Xt = xt |S0 = s0, · · · ,St = st ,X0 ∼ π0)

=
p(Xt = xt ,St = st |S0 = s0, · · · ,St−1 = st−1,X0 ∼ π0)

p(St = st |S0 = s0, · · · ,St−1 = st−1,X0 ∼ π0)

=

∫
p(Xt = xt ,St = st |Xt−1 = xt−1,St−1 = st−1)πt−1(xt−1)dxt−1∫

p(St = st |Xt−1 = xt−1,St−1 = st−1)πt−1(xt−1)dxt−1
, t = 1, · · · ,T,
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where the second equality follows Bayes’ rule and the third equality follows from the fact {(Xt ,St)}
is a bivariate Markov process. The conditional probability density functions p(Xt = xt ,St = st |Xt−1 =
xt−1,St−1 = st−1) and p(St = st |Xt−1 = xt−1,St−1 = st−1) are induced by (4), (5), and the distributions of
Z1

t and Z2
t . Noticing that πt only depends on πt−1, st−1, and st , and letting the realization {s0, . . . ,st} be

replaced by the random variables {S0, . . . ,St}, we can abstractly rewrite the filtering recursion as

Πt = Φ(Πt−1,St−1,St), t = 1, · · · ,T.

Therefore, the partially observable process (Xt ,St) is transformed to an equivalent fully observable process
with state (Πt ,St), which turns out to be Markovian with respect to F S

t . Theoretically, the option price V0
can be solved following the dynamic programming recursion (with details in Appendix 8.1):

Vt(st ,πt) = max(g(st),Ct(st ,πt)) , t = T, . . . ,1, (7)

where

CT (sT ,πT ), g(sT ),

Ct(st ,πt), E[Vt+1(St+1,Πt+1)|St = st ,Xt ∼ πt ], t = T −1, · · · ,1,

denote the continuation value at time t, which is the expectation of the option value conditional on the
information up to time t.
Hence, the optimal stopping time is

τ
∗ = min{t ∈J | g(St)≥Ct(St ,Πt)} ,

which can be derived from the following recursion:

τ
∗
T = T,

τ
∗
t = τ

∗
t+1 ·1{Ct(St ,Πt)>g(St)}+ t ·1{Ct(St ,Πt)≤g(St)}, t = T −1, . . . ,1, (8)

where 1{·} denotes the indicator function. Hence, τ∗ = τ∗1 . The above recursion also shows that (St ,Πt)
are the sufficient statistics that determine the optimal exercise policy. With τ∗t , it can be shown that

Ct(st ,πt) = E[g(Sτ∗t+1
)|St = st ,Xt ∼ πt ], t = T −1, . . . ,1.

However, it is often impossible to solve the problem exactly following (7) or (8) due to two main difficulties.
One is that in general the filtering distribution πt is infinite dimensional and the filtering recursion cannot be
computed exactly, and the other difficulty lies in the accurate estimation of the continuation value Ct(st ,πt).
So we introduce an approximate method in the next two sections.

4 LOWER BOUND: REGRESSION-BASED METHOD

In this section, we follow the idea in (Longstaff and Schwartz 2001) to present a regression-based algorithm
for obtaining a suboptimal policy that is expected to yield a tight lower bound on the true option price.
The main idea is to iteratively estimate the continuation value using regression and update the optimal
stopping time on a number of independent sample paths.

Let S = {S1, . . . ,ST}. Given a sequence of approximate continuation functions {C̃t(St), t = 1, . . . ,T}
with C̃T (ST )≡ 0, a suboptimal exercise policy τ is determined by

τ(S) = min{t ∈J |g(St)≥ C̃t(St)}, (9)
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which is indeed an F S
t -adapted stopping time. It can be computed recursively according to

τT (S) = T,
τt(S) = τt+1 ·1{C̃t(St)>g(St)}+ t ·1{C̃t(St)≤g(St)}, t = T −1, . . . ,1. (10)

Applying the policy τ on a sample path of the asset price s , {s1, · · · ,sT}, the resultant payoff is g(sτ(s)).

Suppose s(i) = {s(i)1 , · · · ,s(i)T }, i = 1, . . . ,N are independent sample paths generated from the dynamics (4)
and (5) with initial condition S(i)0 = s0 and X (i)

0 ∼ π0. Then we can take the average of the payoffs over all
the sample paths to obtain an estimator for the option price.

Lτ
N =

1
N

N

∑
i=1

g(s(i)τ ),

where g(s(i)τ ) is short for g(s(i)
τ(s(i))

). The following theorem shows that Lτ
N is an asymptotically (as N→∞)

lower bound on the option price.
Theorem 1 For any τ of the form (9), we have the following inequality almost surely,

lim
N→∞

1
N

N

∑
i=1

g(s(i)τ )≤V0(s0,π0).

Proof. According to the strong law of large numbers, it holds almost surely

lim
N→∞

1
N

N

∑
i=1

g(s(i)τ ) = E[g(Sτ)|S0 = s0,X0 ∼ π0]

≤ E[g(Sτ∗)|S0 = s0,X0 ∼ π0]

= V0(s0,π0),

where the inequality holds as τ is a suboptimal exercise policy.

The lower bound gets closer to the true option price if C̃t is a better approximation of the true
continuation value Ct . We employ the regression idea in (Longstaff and Schwartz 2001) to approximate
Ct(st ,πt). More specifically, we expect a good approximation using some function Ĉt in H , where
H = span{h j, j = 1,2, · · · , p} is a p-dimensional function space with the basis functions h j’s. Given a
suboptimal exercise policy τt+1 at time t +1, define

Ĉt(st) = prH ◦E[g(Sτt+1)|St = st ,Xt ∼ πt ],

where prH is the projection operator onto H . However, the right hand side often cannot be carried out
exactly, so in practice it is approximately computed through empirical regression. The idea is to simulate
N independent sample paths of the process S, denoted by s(i) = {s(i)1 , · · · ,s(i)T } for i = 1, · · · ,N, and then
approximate Ĉt(st) by the empirical least-square regression. To be precise,

Ĉt(St)≈ arg min
f∈H

1
N

N

∑
i=1
| f (s(i)t )−g(s(i)τt+1)|

2 =
p

∑
j=1

βt jh j(St), C̃t(St). (11)

Hence, C̃t(s
(i)
t ) = ∑

p
j=1 βt jh j(s

(i)
t ).

Therefore, the procedure of finding a suboptimal policy and its corresponding value is to carry out
the updating of the stopping time and the estimation of the continuation value in an interleaving way.
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Given τt+1, we compute the approximate continuation functions C̃t(St) according to (11), and evaluate the
function values on each sample path to obtain the approximate continuation value C̃t(s

(i)
t ), based on which

we carry out (10) to obtain τt . This is repeated for t = T − 1, · · · ,1, until we obtain τ1 as a suboptimal
exercise policy τ . The algorithm is stated below.

Algorithm 1. Lower Bound and Suboptimal Policy
• Step 1: Simulate s(i) = {s(i)1 , · · · ,s(i)T }, i = 1, . . . ,N independently from processes (4)-(5) with initial
condition X0 ∼ π0 and S0 = s0.
• Step 2: Set τT (s(i)) = T , i = 1, · · · ,N.
• Step 3: For t = T −1, . . . ,1, do
-Evaluate the basis function h j(s

(i)
t ) for each i = 1, · · · ,N and j = 1, · · · , p.

-Least square regression:

βt = (βt1, · · · ,βt p), arg min
β1,...,βp

1
N

N

∑
i=1
|g(s(i)τt+1)−

p

∑
j=1

β jh j(s
(i)
t )|2,

- Evaluate the approximate continuation value for each path i = 1, · · · ,N

C̃t(s
(i)
t ) =

p

∑
j=1

βt jh j(s
(i)
t ).

- Update the stopping time for each path i = 1, · · · ,N

τt(s(i)) =

{
t if C̃t(s

(i)
t )≤ g(s(i)t );

τt+1(s(i)) otherwise.

end
• Step 4: Set Lτ

N = 1
N ∑

N
i=1 g(s(i)τ ), where τ = τ1(s(i)). Lτ

N is an asymptotically lower bound on V0(s0,π0).

In our algorithm, the continuation value is estimated using the updated policy and the empirical regression.
Since the decision in our context is either exercise or hold, the gap between the true continuation value Ct and
the approximate continuation value C̃t will not affect the decision unless it is large enough to flip the decision.
Hence, we can expect our method to obtain a good policy if P({Ct(St ,Πt)> g(St)}∩{C̃t(St)≤ g(St)}) is
small for each t.

Our method is similar to those proposed in (Rambharat and Brockwell 2010) and (Ludkovski 2009).
The main difference is that they assume the basis function h j used in regression is a function of both st and
an approximate filtering distribution. Since the approximate filtering distribution has its own randomness
and cannot be determined purely by st , it enlarges the filtration F S

t so that the resultant policy is not
F S

t -adapted. As a result, their estimates of the option price are not guaranteed to be an asymptotically
lower bound. However, we need a lower bound estimate to be used in pair with an upper bound estimate.

5 APPROXIMATE UPPER BOUND: FILTERING-BASED DUALITY APPROACH

In this section, we construct the dual problem to the original optimal stopping problem, and combine with
the particle filtering technique to find an approximate upper bound of (6). We first state Theorem 2 below,
which is the theoretical basis for our algorithm. It was first used by (Rogers 2002),(Haugh and Kogan
2004) and (Andersen and Broadie 2004) to determine the American option price under constant volatility.
Theorem 2 (c.f. (5) in (Andersen and Broadie 2004)) Let M represent the space of F S

t -adapted martingale
Mt with M0 = 0 and supt∈J |Mt |< ∞. Then

V0(s0,π0) = inf
M∈M

{
E[max

t∈J
(g(St)−Mt)|S0 = s0,X0 ∼ π0]

}
.
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This theorem suggests that any F S
t -adapted martingale Mt will lead to an upper bound on V0(s0,π0).

Therefore, the natural question is how we can find a proper Mt to compute a tight upper bound in practice.
We define such a martingale based on a suboptimal stopping time τ , which may be generated by Algorithm 1,
i.e., τ = min{t ∈J |g(St)≥ C̃t(St)}. Define the t-indexed stopping time τt for each t ∈J :

τt = min
{

i ∈Jt : g(Si)≥ C̃i(Si)
}

with Jt = {t, t+1, · · · ,T}. Note that τt here coincides with the one we derived from the backward recursion
(10). Based on τt , we define the martingale difference

∆t = E[g(Sτt )|F S
t ]−E[g(Sτt )|F S

t−1]

= E[g(Sτt )|St ,Xt ∼Πt ]−E[g(Sτt )|St−1,Xt−1 ∼Πt−1], (12)

where the second line follows from the fact that (St ,Πt) is Markovian with respect to F S
t . It can be seen

that E[∆t |F S
t−1] = 0. Hence, the process {Mt} defined as

M0 = 0, Mt = ∆1 + · · ·+∆t ,∀t ∈J ,

is an F S
t -adapted martingale.

5.1 Approximate Martingale Difference

The remaining issue is how to compute the martingale difference (12). First notice that given a sequence
of observed asset price {s1, · · · ,sT}, the first term on the righthand side of (12) can be rewritten as

E[g(Sτt )|St = st ,Xt ∼ πt ] =

{
g(st), if g(st)≥ C̃t(st);
E[g(Sτt+1)|St = st ,Xt ∼ πt ], if g(st)< C̃t(st).

(13)

Hence, the only term we need to estimate is E[g(Sτt+1)|St = st ,Xt ∼ πt ] for t = 0, · · · ,T −1. However, an
unbiased estimator requires i.i.d. samples from the intractable filtering distribution πt . One approach to
partially solve this problem is to apply the particle filtering method, which approximates πt by a finite
number of samples {x(1)t , · · · ,x(m)

t }, i.e., a discrete distribution π̂t written as follows

π̂t =
1
m

m

∑
i=1

δ
x(i)t
, (14)

where δ is the Dirac measure. As the number of samples m goes to infinity, particle filtering ensures that
π̂t converges to πt in certain sense. A good tutorial on particle filtering can be found in (Arulampalam,
Maskell, Gordon, and Clapp 2002), (Doucet and Johansen 2009), and in the book (Doucet, de Freitas, and
Gordon 2001). Here we adopt the basic version of particle filtering, which is stated in Algorithm 2 below.

Algorithm 2. Particle Filtering
Input: X0 ∼ π0 and a sequence of observed asset price {s1, · · · ,sT}.
Output: The approximate filtering distribution π̂0, · · · , π̂T .
• Step 1. Initialization: Set t = 0. Draw m i.i.d. sample x(1)0 · · · ,x

(m)
0 from the distribution π0. Set

π̂0 =
1
m ∑

m
i=1 δ

x(i)0
.

• Step 2. For t = 1, · · · ,T , do
− Prediction: Sample x̃(i)t from the state equation (4) by generating standard normal distributed random
variable z(i)t with Xt−1 = x(i)t−1, i = 1, · · · ,m.

− Bayes’ Updating: Compute w(i)
t = p(St=st |St−1=st−1,Xt=x̃(i)t )

∑
m
i=1 p(St=st |St−1=st−1,Xt=x̃(i)t )

according to (5), i = 1, · · · ,m.

− Resampling: Draw i.i.d. samples {x(1)t , · · · ,x(m)
t } from the discrete distribution Prob(x̃(i)t ) = w(i)

t , i =
1, · · · ,m. Set π̂t = ∑

m
i=1 δ

x(i)t
. end
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So instead of estimating E[g(Sτt+1)|St = st ,Xt ∼ πt ] directly, we estimate E[g(Sτt+1)|St = st ,Xt ∼ π̂t ] as
its approximation. Since π̂t is of the form (14),

E[g(Sτt+1)|St = st ,Xt ∼ π̂t ] =
m

∑
i=1

1
m
E[g(Sτt+1)|St = st ,Xt = x(i)t ]. (15)

For each i and t, E[g(Sτt+1)|St = st ,Xt = x(i)t ] can be estimated with noise using Algorithm 3.

Algorithm 3. Estimation of E[g(Sτt+1)|St = st ,Xt = x(i)t ]

• Step 1: Simulate {s(i)t+1, · · · ,s
(i)
T } from the processes (4)-(5) starting at time t with initial condition Xt = x(i)t ,

St = st .
• Step 2: To apply τt+1 on this sample path, find

ti = min
{

k ∈Jt+1 : g(s(i)k )≥ C̃k(s
(i)
k )
}
.

Then g(s(i)ti ) is an unbiased estimator of E[g(Sτt+1)|St = st ,Xt = x(i)t ].

Notice that in Algorithm 3 only one subpath is simulated to estimate E[g(Sτt+1)|St = st ,Xt = x(i)t ]. It
is of no doubt that more subpaths can be generated to reduce the variance of the estimator. Since we can
estimate E[g(Sτt+1)|St = st ,Xt = x(i)t ] for each i by Algorithm 3, (15) can be estimated with noise by taking
the average of these terms, that is, E[g(Sτt+1)|St = st ,Xt ∼ π̂t ]≈ 1

m ∑
m
i=1 g(s(i)ti ). As m becomes greater, we

have less bias in estimating E[g(Sτt+1)|St = st ,Xt ∼ πt ].

5.2 Approximate Upper Bound

So far we have derived a way to compute the approximate martingale difference ∆̂t for a given stopping
time τ and a sample path {s1, · · · ,sT}. Based on this, we propose the following algorithm that yields an
approximate upper bound on the option price.
Algorithm 4. A Filtering-Based Duality Approach
• Step 1. Generate N1 independent paths of the asset price {s(k)1 , . . . ,s(k)T } according to the processes
(4)-(5), and then follow Algorithm 2 to generate the approximate filtering distribution {π̂(k)

1 , · · · , π̂(k)
T } for

k = 1, . . . ,N1.
• Step 2. For k = 1,2, · · · ,N1, do
- For t = T, · · · ,1 compute

∆̂
(k)
t = E[g(Sτt )|St = s(k)t ,Xt ∼ π̂

(k)
t ]−E[g(Sτt )|St = s(k)t−1,Xt ∼ π̂

(k)
t−1]

according to (13) with πt replaced by π̂t and Algorithm 3.
- Sum the approximate martingale differences to get

M̂(k)
t = ∆̂

(k)
1 + · · ·+ ∆̂

(k)
t , t = 1, · · · ,T.

- Evaluate U (k) = maxt∈J

(
g(S(k)t )− M̂(k)

t

)
. end

• Step3. Set Uτ
N1

= 1
N1

∑
N1
k=1U (k). Uτ

N1
is an approximate upper bound on the option price V0(s0,π0).

6 NUMERICAL EXAMPLES

In this section, we consider pricing an American put option with g(St) = max
(
e−r∆t(K−St),0

)
. We use

the parameters as follows:
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1. Volatility parameter: λ = 1, θ = log(0.2) ,γ = 1, ρ = 0;
2. Asset price parameter: r = 0.05, K = 40;
3. Time parameter: δ = 0.1, and T = 5,10,15;
4. Initial condition: S0 = 36, x0 = log(0.2).

Besides the parameters for (4)-(5), we also need to assign the basis functions in the regression step of
Algorithm 1. In our simulation, we use the following set of basis functions

H1 = {L0(St),L2
0(St),L1(St),L2

1(St),L0(St)L1(St),1},

where L0(x) = x, L1(x) = min(K− x,0).
We present our numerical results in Table 1, where each entry shows the sample average and standard

error (in parentheses) of 20 independent runs. The lower bound L on the option price is the average of 20
independent outputs, each of which is obtained by implementing Algorithm 1 with the number of sample
paths N = 40000 to obtain a suboptimal policy τ , and then applying this policy on another independent
set of 40000 paths. The dual upper bound U is the average of 20 independent outputs, each of which is
obtained by implementing Algorithm 4 using one suboptimal policy τ with the number of sample paths
N1 = 500 and the number of particles m = 1000. To compare with the option price under full observation
of stochastic volatility, we also implement Algorithm 1 in a similar way to obtain a lower bound Full.LB,
with 40000 sample paths and a lager set of basis functions:

H2 = H1∪{L0(eXt ),L0(eXt )L1(St)}.

Please note that we have incorporated the information of Xt in the new set H2. Then we implement the
primal-dual method of (Andersen and Broadie 2004) with 500 sample paths and 1000 subpaths to obtain
the dual upper bound Full.UB on the option price of the fully observable model.

Table 1: American Put Option Values.

T L U V̂ Full LB. Full UB. Full Obs. Overprice
5 4.386(0.002) 4.435(0.002) 4.411 4.470(0.002) 4.481(0.002) 4.475 0.064
10 4.897(0.003) 5.040(0.002) 4.969 5.101(0.002) 5.122(0.002) 5.112 0.143
15 5.342(0.003) 5.557(0.003) 5.450 5.612(0.004) 5.649(0.003) 5.631 0.181

We observe that in our numerical results the differences of the approximate upper bound U and the
lower bound L are small, so they can be both regarded as approximate option prices. One possible choice
of a point estimator for the true option price V0 is the average of the two

V̂ =
L+U

2
.

The column Overprice in Table 1 shows the difference between V̂ and Full Obs., which is the average of
Full.LB and Full.UB. The optimal solution to a fully observable problem is an upper bound on the optimal
solution to the corresponding partially observable problem. However, the gap between the two solutions
is usually unknown. So another advantage of introducing the dual upper bound U is that it provides a
criterion to evaluate the performance of L: the smaller the gap between U and L, the better the bounds.

7 CONCLUSION

In this paper, we investigate the American option pricing problem under partial observation of stochastic
volatility, for which we develop an efficient numerical method to compute tight lower bound and approximate
upper bound on the true option price. The lower bound is obtained by a dynamic programming approach
with regression on the continuation values, and the dual upper bound is based on a martingale duality
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formulation on the joint process of the asset price and the filtering distribution. We apply this approach to
price an American put option, and the numerical results show that our lower and upper bounds are close
enough to be regarded as good approximation of the true option price. The numerical results also show
that our method reduces overpricing of the option by treating the volatility more realistically as partially
observable.

8 APPENDIX

8.1 Equivalent Formulation of the DP Problem

We first show that (St ,Πt) is Markovian with respect to F S
t . Given a realization of asset price {s0, . . . ,st−1}

and the initial distribution of X0,

p(St = st |S0 = s0, · · · ,St−1 = st−1,X0 ∼ π0) =
∫

p(St = st |Xt−1 = xt−1,St−1 = st−1)πt−1(xt−1)dxt−1,

where p(St = st |Xt−1 = xt−1,St−1 = st−1) can be obtained from (4) and (5). Therefore, the probability
distribution of St conditional on F S

t−1 is determined by St−1 and Πt−1. Moreover, we have shown that
Πt =Φ(Πt−1,St−1,St). Hence, conditional on F S

t−1, the distribution of (St ,Πt) is determined by (St−1,Πt−1),
implying that (St ,Πt) is a F S

t -adapted Markov process.
The original dynamic programming problem is

ṼT (s0, . . . ,sT ) = g(sT ),

Ṽt(s0, . . . ,st) = max
(
g(st),E[Ṽt+1(S0, . . . ,St+1)|X0 ∼ π0,S0 = s0, . . . ,St = st ]

)
,

for t = T−1, · · · ,1. Next we show that the value function at time t, Ṽt , can be represented as a function of only
πt and st . To show this, first define VT (sT ,πT ), ṼT (s0, · · · ,sT ) = g(sT ). By induction, for t = T −1, · · · ,1

Ṽt(s0, · · · ,st)

=max
(
g(st),E[Ṽt+1(S0, · · · ,St+1)|X0 ∼ π0,S0 = s0, · · · ,St = st ]

)
=max(g(st),E[Vt+1(St+1,Πt+1)|X0 ∼ π0,S0 = s0, · · · ,St = st ])

=max
(

g(st),
∫

E[Vt+1(St+1,Πt+1)|Xt ∼ πt ,St = st ]

)
,

where the second equality holds due to the induction and the third equality holds as (St ,Πt) is a bivariate
Markov process with respect to F S

t . Hence, we can define

Vt(st ,πt), max(g(st),E[Vt+1(St+1,Πt+1)|St = st ,Xt ∼ πt ]) .
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