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ABSTRACT 

When output random variables are a function (known as a transfer function) of input random variables, 
Monte Carlo simulation has often been used to examine the sensitivity of the outputs to changes to the in-
puts.   An important and commonly used measure of the outputs is their process capability (the probabil-
ity that an output is within specification limits).  In this paper, we show how to efficiently conduct exten-
sive analysis of the sensitivity of the process capability of outputs to changes to inputs.  Specifically, we 
show how a single set of simulation replications can be used to efficiently estimate the process capability 
as a function of each input random variable’s values, its parameters, and truncation of its values at chosen 
limits.  The approach is extremely flexible; the effects of changes to the distributional form of an input 
variable alone or in combination with the previously mentioned changes are easily evaluated. 

1 INTRODUCTION 

A fundamental paradigm of many quality improvement approaches is to make improvements to carefully 
selected X variables in order to reduce the likelihood that one or more critical-to-quality Y variables will 
fall outside acceptable specification limits.  An important class of such applications is where the Y varia-
bles are modeled as transfer functions of the X variables.   A function g is referred to as a transfer func-
tion if Y = g(X) = g(X1, X2,…, Xn), where the vector of input variables X=(X1, X2,…, Xn) is transformed 
into the output variable Y.  The output variable Y is a random variable if at least some of the Xi inputs are 
random variables (which is frequently the case in practice and is the case we treat in this paper).  The term 
transfer function conveys the fact that the variability in the Xi inputs is transferred to the output Y.  This 
transfer is, of course, a major reason that Y values fall outside the specification limits (these values are 
said to be defective).  To avoid defectives, one can try to choose target values for the Xi’s (shift the 
means of the random variables) that are robust to the variability transfer, reduce the variability in the Xi’s 
(narrow the probability distribution) that is getting transferred, or limit the ranges of the Xi’s (similar to 
reducing the variability but here we refer to truncating or chopping the distribution rather than narrowing 
it) as the transfer functions often convert extreme Xi values into defective Y values.  These shift, narrow, 
and chop efforts aimed at avoiding defective Y values are the focus of this paper.   
     We present a series of tools that utilize key information from Monte Carlo simulation (MCS) of a 
transfer function to allow potential shift, narrow, and chop actions to be efficiently evaluated in a unified 
framework.  The tools involve both computational and graphical features.  Common to all the tools pre-
sented here is that they require only one set of simulation replications – any or all can be utilized without 
making any changes to the simulation model and running additional simulations.  Specifically, we devel-
op the following abilities: 

1. The ability to efficiently generate a curve showing the probability that Y will be defective as a 
function of any Xi’s values. 
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2. The ability to examine the effect of any change to the probability distribution of any Xi variable 

on the probability that Y will be defective.  Allowable changes to an Xi variable include changes 
to one or more parameters of the probability distribution, changes to the distributional form, and 
truncations of the distribution.  In essence, the effects of a completely different distribution for an 
Xi on the probability that Y will be defective can be evaluated without re-simulating. 

3. The ability to generate a curve showing the probability that Y will be defective as a function of 
any parameter of any Xi’s probability distribution. 

       As we will describe, our approach hinges on the ability to solve for values of an Xi variable that, giv-
en specific values for all other input variables Xj, j ≠ i, will yield values equal to the specification limit 
values for Y.  Although this can be done for essentially all transfer functions, it is more efficient to do so 
when closed-form solutions can be obtained to make these computations.  We believe this is possible for 
most transfer functions in practice but not all.  For example, this would be true for transfer functions that 
are linear, quadratic, or cubic in nature with unlimited cross-products.   
  The approach can be applied when there are multiple Y variables and/or the transfer function(s) are 
not monotonic; the easiest case to describe is when there is a single Y variable and its transfer function is 
monotonic.  For exposition clarity and brevity, this paper will focus on how to handle this case and will 
demonstrate the approach on practical examples.  If there are multiple Y variables but it is desired to ana-
lyze their defective probabilities individually and then combine them (for example, with a weighted com-
bination based on relative importance), the extension is trivial.  In that case, the approach we will describe 
can simply be applied to each Y variable in series. With multiple Y variables, however, it would frequent-
ly be useful to examine the probability that none of the Y variables are defective.  In this case, or the case 
where a transfer function is non-monotonic, or the case where both of these complicating features are pre-
sent, the approach is very similar and equally efficient to apply but requires more detailed bookkeeping.  
Because of this bookkeeping, this approach requires extra notation and is more complex and lengthy to 
describe.  Details are provided in the working paper by Bowman and Schmee (2011). 
    We assume that each of the random Xi’s is modeled by a continuous probability distribution (possibly 
degenerate) and that they are independent.  All of the approaches we present (both graphical and compu-
tational) allow for sensitivity analysis to be done for one Xi variable at a time.  We believe that the ability 
to incorporate correlated Xi’s and/or the ability to analyze simultaneous changes to multiple Xi ’s would 
be important extensions.    
       In Section 2, we review the literature and place the contribution of this paper in that context.  In Sec-
tion 3, we describe the simulation steps that are common to all 3 abilities that we have listed above.  In 
Section 4, we show how to use the information obtained from these steps to efficiently evaluate the prob-
ability that a Y variable is defective.  An example is used for illustration.  Although this is not one of the 
3 abilities we are focused on in this paper, it is a useful ability in and of itself; more importantly, it pro-
vides the fundamental building block for the main 3 abilities we describe.  In section 5, we develop the 
first ability described above.  In section 6, we develop the 2nd and 3rd abilities, which are closely related.  
Finally, in Section 7, we offer conclusions and recommendations for future research. 

2 LITERATURE REVIEW 

Tolerance design is a research topic that has received much attention; it involves examining the effects of 
component tolerances on performance variables and incorporating the results into the system design. A 
thorough review of this field is well beyond the scope and space limitations of this paper.  The interested 
reader is primarily referred to two good overviews. Evans (1975) gives a broad overview of the statistical 
problems of tolerance design. More recently, Creveling (1997) presents a comprehensive approach (and 
review of the literature), using experimental design, Taguchi methods, and sensitivity analysis that in-
cludes the use of MCS. Tolerance design is a special focus of the Six Sigma approach as described by 
Snee and Hoerl (2003), where input X-variables are modified to yield desired output Y-variable values. 
The Six Sigma approach often uses transfer functions to model the relationship between these inputs and 
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outputs. It implies that in order to improve quality one must ultimately control the X-variables (see also 
Kumar et al. (2008)).    
 Another related topic is capability analysis, which utilizes several metrics to assess variables of inter-
est for their capability to meet specifications. Kotz and Johnson (1993), Spiring et al. (2003), and Wu, 
Pearn, and Kotz (2009) give overviews of various capability indices. Capability indices are typically sub-
ject to distributional assumptions. To avoid this problem, Polansky (2001) has used a nonparametric ap-
proach. Our paper, instead of using a traditional capability index, uses P(D), the probability of a defective. 
This approach has been previously used by Wu and Hamada (2000) and Chiao and Hamada (2001) who 
consider optimizing probability of defectives in a multiple response setting based on experimental de-
signs. Chiao and Hamada (2001) maximize the probability that all responses meet their respective specifi-
cations simultaneously. 
 The response surface is the most widely used transfer function and is, therefore, another important re-
search area that is directly relevant to this paper. Myers, Khuri, and Carter (1989), Myers and Montgom-
ery (1995), Myers et al. (2004) and Myers Montgomery, and Anderson-Cook (2009) provide in depth re-
views of many issues surrounding response surfaces. Carlyle, Montgomery, and Runger (2000) and 
Myers et al. (2004) review multiple response optimization approaches. In many of these approaches, the 
error terms for the Y’s are explicitly or implicitly (for example, when capability indices are used) as-
sumed to be normally distributed. Bowman, Doganaksoy, and Schmee (2010) show an efficient optimiza-
tion of a multi-response transfer function without the need to make distributional assumptions by utilizing 
gradient estimates obtained from the approach described by Bowman and Schmee (2004). 
 Increasingly, the complexity of tolerancing, capability index, and response surface issues has led to 
the use of Monte Carlo simulation. For example, Boning and Mozumder (1994) used it to design semi-
conductors, while Kalil, Maugeri, and Rodrigues (2000) used simulation of response surfaces to design 
and optimize an alcoholic fermentation process. The topic has also attracted methodological discussions 
such as in Skowronski and Turner (1997). 

We are now in a position to relate our terms of shift, narrow, and chop to the areas of statistical toler-
ancing, capability indices, and response surface optimization and to clarify the contribution of this paper.  
Statistical tolerancing has dealt with both narrow and chop elements with more attention being placed on 
narrow than chop.  Response surface optimization associated with quality improvement has focused pri-
marily on the shift element with some treatment of narrow.  Capability indices employ metrics other than 
the probability of defectives and often involve distributional assumptions.  In addition to allowing com-
plete freedom in modeling inputs and making no distributional assumptions about outputs, our paper has 
two primary distinguishing characteristics.  The first is that it treats all three elements (shift, narrow, and 
chop) in a unified framework.  By this, we mean that the methodological approach is the same for all 
three elements and also that all three elements can be evaluated simultaneously (along with any interac-
tion effects) rather than separately and independently. 
     To understand the second distinguishing characteristic, it is first necessary to briefly consider the 
methodology that we employ.  Since at least some of the Xi’s are random variables and analytical results 
for transfer functions of random variables with general distributions are limited, transfer functions are of-
ten analyzed using Monte Carlo simulation.  In this context, key to the ability to avoid defective Y values 
is the ability to use MCS to assess the sensitivity of the probability of the Y’s being defective to changes 
in the Xi’s.  This sensitivity analysis in the past has looked at infinitesimal changes to the Xi’s or the pa-
rameters of their probability distributions and the results have often been utilized in optimization 
schemes.   The second distinguishing characteristic of this paper, then, is that the tools we present enable 
the effects of significant (rather than infinitesimal) changes to Xi’s or their probability distributions on the 
probability of defectives to be clearly and efficiently assessed.   As these changes are significant and can 
involve shift, narrow, and chop effects simultaneously, the primary use of these tools would be to effi-
ciently evaluate practical alternatives and directly focus improvements on the alternatives with the biggest 
impact; they are not primarily useful as information to be embedded in an optimization scheme. 
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 The software package JMP, version 8  (JMP 2009) or higher, offers a profiling method based on MCS 
that can be used to study problems similar to the ones discussed in this paper and, in particular, to accom-
plish the first ability that we described in the introduction. A key difference is that JMP re-simulates at se-
lected values of input variables and uses interpolation, whereas the method proposed in this paper is an 
efficient one-pass approach that evaluates an entire range of values of input variables based on one set of 
simulations.  As we will describe, this requires the ability to gather specific information from the simula-
tion runs and this can be done efficiently when the transfer functions can be inverted to express an input 
variable as a closed form function of each output variable and the other input variables.  We believe this 
to be possible for most (but certainly not all) transfer functions in practice.  When it is not possible, we 
recommend using the JMP approach to accomplish the first ability outlined in the introduction and the 
approach we describe to accomplish the second and third abilities. 

3 CORE SIMULATION STEPS 

All the tools that we present are simulation-based.  They begin by simulating the transfer function a num-
ber of times and identifying the same key information from each run. This information is then tracked and 
manipulated to efficiently accomplish the various abilities. Each individual simulation run requires the 
following: 

1. Simulate X1, X2,…, Xn from their input distributions. 
2. For each Xi, determine which range(s) of values Xi could take on so that Y does not violate its 

specification limits, while holding the other Xi’s constant at their simulated values. In monotone 
relationships, this produces a single range of values between what we call Xmin(i) and Xmax(i). Thus, 
for each simulation run, we identify Xmin(i) and Xmax(i) such that Y is good if and only if Xmin(i) ≤ Xi 
≤ Xmax(i). This is done by solving for the Xi values that, if plugged into the transfer function along 
with the simulated values for all other Xj’s, j ≠ i, yield values equal to the specification limit val-
ues for the Y variable. 

    A simple example demonstrates the calculations of Xmin(i) and Xmax(i).  Suppose a laminate is formed 
from two layers. The total thickness Y = X1+X2, where X1and X2 are the thicknesses of the two layers. 
The lower and upper specification limits on Y are YL = 2.95 and YU = 3.05, respectively.  (The units of 
the thicknesses are omitted.)  X1 and X2 are normally distributed random variables with means of 1 and 2 
and standard deviations of 0.01 and 0.015 respectively. Suppose a single simulation run results in x1 = 
0.99 and x2= 1.98. The total (simulated) thickness y=0.99+1.98 = 2.97 is within specification limits.  
The calculations for Xmin(1) and Xmax(1) assume that x2 is fixed at 1.98: 

Xmin(1) = YL-x2 = 2.95 – 1.98 = 0.97. 
Xmax(1) = YU-x2 = 3.05 – 1.98 = 1.07. 

Xmin(1) and Xmax(1) can be interpreted to mean that for x2=1.98, Y will be within its specification limits as 
long as X1 is in the interval from 0.97 to 1.07. 
The calculations for Xmin(2) and Xmax(2) assume that x1 is fixed at 0.99: 

Xmin(2) = YL-x1 = 2.95 – 0.99 = 1.96. 
Xmax(2) = YU-x1 = 3.05 – 0.99 = 2.06. 

Xmin(2) and Xmax(2) can be interpreted to mean that for x1=0.99, Y will be within its specification limits as 
long as X2 is in the interval from 1.96 to 2.06. 
   This simple example has two-sided specification limits.  Some applications have one-sided specifica-
tion limits, but this is tantamount to setting either YL = - or YU = +. Correspondingly, either Xmin(i) or 
Xmax(i) could be - or +, so that the range could be one-sided, two-sided, or even empty.  

4 EFFICIENT ESTIMATION OF DEFECTIVE PROBABILITIES 

When estimating the probability of defectives using simulation, the straightforward procedure is simply to 
divide the number of replications for which there was a defective by the total number of replications.  The 

standard deviation of this estimate would be npp /)1(   . This is quite large (compared to the mean) 
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for systems that are highly capable unless the number of replications is very large.  For example, if 
p=.00001, it would take 1 million replications just to get the standard deviation to equal the mean.  A 
more efficient approach is to take advantage of the fact that, holding all the other Xj, ji, constant at their 
simulated values for a simulation replication, the Xmin(i) and Xmax(i) values define the interval for Xj on 
which the Y results in a good outcome.  Let Pi(D | fix all Xj, ji)  refer to the probability that Y is outside 
its specification limits, holding fixed all Xj, ji and let FXi(x) = P(Xi < x).  We have: 

 
Pi(D | fix all Xj, ji)  = P(Xi < Xmin(i)) + P(Xi > Xmax(i)) = FXi(Xmin(i)))  + [1 - FXi(Xmax(i))].  (1) 
 

   Using (1), one can calculate a value of Pi(D | fix all Xj, ji) for each run. It is an estimate of P(D), 
conditional on the values Xk, ki, for the simulation replication.  These conditional estimates could be av-
eraged across all simulation replications to yield an estimate of P(D).  This estimator would be unbiased 
(as E(E(Y|X))=E(Y) for any Y and X).  Compared to the straightforward estimator, however, it would 
have lower variance (as Var(E(Y|X))=Var(Y)-E(Var(Y|X)).  This idea and formula are at the heart of all 
variance reduction approaches using conditional estimates within MCS (see, for example, Law and Kel-
ton (1991)).  They are also at the heart of the approaches to all 3 abilities that we will develop.   
   We note that one could follow the same approach for each Xi (fixing Xj, ji at their simulated values) 
to obtain an estimate of P(D), similarly conditional on the values Xj, ji, for the simulation replication and 
average these conditional estimates across all simulation replications to yield an estimate of P(D). In this 
manner, an estimate of P(D) is available from each input variable.  To be clear, we refer to the estimate 
obtained for P(D) working with the Xmin(i) and Xmax(i) values each replication as Pi(D).  One could use any 
Pi(D) as the estimate of P(D) or any weighted combination thereof.  We demonstrate this approach using 
a small example. 

Bank Processing Example: This example concerns the bank processing time of loan approvals.  The 
approval process consists of four sequential steps: receiving application, review of application, credit 
check of applicant, and loan finalization. In this example we assume that each step follows a normal dis-
tribution: X1N(13,1), X2N(14,2), X3N(15,3), X4N(16,4), where XiN(μi,σi) means that the time Xi to 
complete step i is normally distributed with mean μi and standard deviation σi.  The parameters are given 
in hours. We choose the normal distribution because it affords us a simple analytic solution with which to 
compare the simulation-based derivative estimates. The Y= g(X1, X2, X3, X4) = X1+X2+X3+X4. 

Let’s suppose that Y has a lower specification limit of 50 and an upper specification limit of 70.  
Suppose the simulated values for a particular simulation were: 
 

x1 x2 x3 x4

12.957 14.631 15.004 14.631 
 

Since the sum of these values is 57.223, Y falls within the specification limits and a straightforward 
simulation would simply record the fact that Y was good for this particular run.  Alternatively, however, 
we could calculate the Xmin(i) and Xmax(i)  values for any or all of the X i’s.  For example, if we do this for 
i=4, we would have Xmin(4) = 50 – (12.957+14.631+15.004) = 7.408.  Similarly, Xmax(4) = 70 – 
(12.957+14.631+15.004) = 27.408.   Applying (1), we compute P(X4 < 7.408) + P(X4 > 27.408) = .0159 + 
.0022 = .0181.  Thus, we have computed P4(D | fix all Xj, j 4) = .0181.  Similarly, we calculated Xmin(i) 
and Xmax(i)  for i = 1, 2, and 3 and used those values to compute P1(D | fix all Xj, j 1) = .0000 , P2(D | fix 
all Xj, j 2) = .0005, and P3(D | fix all Xj, j 3) = .0081.   
     We conducted 10,000 simulation replications using this example.  In these 10,000 replications, Y was 
defective 849 times so that the standard simulation estimate would be P(D) = .0849 (the analytic solution 
is .0863).  Using our 10,000 replications, we computed P1(D) =  .08591, P2(D) =  .08589, P3(D) =  .08595, 
and P4(D) =  .08533.          
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     As we mentioned, any weighted combination of the Pi(D)’s would be also be unbiased.  Getting the 
lowest variance combination would be a useful extension but is not the focus of this paper.  Instead, we 
will focus on using the idea behind these estimators to build the 3 abilities we have described.  We ob-
serve, however, that if an Xi tends to fall either completely within the range between Xmin(i) and Xmax(i) or 
completely outside that range then the variance mimics the binomial variance.  Hence, Xi’s that have a 
large amount of variance tend to lead to lower variance estimates.  For example, for our problem, the 
standard error of P1(D) was .00247 for i=1, .00209 for i=2, .00165 for i=3, and .00114 for i=4.  (Note that 
any of these would be an improvement over the standard error of the standard simulation estimate, which 
would be .00279).   
    In the cases where there are multiple Y variables and the measure of interest is the probability that 
none are defective, or any of the transfer functions are non-monotonic, or both, there will not be a unique 
Xmin(i) and Xmax(i) for each Xi .  As mentioned, the extension to handle this situation is easy and efficient to 
apply but more complex and lengthy to describe and requires extra notation to be introduced.  It is for this 
reason that we refer the reader to the working paper by Bowman and Schmee (2011) for the details. 

5 DEFECTIVE PROBABILITIES AS A FUNCTION OF AN XI‘S VALUES 

Suppose one wanted to estimate the probability that Y is defective given that an Xi is fixed at a value xi.  
The procedure for doing this is a logical extension of the previous section.  In addition, the ability to an-
swer this question will be extended in the next section to the ability to evaluate the effect of any change or 
set of changes (shift, narrow, chop, even a complete change to the distributional form) to an Xi’s distribu-
tion on the probability that Y is defective. 
     The traditional simulation method to estimate the probability that Y  is defective given that an Xi is 
fixed at a value xi, P(D | Xi = xi), would be as follows.  For each replication, enter the value xi together 
with the other simulated Xj, ji, values into the transfer function. Then determine whether the outcome Y 
was good or defective, and calculate the fraction of replications for which the Y was defective.  A second 
way to get the same answer is to check whether xi is below Xmin(i) or above Xmax(i) for each replication. 
     Since it is of interest to perform these checks for any fixed value xi, in the range of Xi, we could es-
sentially follow this second approach. However, by using the simulation replications to build an empirical 
distribution function for Xmin(i), call it FXmin(i)(xi), and for Xmax(i) , call it FXmax(i)(xi), one does not have to 
make this check for each simulation run.  Instead, at the end of all the simulation replications, one can es-
timate P(D | Xi = xi) as follows: 

 
P(D | Xi = xi) = P(Xmin(i) > xi) + P(Xmax(i) < xi) = [1 - FXmin(i)(xi)] + FXmax(i)(xi).      (2) 

 
     Note that (1) and (2) are very similar.  The only difference is that (1) treats Xmin(i) and  Xmax(i) as con-
stants fixed at their values calculated for a simulation replication and Xi as a random variable. Equation 
(2) treats Xi as a constant fixed at xi and Xmin(i) and  Xmax(i) as random variables. 
     The advantage of (2) is that, once the distribution functions for Xmin(i) and Xmax(i) are estimated, one 
can use them to compute P(D|Xi = xi) for any value xi. One can do this because Xmin(i) and Xmax(i) do not 
depend on Xi, but only depend on the values of the other input variables Xj, ji.  Based on a single set of 
simulation replications, one could thus produce P(D|Xi = xi) as a function of xi.  In addition, following the 
same procedure for each of the other Xj’s allows P(D|Xj = xj) as a function of xj to be produced, all using 
the same set of simulation replications.   

Bank Processing Example: These concepts can be demonstrated with the Bank Processing Time ex-
ample of loan approvals.  The specification limits used in this demonstration are YL = 42 and YU = 76. 
The limits have been chosen fairly wide so that the system becomes fairly capable. They are asymmetric 
around the mean of 58. 

We demonstrate the concepts on the X1-variable where X1N(13,1). Figure 1 shows the empirical 
CDF’s of Xmin(1) and Xmax(1) obtained from 10000 simulation replications. 
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Figure 1: Empirical CDF’s of Xmin(1) and Xmax(1) 

As expected, because all input distributions are normal and the output variable is a sum of these nor-
mals, Xmin(1) and Xmax(1) are also normally distributed.  

The empirical CDF’s of Xmin(1) and Xmax(1) are then used to calculate P(D | X1 = x1) using Equation (2). 
The calculations are demonstrated in Table 1.  Column 2 is labeled P(D|x1 for Xmin(1)) and contains empir-
ical estimates of P(Xmin(1) > x1) = [1 - FXmin(1)(x1)]. Column 3 is labeled P(D| x1 for Xmax(1)) and contains 
P(Xmax(1) < x1) = FXmax(1)(x1).  Column 4 is the empirical estimate of the probability defined in Equation 
(2), i.e., P(D | X1 = x1) =P(Xmin(1) > x1) + P(Xmax(1) < x1) = [1 - FXmin(1)(x1)] + FXmax(1)(x1).   

Table 1:  P(D | X1 = x1) 

x1 P(D|x1 for Xmin(1)) P(D|x1 for Xmax(1)) P(D|x1) 
9 .0137 .0000 .0137 
9.5 .0104 .0000 .0104 
10 .0077 .0000 .0077 
10.5 .0062 .0000 .0062 
11 .0045 .0000 .0045 
11.5 .0037 .0000 .0037 
12 .0025 .0000 .0025 
12.5 .0021 .0000 .0021 
13 .0016 .0000 .0016 
13.5 .0009 .0001 .0010 
14 .0007 .0002 .0009 
14.5 .0004 .0004 .0008 
15 .0003 .0008 .0011 
15.5 .0002 .0010 .0012 
16 .0002 .0013 .0015 
16.5 .0001 .0020 .0021 
17 .0000 .0030 .0030 
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A graph of column 4, then, is a graph of P(D | X1 = x1) as a function of x1.  In exactly, this manner, 

such a graph could be produced for each Xi.  These graphs are extremely interesting and should be inval-
uable for conducting sensitivity analysis.  For example, one key question is where the minimum would 
occur.  The example graph (Figure 2) shows that the empirical minimum occurs near 14.  This is as ex-
pected for this simple example because it would move the average of the sum to exactly half way between 
the upper and lower specification limits on Y.  For more complex transfer functions and other probability 
distributions, however, the answer would not be obvious. 

 

  

Figure 2: P(D | X1 = x1) 

6 THE EFFECT OF CHANGES TO THE PROBABILITY DISTRIBUTION OF AN X ON 
THE PROBABILITY OF Y BEING DEFECTIVE 

In the previous section, we described how to use a single set of simulation replications to estimate the 

function P(D | Xi = xi) for every Xi.  Since  dxxfxg )()(  = E[g(X)], where  iX xf
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density function of the random variable X, we could approximate      dxxfXDP iXi iix  using our 

estimated function P(D| Xi = xi) and produce an estimate of P(D).  
    Following the approach of the previous section, we could estimate P(D|Xi = xi) at selected discrete val-
ues for xi over a desired range.  Once this is done, we could approximate the above integral as a standard-
ized sum: 
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1. Shift:  To evaluate the impact of changing the mean of the originally simulated distribution. In the 
Bank Processing Example one may want to know the effect on P(D) from a change in the X1 mean 
from 13 to 12. 

2.  Narrow:  To evaluate the impact of changing the standard deviation of the originally simulated dis-
tribution. In the Bank Processing Example one may want to know the effect on P(D) from a change 
in the X1 standard deviation  from 1 to 0.5. 

3. Chop: To evaluate the impact of truncating the tails of the distribution by imposing tolerance limits 
on Xi. In the Bank Processing Example one may want to know the effect on P(D) from a change to 
the range of admitted X1 values by truncating values outside the tolerance limits. 

Each of these problems can be dealt with by the same approach. In fact, the same approach can handle 
any combination of changes to any individual X’s distribution, including a complete change of distribu-
tional form. 

Bank Processing Example Revisited: In Table 2, we show how to evaluate truncation (chop) for X1 
of the Bank Processing example. For expositional purposes, we use rather wide increments (Δx=0.5) for 
calculating     xxfdxxf

ii XX  .  In practice, of course, one would want to use much smaller incre-

ments for greater accuracy.  For a range of x1 from 9 to 17, we calculate the f(x)dx as P(x1-.25 < X < 
x1+.25) using a normal distribution with mean 13 and standard deviation 1 (as in the simulation) in Col-
umn 2 and label them P[x1+-.25]. Column 3 contains the probabilities P(D| x1) calculated previously (see 
Column 4 of previous table). The product of Column 2 and Column 3 is in Column 4. The Column 4 val-
ues are used in the numerator of (3), while the Column 2 values are used in the denominator.  

Table 2: Sensitivity of P(D) to Changes to X1’s Distribution 

 
N(13,1)   x1 Limits N(14,.5) Gamma 

 
x1 

 
P[x1+-.25] 

 
P(D|x1) 

P[x1+-.25] 
*P(D|x1) 

 
9-17 

 
11-15 

 
12-14 

 
P[x1+-.25] 

 
P[x1+-.25] 

9 0.0000777  0.0137 0.0000011 1 0 0 0.0000000 0.0000000 
9.5 0.0004886  0.0104 0.0000051 1 0 0 0.0000000 0.0000000 
10 0.0024027  0.0077 0.0000185 1 0 0 0.0000000 0.0000000 

10.5 0.0092447  0.0062 0.0000573 1 0 0 0.0000000 0.0000003 
11 0.0278347  0.0045 0.0001253 1 1 0 0.0000000 0.0000156 

11.5 0.0655906  0.0037 0.0002427 1 1 0 0.0000034 0.0003835 
12 0.1209776  0.0025 0.0003024 1 1 1 0.0002292 0.0046993 

12.5 0.1746663  0.0021 0.0003668 1 1 1 0.0059770 0.0303462 
13 0.1974127  0.0016 0.0003159 1 1 1 0.0605975 0.1084127 

13.5 0.1746663  0.001 0.0001747 1 1 1 0.2417303 0.2235748 
14 0.1209776  0.0009 0.0001089 1 1 1 0.3829249 0.2762957 

14.5 0.0655906  0.0008 0.0000525 1 1 0 0.2417303 0.2115208 
15 0.0278347  0.0011 0.0000306 1 1 0 0.0605975 0.1033464 

15.5 0.0092447  0.0012 0.0000111 1 0 0 0.0059770 0.0331060 
16 0.0024027  0.0015 0.0000036 1 0 0 0.0002292 0.0071263 

16.5 0.0004886  0.0021 0.0000010 1 0 0 0.0000034 0.0010543 
17 0.0000777  0.003 0.0000002 1 0 0 0.0000000 0.0001095 

 
We now use the table to calculate the probability of a defective Y for truncation based on three sets of 

tolerance limits on x1. We calculate P(D) when x1 is allowed to range from 9 to 17, from 11 to 15, and 
from 12 to 14 using the indicator functions given in Columns 5, 6, and 7 respectively. Multiplying Col-
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umns 2 (for the denominator) and 4 (for the numerator) with the appropriate indicator function, one can 
calculate P(D) for each set of tolerance limits. For example, we calculate the probability P(D) when x1 is 
allowed to range from 12 to 14 as follows:  

 

P(D) = 
0.12097760.1746663+0.1974127+0.1746663+0.1209776

0.0001089+0.0001747+0.0003159+0.0003668+0.0003024


= .00161. 

 
    Thus, 0.00161 is the estimate of the probability of a defective if only values of x1 in the range from 12 
to 14 are used. For comparison, similar values have been calculated for truncation to the tolerance limits 
of 11 to 15 and for the tolerance limits of 9 to 17 and are shown below: 

  
X1L X1U P(D) 
9 17 .00182 
11 15 .00176 
12 14 .00161 

 
Note that only one simulation is necessary to evaluate any number of tolerance limits for any Xi. Alt-
hough the calculations assume that the other input variables are not altered, one could perform additional 
simulations with updated tolerance limits to achieve a desired capability in iterative simulation steps.  
    We emphasize that, once the simulation has estimated P(D | Xi = xi) at the selected values for xi, (3) 
could be evaluated using any probability distribution for Xi.  Hence, without conducting any more simu-
lation replications, we can evaluate P(D) for any probability distribution of any Xi.  To be precise, we 
mean we can do this for any Xi as long as we don’t change the probability distributions for any other Xj, 
j≠i.  This is because P(D|Xi = xi) depends on the probability distributions for all other Xj, j≠i but is inde-
pendent of the probability distribution of Xi.  In terms of this example, the values for column 3 are inde-
pendent of the probability distribution for X1.  One can thus estimate P(D) for any distributional model 
/parameters / truncation simply by updating the column 2 values to reflect that distribution.  For example, 
in column 8 we show the discretized probabilities for the normal distribution with a mean of 14 and a 
standard deviation of .5.  If you replace column 2 with these values and compute P(D) with the distribu-
tion truncated from 13 to 15 (mean of 14 +/- 1), P(D)=.00096.  In this example, the effects of simultane-
ous shift (mean from 13 to 14), narrow (standard deviation decreased from 1 to .5), and chop  (truncation 
at mean +/- 1) actions are evaluated with no additional simulation replications required.  Column 9 shows 
the discretized probabilities for the gamma distribution with parameters chosen so that the mean is 14 and 
the standard deviation is .5.  Replacing column 2 with these values and truncating from 13 to 15, yields 
P(D)=.00101.  This example shows the ultimate flexibility of the approach; P(D) is evaluated for a com-
pletely different distributional form accompanied by shift, narrow, and chop actions with no additional 
simulations required. 

The third ability we mentioned is the ability to efficiently produce a graph of the probability that Y is 
defective as a function of any parameter of the probability distribution of Y.  This can be done by chang-
ing the parameter value in increments across a desired range, updating the discretized probabilities for Y 
to reflect each value, and using the approach just described to evaluate P(D) for each value of the parame-
ter in the range.  The function can then be plotted using the calculated values.  Although this requires the 
computations to be done as many times as there are parameter values in the range, it is important to note 
that no additional simulation runs need to be conducted. 

7 CONCLUSIONS AND RECOMMENDATIONS 

We have presented an approach that allows the effects of significant (rather than infinitesimal) changes to 
input variable distributions on the probability that output variables will be outside specification limits to 
be efficiently assessed.  Changes include shifting the mean, narrowing the distribution (lowering the 
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standard deviation), chopping or truncating the distribution, any combination of the three, and even com-
plete changes to the distributional form.  We have demonstrated the approach using simple numerical ex-
amples.  The ability to handle correlated input variables and/or simultaneous changes to multiple input 
variables would be useful extensions. 
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