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ABSTRACT 

We present an approach for the validation of complex simulation based on the structured elicitation of 
expert knowledge. Knowledge capture is based on the technique of Morphological Analysis, which is 
used to capture expert information on causal linkages and constraints in a systems and its simulation 
representation. This information is combined with Causal Inference Theory arguments to develop 
assertions about statistical dependency relations that should exist in both system and simulation. Causal 
Techniques for conducting these tests, which include the elicited constraint information are described. 
Overviews of Morphological Analysis, Causal Inference Theory and Statistical Testing Approaches are 
provided in the context of a Bayesian simulation of an example problem. 

1 INTRODUCTION: BREADTH-DEPTH SIMULATION VALIDATION 

The fundamental idea behind any validation approach is comparison. The scientific method is a 
comparison between ground truth (experiment) and a theoretical model (Popper 2001). In situations 
where ground truth is unavailable, comparisons can still be made – in social science parlance, this is 
triangulation (Brewer and Hunter 2006, Reynolds et al. 2010). 

For complex simulation, a general validation approach has been triangulation against expert 
knowledge, known as Face Validation (DoD 2006, Zacharias, MacMillan, and Van Hemel 2008, Brewer 
and Hunter 2006, Brade 2004, Sargent 1999). Although relying on expert knowledge remains problematic 
(Tetlock 2006), it remains a central part of any validation methodology. A more sophisticated version of 
triangulation against expert knowledge is model docking - the comparison of two detailed simulations 
(Zacharias, MacMillan, and Van Hemel 2008, Axtell et al. 1996).  

In Reynolds et al. (2010), one of the authors suggests an intermediate approach between face 
validation and model docking – breadth-depth validation. This approach argues that a central 
consideration in simulation is cost – in hours, data collection, experiment and operator and computer time. 
Simulation is cheaper than experiment and is consequently a desirable proxy. This too is a central 
consideration in validation – experimental validation can be very expensive and model docking requires 
huge effort. Face validation by subject matter experts is, relatively speaking, extremely inexpensive. 
Breadth-Depth is a framework that tries to elucidate these arguments by characterizing the cost of a given 
descriptive framework, from human expertise to high-resolution simulation. 

Reynolds (2010) describes a validation framework based on the structuring of expert knowledge 
using Morphological Analysis (MA). MA is a modeling framework meant to rapidly and cheaply capture 
expert knowledge and use it to infer allowed configurations of a complex system (Zwicky 1966, Ritchey 
2010). Comparing allowed configurations provides a generalized validation framework that is almost as 
flexible and inexpensive as expert-based validation. There is good evidence that structuring reasoning 
processes leads to improvements in cognitive processes (Gawande 2009). It is therefore expected that 
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structured validation approaches like MA will exhibit improved efficacy compared to unstructured face 
validation. 

In this paper, we provide a variation on breadth-level structuring of expert knowledge. The previous 
work has focused on using MA to solicit constraints from SMEs to validate complex simulation; 
however, expert knowledge is often too rich to capture with elementary constraints. The present approach 
tries to address this problem by enriching the vocabulary that experts have to specify the behavior of a 
system, while retaining the simplicity and expressive power of breadth approaches like MA. 

A powerful framework for expressing relationships in complex systems is the causal graph - a 
mapping which takes elements and causal relationships between those elements into a graph consisting of 
vertices and edges. In this formulation, vertices, or nodes, represent elements of a system and edges the 
causal dependencies between those elements (Pearl 2000, Jensen 2000). 

Over the last two decades, groups at Carnegie Mellon University (CMU) and University of California 
at Los Angeles (UCLA) have developed Causal Inference Theory (CIT) - a formal description of the 
statistics implied by the relationships represented by causal graphs. CIT enables statistical tests to be 
performed on observational data to determine causal relationships between variables in a system. The fact 
that CIT uses observational data is important – it means that many important causal facts can be 
determined without performing experiment on a system. For complex, real-world systems, experiment is 
often impractical or immoral (e.g., requiring subjects to smoke), so the ability to operate on observational 
data is crucial. From a validation standpoint, this reduces the complexity of the validation process – 
causal facts can be determined without complex interventions into a system or simulation. Naturally, 
more advanced applications of CIT can suggest experiments that can be conducted that reveal an optimal 
amount of causal information (Pearl 2000; Spirtes, Glymour, and Scheines 2000). 

In the present work, we develop a hybrid MA/CIT-based approach for simulation validation. The 
approach consists of eliciting, from experts, causal relationships and system constraints using MA. Given 
the elicited causal relationships, CIT provides statistical tests that can be performed on simulation data to 
confirm or falsify these relationships, which provides a quantitative triangulation of the expert’s 
knowledge against the simulation. MA-elicited constraints modify the standard CIT procedures in a way 
that we argue will improve the reliability of the tests. These improvements should be realized in testing of 
either simulation or real-world data. 

2 REVIEW OF CIT 

Causal inference theory seeks to identify causal relations among random variables via statistical tests on 
the observed joint distributions of those variables. Colloquially, if we have a large amount of 
observational data on the states of a system, CIT enables us to figure out some of the causes and effects in 
a system. 

As a simple example of a causal system and tests suggested by CIT consider the water level in a river. 
The river is fed by melting snow and by a smaller tributary upstream. Rafters travel the river when the 
water is high. We give a model of this system, along with potential interactions between the factors, in 
Figure 1.  

Figure 1: Snowpack-River-Tributary-Rafting (SRTF) model 

River (R) 

Snowpack (S) Tributary (T) 

Rafting (F) 
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The nodes in this graph represent our variables: River (R), Snowpack (S) and Tributary (T) and 
Rafting (F). The edges capture our notion that these variables could be “related.”  

Now, by observing the behavior of the snow-river-tributary-rafting (SRTF) system, we would like to 
test the causal assertions made in the observations above – how does observational data tell us that S 
affects R and not vice-versa? This is the question addressed by Causal Inference Theory (Spirtes, 
Glymour, and Scheines 2000; Pearl 2000). 

The fundamental idea of CIT is to identify statistical independence relations implied by a causal 
relationship between variables. It turns out that different causal relations between variables imply 
different conditional independence relations. By using standard statistical tests to check various 
combinations of relations (Sokal and Rohlf 1999), investigators may confirm or falsify hypothesized 
causal relations using observational data. The fundamental argument of this paper is that CIT can be a 
valuable validation technique for complex simulation: one can capture expert knowledge in the form of 
causal relations and test that knowledge against observed simulation data. 

Consider a fragment of the SRTF system, the relationship between Snowpack and River. The model is 
represented as S →R. This diagram implies that S causally affects values of R. Intuitively, variations in S 
should lead to variations in R. If an investigator had control over either of these variables, experiments 
could be conducted; however, in the absence of such control, observational data must be used. If only 
observational data is available, then we must test the statistical statement of our intuition that R is not 
independent of S.  

Formally, the independence of S and R is expressed using the symbol ╨: S ╨ R. In terms of the joint 
probability distribution, P(R,S), the relation S ╨ R is expressed: S ╨ R  →  P(R,S) = P(R)P(S). 

The causal relation S→R implies that S and R are not independent: ┐(S ╨ R). In terms of 
distributions: ┐(S ╨ R) →  P(R,S) != P(R)P(S). More than this cannot be inferred using only 
observational data – i.e., for two variables, independence captures the edge, but not the arrow.  

We now consider a more involved model fragment, a causal “chain,” S→ R → F. There are three 
causally related variables: S, R and F – R depends on S and F  depends on R. As before, this implies two 
simple dependence relations: ┐(S ╨ R)  →  P(R,S) != P(R)P(S) and ┐(R ╨ F)  →  P(R,F) != P(R)P(F). 
 However, there is more to this model - intuition tells us that as we vary S, this should affect the level 
of R which will in turn affect the value of F, therefore S and R are not independent. However, if we were 
to only consider fixed values of R, then the relationship between S and F should go away – in other words, 
S and F are independent given R. This is expressed as a conditional independence relation S ╨ F | R. In 

terms of the joint conditional probability distribution, P(S,F|R): S ╨ F | R →  P(S,F|R) = P(S|R)P(F|R). 

 We should note that conditional independence does not imply unconditional independence and vice-
versa. The above relation does not imply that S ╨ F → P(S,F) = P(S)P(F) (a relationship that is not 
actually true in this case). In fact, exploiting the non-equivalence of conditional vs. unconditional 
dependence lies at the heart of CIT. Consider an airplane with two control yokes. One pilot turns his yoke 
to the left, but he observes the direction of the plane does not change; he can than infer the state of the 
other control yoke – it is turned to the right.  Knowing the attitude of the plane (the collider node) couples 
the information about the state of the parent nodes (the control yokes). 
 We now consider a third model fragment, the common cause:  F←R →H, here we have two 
variables, F and H, (Trout Fishing, which we have added to the SRTF model for this illustration), that 
both depend on R, this is known as a common cause or a fork. Here, the causal edges imply ┐(R╨H) and 

┐(R╨F). Of course, F and H will be related, since they both depend on R; however, if we consider only 

fixed values of R, then the relationship between H  and F should disappear, thus for the shared cause, we 
have: F ╨ H | R  →  P(F,H|R) = P(F|R)P(H|R). 

 The final model fragment is a “causal collider,” S→ R ←T In this model, R is causally dependent on 
both S and T. As before, the causal edges imply that ┐(S╨R) and  ┐(T╨R). However, if we consider fixed 
values of R, then the state of T and S become related – if R = low and S = low, then we know that T != 
high. Thus, R and T are conditionally dependent given R: ┐(S ╨ T | R) →  P(S,T|R) != P(S|R)P(T|R). 
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 To review, we have the following mapping between graph structures and independence relations. 
Edge: A→ B : ┐(A╨B). The Chain: A→ B → C: ┐(A╨B), ┐(B╨C), A ╨ B | C.  The Shared Cause: 

A←B→C: ┐(A╨B), ┐(B╨C), A ╨ C | B. The Collider: A→B←C: ┐(A╨B), ┐(B╨C), A ╨ C, ┐(A ╨ 

C|B). 
 This provides a set of statistical “fingerprints” that can be used to check causal relations through 
statistical tests on observational data. There are few things to observe – one is that the “chain” and the 
“shared” cause have identical fingerprints – this is an instance of Observational Equivalence (also called 
Markov Equivalence) – two graphs that share the same skeleton (the structure left when arrows are 
removed from the graph) and the same collider sites cannot be distinguished through statistical 
observation alone (Pearl 2000, 19; Spirtes, Glymour, and Scheines 2000, 300). To discriminate between 
these cases, one must conduct experiments, or disambiguate them by identifying colliders elsewhere on 
the graph. Intuitively, if one can go from one structure to another by flipping arrows that do not destroy or 
create colliders, then the two structures are observational/Markov equivalent. For example, this implies 
that we can reverse the direction of a chain, and assuming there are not colliders created or destroyed, 
then the reversed system is observationally indistinguishable from the original. 
 For simple models, like the one in Figure 1, one can often “read off” the dependence relations from 
the graph. Formally, the process for “reading off” dependency relations is applying the Causal Markov 
Condition (CMC) (Spirtes, Glymour, and Scheines 2000, 29); this yields a set of dependency relations 
which are equivalent and can be reduced to the dependencies generated by d-separation (see below). The 
CMC simply says that conditioned on its parents, a node is independent of all other nodes that aren’t its 
parents or descendants. The CMC typically yields a complex and redundant set of independence relations 
– the d-separation procedure yields a minimal set of dependency relations. For complex models, the 
procedure is not so straightforward; for example, if A and B collide into state C, but they share a common 
cause, then we can no longer say that they are independent; they are independent given the common cause 
and are dependent given the common cause and C.  

The general procedure for identifying dependence relations from causal graphical models is known as 
d-separation (Pearl 2000; Spirtes, Glymour, and Scheines 2000). Two nodes that are graphically d-
separated are conditionally independent in the associated probability distribution. Nodes that are not d-
separated are said to be d-connected. The d-separation procedure is a systematization of the above 
informal arguments (Pearl 2000; Spirtes, Glymour, and Scheines 2000). Wimberly (2010) provides a java 
applet that identifies when two nodes on a graph are d-separated by a third set of nodes. 

Returning to the SRTF example, we see that there is only one observationally equivalent structure – 
inverting any arrow in the diagram would lead to the creation or destruction of a collider, thus tests we 
conduct on the observational data will confirm or falsify only this model.  

To see how these assumptions are used and to see how d-separation facts (graphical) are related to 
statistical facts consider the case of four variables X1, X2, X3 and X4 which are related by the following 
conditional independence facts: X1 ╨ X2,  X ╨X4 |X3 and X2 ╨ X4 | X3.  The task is to find a graph 
consistent with those statistical facts.  We illustrate the procedure in Figure 2. 

It is also necessary that data not be aggregated from numerous systems – for example, protein 
concentration data aggregated from large numbers of cellular systems leads to profound problems of 
computational complexity when trying to perform automated learning of gene regulatory networks 
(Wimberly et al. 2010).  

Since the graphical objects that represent causal networks are the graphs of Bayesian networks, it 
would appear that the methods apply only to systems that can be represented with Directed Acyclic 
Graphs.  However there are techniques that permit analysis of systems with feedback.  Richardson (1996) 
has developed the Cyclic Causal Discovery (CCD) Algorithm.  That and other Tetrad (Tetrad 2010) 
algorithms were tested on the problem of inferring genetic regulatory networks from microarray data 
(Wimberly et al. 2010); gene networks are highly non-linear and have feedback.             

 

3644



Reynolds and Wimberly 
 

 

 
Figure 2: Illustration of graphical model discovery from independence relations 

3 MA-BASED ELICITATION OF EXPERT KNOWLEDGE OF SYSTEM CAUSALITIES 
AND CONSTRAINTS 

We now describe how we can integrate elicitation of expert knowledge using MA with CIT-based 
validation. Pursuing the SRTF model, we could go directly to construction of a causal graph of these 
variables, however, we will illustrate how an MA approach can be used to support the generation of this 
graph. We first assign states to the variables in the SME’s model: S: {low, high}; T: {low, high}, R: {low, 
medium, high} and F :{no, yes}. We construct the following MA table: 

Table 1: Morphological Analysis of SRTF Problem 

Snowpack Tributary   River Level    
low high low high low medium High

Snowpack low 
  high 

Tributary low 
  high 

River Level low A B 
  medium 
  high 

Rafting  no 
  yes C D 

 
As in Reynolds (2010), we have indicated the expert-identified constraints with letters in the table. The 
expert’s reasoning is as follows: 

A) Snowpack = high implies that the river cannot be low, since runoff will cause water to rise. 
B) Tributary = high implies that the river cannot be low, since upstream water will cause the water 

to rise. 
C) River Level = low implies that Rafting Activity cannot be yes, since the rafting company will not 

conduct tours in low-water conditions. 
D) River Level = medium implies that Rafting Activity cannot be yes, as in constraint C. 
We can now use this information to initiate construction of a causal graph. Each constraint implies a 

causal linkage between the two variables involved – for example, constraint A implies that River Level is 
causally related to Snowpack. To see this quantitatively, we observe that constraint A implies that the 
joint probability, P(River Level = low, Snowpack = high) = 0. 
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If Snowpack and River Level were independent (which is to say, causally unrelated, see below), then 
P(River Level = x, Snowpack = y) = P(River Level = x)P(Snowpack = y) for all states x of River Level 
and all states y of Snowpack. This can only be true if either P(River Level = low) = 0 and/or P(Snowpack 
= high) = 0. In other words, neither of these events would ever be observed, which, in turn, leads to 
substantive questions about the modeling framework. Therefore, when the expert places a constraint in a 
morphological table, and he believes that the relevant states could occur under some circumstances, he is 
making a statement that the two variables in that block of the table are statistically dependent, and hence 
causally related. Based on the MA in Table 1, we are led to Figure 2. 

 

 

Figure 3: Relational and causal fragments implied by MA in Table 1 and expert knowledge  

Note that the MA does not tell us the causal direction of the interactions between the variables, nor 
does an absence of a linkage in the fragment derived from the MA imply that there is an absence of a 
causal relation – further SME analysis may indeed indicate additional causal relations not indicated by 
the MA. However, this graph does tell us some important things:  the absence of an edge between 
Snowpack and Tributary implies that the level of the snowpack is not “related” with level in the tributary 
(our experts tell us that it is spring-fed). 

Although one could dispense with the MA step, and use standard causal elicitation techniques to 
generate the graphical model based on SME knowledge, it turns out there are sound technical reasons for 
using the MA approach. CIT tends to be at its weakest when deterministic causal relations are present – as 
we will show below, traditional independence tests break down for highly-constrained system. These are 
precisely the sort of relations implied by the constraints in the MA. As we will see, the presence of these 
strong constraints will lead to substantive modifications of the statistical procedures we use to test data 
generated by simulation (and, for that matter, tests on data from observations of the real-world system, if 
it is available). 

A natural question at this point is what are all possible causal models that are implied by the MA-
based capture of the expert’s knowledge? This is a subtle question – for example, the link between 
Snowpack and River level could imply three things: Snowpack causes River, River causes Snowpack or a 
third factor could cause both Snowpack and River; or there is both a common third cause and Snowpack 
causes River or vice versa. The latent factor could be one included in the model, such as Tributary, or a 
factor not included in the model at all. This difficult question is an appropriate topic for further research; 
its answer undoubtedly is related to techniques developed for model discovery from data (Spirtes, 
Glymour, and Scheines 2000, chapter 5).  A related question is what statistical tests are implied by the 
partial “oracular” information being provided by the expert. Again, our approach will remain incomplete 
at this point – we will assume that we can construct causal models from expert knowledge that provide 
sufficient certainty that we can identify tests to perform by inspection (in detail, we test for colliders). 
Systematizing this is a topic for future research.  

Starting with the fragment in left of Figure 3, the expert can now refine the causal model, based on his 
understanding of the system. In our example, this result is given on the right in Figure 3. The expert has 
claimed that Snowpack causes River, as does Tributary. He has also asserted that Tributary’s state is 
independent of Snowpack, as is Rafting, which is itself independent of Snowpack. This model has no 

River (R) 

Snowpack (S) Tributary (T) 

Rafting (F) 

River (R) 

Snowpack (S) Tributary (T) 

Rafting (F) 
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additional causal relations; in fact, it has stronger statements in that it asserts there are no direct relations 
between Snowpack, Tributary and Rafting. The direct relations that do exist have had their directions 
specified. Qualitatively, this model predicts that manipulations of River Level will not affect the 
Snowpack or Tributary; whereas manipulations in the Tributary or Snowpack levels will affect River 
Level. 

4 CAUSAL INFERENCE THEORY FOR SIMULATION VALIDATION 

For models that have many observationally equivalent structures, the question becomes which 
dependency relations to test? Since the only relations that can be unambiguously tested are colliders, we 
focus on the collider tests in our diagram. Having identified these, the identified two variable associations 
will often resolve much of the causal information in the system. From the point of view of MA, the only 
place where colliders can occur is where different blocks have constraints in the same column or row (of 
course, these could also be forks or chains; nevertheless, the only way to connect three variables is by 
sharing constraints in co-row or co-column blocks). 

We now provide an explicit example of the mechanics of how to use observational data to check 
causal relations implied by a particular causal graph. The purpose of this is twofold – first, we 
demonstrate how causal constraints, such as those elicited from MA, can be incorporated into statistical 
tests, second, this section provides a brief, accessible overview to the use of statistical independence 
testing methodologies in CIT. 

We are using observational data to infer causalities in the system. This means we sample the states of 
the system over some period of time; we do not perform experiments or control for any of the variables in 
the system. Questions of how causal information and identified ambiguities and data collection 
constraints should guide experimental design are questions for future research.  

Using the CMU Tetrad causal inference tool (Tetrad 2010), we have constructed simulation of the 
Snowpack/River/Tributary/Rafting (SRTF) system. The model is a Bayesian statistical constrained to 
disallow states forbidden by the Morphological Analysis from Table 1. Implementing this model in 
Tetrad, we generated 10,000 observations of the system at regular time intervals. A contingency table of 
the data is presented in the left of Table 2. Each cell in the six constituent tables represents a state of the 
system – the numbers in the cells represent the number of times the system was observed to be in that 
state. The cells that are affected by the MA constraints from Table 1 are marked in yellow – note that the 
observed frequencies for these states are zero; thus the system passes the first MA-based validation of the 
model (Reynolds 2010). Marginal sums of the various rows, columns and tables are also given in Table 2. 
Some of these sums are entirely composed of constrained (yellow) cells, and are consequently constrained 
themselves. For example, the marginal sum over S in the {F = No, R = Low, T = Low} column is a sum 
of two observed frequencies – {F = No, R = Low, T = High, S = Low} and {F = No, R = Low, T = High, 
S= High}. Both of these terms are constrained to be zero, so the marginal sum is also constrained to be 
zero. This is an example of constraint propagation, an effect that will be instrumental when we compute 
the likelihood that these observations were generated by given causal models. 

4.1 Validating Simple Dependency Statements of the Causal Model: The χ
2
 and G Tests. 

There are a number of two-variable dependency facts implied by the model of Figure 3. For example, R 
should depend on S, T and F. Each of these dependencies should be tested in order to validate the model. 
There are also indirect dependencies implied – for example, although there is no causal link between 
them, Snowpack should depend on Rafting, due to the mediating influence of River.  

Testing these dependency facts is a standard exercise from statistics – numerous handbooks detail the 
procedures, our favorite is Sokal and Rohlf (1969). The general test procedure is to assume that the 
observed data were generated by an underlying statistical model. Expected values are generated from that 
model, whose parameters are calculated from the observed data. The observed values are then compared 
with the generated values. A mismatch function is calculated, and the likelihood of observing the 
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mismatch is estimated. If the likelihood of observing the mismatch is below a predetermined acceptance 
threshold, the model being tested is rejected; otherwise it is accepted. This will either confirm or falsify 
the underlying dependence relation that is being tested. The constraint information from the MA can be 
incorporated into this procedure. We will illustrate this procedure in the following examples. 

Table 2: Data, Predicted Frequencies, Probabilities and Contingency Tables for Tetrad-Based River 
Simulation 

Contingency Table of Values from Tetrad‐Based River Simulation 
   

F  No  Samples  7708           Observed Frequencies (R, F Marginalized Out) 

   T  
     

T  
 

      T          

S    Low  High 
 

S  Low  High     S  Low  High  N(S)  P(S)    

Low  849  0  849  Low  843  1258  2101  Low  2506  2471  4977  0.4977    

High  0  0  0  High  1268  1291  2559  High  2539  2484  5023  0.5023    

   849  0 
   

2111  2549     N(T)  5045  4955    
 

  

   R  Low 
   

R  Medium  P(T)  0.505  0.5  Total (N)  10000    

   Total  849 
   

Total  4660        Expected  Frequencies  N(S,D)  = 
P(S)P(T)N    T 

         
   Predicted Probabilities, P(S,D)=P(S)P(T) 

Snowpac
k 

Shut  Open 
       

  
 

   T 
 

T 

Low  393  585  978 
     

   S  Low  S  Low  High 

High  626  595  1221 
     

   Low  0.2510897  0.2466  Low  2510.9  2466.1 

   1019  1180 
       

   High  0.2534104  0.2489  High  2534.1  2488.9 

   R  High 
       

                       

   Total  2199 
       

   Contingency Tables of S,R and D. 

F   Yes  Samples  2292              R = Low  R = Medium    

   T  
     

T  
 

       T  T 
 

  

S    Low  High 
 

S  Low  High     S  Low  High  High  Open  N(S|R) 

Low  0  0  0  Low  0  0  0  Low  849  0  843  1258  2101 

High  0  0  0  High  0  0  0  High  0  0  1268  1291  2559 

   0  0 
   

0  0    
 

N(T|R
) 

849  0  2111  2549    
 

   R  Low 
   

R  Medium     Total  849  Total  4660    

   Total  0 
   

Total  0        R=High 
 

  

   T  
         

       T 
 

  

S  Low  High 
       

   S  Low  High 
 

  

Low  421  628  1049 
     

   Low  814  1213  Total Samples 

High  645  598  1243 
     

   High  1271  1193  10000    

   1066  1226 
       

  
 

N(T|R
) 

2085  2406 
   

  
 

   R  High 
       

      Total  4491          

   Total  2292                
   

Total Samples  10000 
         

 
We begin with a “vanilla” test that does not involve constraints. The causal model predicts that S and 

T should be statistically independent. We first generate the observed values of S and T by marginalizing 
out the other variables. This yields a marginal contingency table, given in Table 2. We test the hypothesis 
that S is independent of T - this implies the joint distribution can be factorized: P(S,T) = P(S)P(T). 

We compute the distributions P(S) and P(T) from the observational data - these are also given in 
Table 2: . We multiply these distributions to get the hypothetical joint distribution, and then multiply by 
the total number of samples (10,000) to get the predicted number of observations given the independence 
hypothesis, P(S,T) = P(S)P(T).  
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Table 2 gives the observed and expected frequency tables. Each of the four corresponding cells 
differs across the two tables. How likely is it to observe these differences in the cells? The traditional 
procedure is the Chi-square test. In this test, we construct a mismatch between the observed and expected 
value in each cell of the two tables by taking the difference between cells, squaring it and normalizing by 

the expected value. The most well-known mismatch is the Pearson’s chi-square test statistic or (χ
2
), 

formally: 

 


cells E

EO 2
2 )(       (1) 

where O is the observed value of a cell and E is the expected value of the cell.  
The idea underlying this mismatch function is that if we assume each observed/expected cell 

difference is a normally distributed random variable, then each term in (1) is the square of a standard 
(zero mean, unit variance) normal variable. The sum of squares of N independent, standard normal 
random variables, Xi, is distributed according to the Chi-Square Distribution with N degrees of freedom, 
χ2

N. The test statistic (1) is assumed to be distributed according to χ
2

N, Σi
NXi

2 ~ χ
2

N    (Sokal and Rohlf 

1969).  By comparing the mismatch function (X) with the distribution, χ
2

N, we can estimate the likelihood 
of observing the mismatch.  

Another widely used mismatch function is G, given by: 

)ln(
cells E

O
OG       (2) 

G is employed identically to χ2, with which it often agrees to several decimal places. G is currently 
preferred by practitioners, especially in cases where there are cells in the observed table where the 
mismatch is greater than the expected value |O-E| > E (Sokal and Rohlf 1969).  

Naively, for S and T, we would expect there to be four degrees of freedom, since there are four cells 
in the mismatch table. However, this is not correct, since we are assuming that the observed values are 
drawn from the statistical process P(S)P(T). Thus, we are not asking how likely it is to obtain the 
observed table from a space of all possible 2x2 contingency tables, but rather from the space of 2x2 
contingency tables having  10,000 samples and relative proportions given by P(S) and P(T). The four cells 
in the observed table cannot be varied independently. For example, if we were to observe an additional 10 
states in the {S = low, T = High} cell, we would have to reduce the sum of the other three cells by 10 to 
maintain a total number of 10,000, and further adjust the values in these cells such that the proportions 
P(S) and P(D) were maintained. The number of degrees of freedom of the contingency table is given by 
the total number of cells minus the number of constraints associated with maintaining the total number of 
samples and the probabilities. For S and T, there are 2 constraints from the probabilities (ΣP(S) = 1, ΣP(T) 
= 1) and 1 constraint from the number of samples (N=10,000). Thus, there is 4 – 1 – 1 - 1 = 1 degree of 
freedom. Effectively, the quantity X (or G) calculated for S and T represents the square of a single 
standard normal variable. We know the mean of a standard normal variable is 0 and its variance is 1 – so, 
intuitively, the square of a single variable bounded by one standard deviation should be in the “ballpark” 
of (0)2 = 0 to (1)2=1. Using Table 2, we compute χ2 = 0.03837 (G is identical to 5 decimal places). 
Comparing this to the χ2 distribution yields an 84% chance that we would observe this value for a sample 
generated by the distribution P(S)P(T). From this we conclude that it is likely that S and T were generated 
by the process P(S)P(T) and consequently they are independent,  which is consistent with the causal 
model.  

Do we need to test independence in a table with an MA constraint? We have argued that a constraint 
implies association. A natural test is to examine whether constrained cells are observed in the data – if 
they are, there is a clear mismatch between the MA representation and the simulation (Reynolds 2010). Is 
this test sufficient? For some types of variables it will not - Bishop, Fienberg, and Holland (1973) provide 
the example of two variables – the scores of winners, SW, and losers, SL, in an ensemble of sporting 
events. An MA of SL and SW would imply constraints wherever SL > SW ; however, this does not imply that 
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SL ╨ SW in any scientifically interesting sense – we are interested in whether SL and SW are associated only 

in the non-zero cells of the contingency table. Such tests are termed by Bishop, Fienberg, and Holland 
(1973) as tests of quasi-independence. The researcher conducting the validation must determine whether 
MA-elicited constraints do imply causal relations or not. For our STRF model, the constraints are not 
artifacts of the way we have defined the variables. The fact that S = high disallows R = low implies a 
relation between the variables. Thus, the MA tests of the data are sufficient to indicate association 
between the variables (in this case S-R, T-R, R-F). 

4.2 Validating Dependency Statements of the Causal Model: Colliders 

So far we have described standard statistical correlation tests as a means for validating simulations 
based on expert knowledge – such approaches have been discussed in the validation literature (Brade 
2003, Sargent 1999, DoD 2006). We would like to extend this dependency to analysis to test causal 
assertions from expert knowledge. As discussed in Section 2, causal facts follow from collider structures 
in the expert-derived graph – once we have established the validity of colliders, then other causal relations 
may be determined beyond the simple dependence relations.  

In our example SRTF model, there is one collider structure: S→R←T. The independence relations 
implied by this structure are: S╨T, ~(S╨R), ~(T╨R) and ~(S╨T|R). We have confirmed the two-variable 

dependence relations in the previous section, we now test the relation ~(S╨T|R), which will necessitate 

considering the MA constraints. We begin by marginalizing out the F variable, given in Table 2. 
 

P(S,T,R) = P(S|R)P(T|R)P(R)     (3) 
 
As before, we calculate the parameters of the test distribution from the observed data – see Table 2. 

Examining this calculation, we see that there is another way for MA constraints to propagate across 
contingency tables. In the conditional probability tables, the cells P(S = High| R = Low ) and P(T = High 
| R = Low) are both constrained to 0, since all terms in the sums for N(S = High| R = Low ) and N(T = 
High | R = Low) were constrained to be zero. In these sum calculations, all terms in the sum need to be 
zero for the constraint to be preserved across marginalization. However, the consequence of constraints 
that survive marginalization is quite pronounced in the joint tables. Since the joint tables are calculated by 
taking products of the conditional distributions, the zero constraints tend to propagate, since only a single 
zero operand is needed to render an entire product zero. In the example, the two constraints from the 
conditional probability distributions lead to three constraints in the joint distribution. In testing causal 
colliders, which involves joint distributions, constraints are more prevalent and will have an increased 
impact on the tests (although, since the number of variables increase, so to do the degrees of freedom – it 
is an open question whether the tendency for constraints to increase is mitigated by the increase in 
degrees of freedom). Note that the argument made in section 3 that constraints imply lack of 
independence in the full distributions does not apply to joint distributions, which may be completely zero 
for a given state of the conditioning variable – see the contingency tables for {F = Yes} in Table 2. 

Having computed a contingency table of expected frequencies, we are now in position to compute the 

G or χ
2
 mismatches from the expected and the observed frequencies. However, to compute the likelihood 

of observing these mismatches, we must also determine the degrees of freedom for the tables. There are 
12 cells in the three tables, the constraints are: 

 1 constraint for the total number of samples (10,000). 
 3 constraints for the requirement that each column of the conditional distribution P(S|R) must 

sum to 1. 
 3 constraints for the requirement that each column of the conditional distribution P(T|R) must 

sum to 1. 
 1 constraint for the constraint that the distribution P(R) must sum to 1 
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 3 constraints from the MA. 
This leads to 12 – (1 + 3 + 3 + 1 + 3) = 1 degree of freedom. Computing G from the observed 

frequencies in Table 2 and the expected frequencies in Table 3 gives a value G = 100.05, (χ2 = 99.74) – 
this is a 10-standard deviation draw for a single random variable, which is to say vanishingly unlikely.  
This confirms that S, R and T form a causal collider. 

Table 3: Computation of Expected Frequencies for Collider: N(S,T,R) 

Observed Frequencies    
  

Observed Probabilities 
  

   River (R)  River (R)    

   Low  Med  High  Low  Med  High 

N(R) 
849  4660  4491 

P(R) 
0.0849  0.466  0.4491 

Observed Conditional Frequencies  N(S|R)  Conditional  Probabilities 
P(S|R)    

   River  River    

Snowpack    Low  Med  High  Snowpack    Low  Med  High 

Low  849  2101  2027  Low  1  0.4509  0.4513 

High  0  2559  2464  High  0  0.5491  0.5487 

   849  4660  4491  1  1  1 

      Total  10000             

Observed Conditional Frequencies  N(D|R)   Conditional  Probabilities  P(D|R)    

   River  River    

Tributary   Low  Med  High  Tributary   Low  Med  High 

low  849  2111  2085  low  1  0.4530  0.4643 

high  0  2549  2406  high  0  0.5470  0.5357 

Predicted Conditional Probabilities  P(S,D|R) = P(S|R)P(D|R)          

   River = Low  River = Med  River = High 
   Tributary (T)  Tributary (T)  Tributary (T) 

Snow  Low  High  Snow  Low  High  Snow  Low  High 

Low  1  0  Low  0.2042  0.2466  Low  0.2095  0.2418 

High  0  0  High  0.2488  0.3004  High  0.2547  0.2939 

Predicted Total Probabilities  P(S,R,D) = P(S|R)P(D|R)P(D)          

   River = Low  River = Med  River = High 
   Tributary (T)  Tributary (T)  Tributary (T) 

Snow  Low  High  Snow  Low  High  Snow  Low  High 

Low  0.085  0  Low  0.0952  0.1149  Low  0.0941  0.1086 

High  0  0  High  0.1159  0.1400  High  0.1144  0.1320 

Predicted Frequencies  N(S,R,D) = P(S|R)P(D|R)P(D)N          

   River = Low  River = Med  River = High 
   Tributary (T)  Tributary (T)  Tributary (T) 

Snow  Low  High  Snow  Low  High  Snow  Low  High 

Low  849  0  Low  951.8  1149.2  Low  941.1  1085.9 

High  0  0  High  1159.2  1399.8  High  1143.9  1320.1 

 
When calculating G, we have to contend with some divergences in the summands Oln(O/E) – for 

some cells, both O and E are zero. Since frequencies cannot be negative, we take limits from above, 
yielding zero. Similar limiting procedures prevent divergences in calculating χ2. Divergences in test 
statistics will occur in over-constrained systems, where probability densities go to 1. If a system is so 
constrained that it becomes deterministic, then statistical tests lose their meaning, and checks to make 
sure the constraints are not violated, as in (Reynolds 2010) are likely sufficient for validation. 

A further point regarding constraints is that real data can have measurement error – for example, data 
on the river level may have been incorrectly assigned to bin {Low} rather than bin {Medium}. This can 
lead to non-zero frequencies in the constrained cells – the values in these cells could be small enough that 
an investigator does not perceive a constraint violation, and is willing to conduct a causal dependency 
analysis. For this case, how should the values in these cells be handled? One cannot simply set the 
expected value of these cells to zero, since that will cause the mismatch functions to diverge. 
Investigating this question in detail is a task for future work. At this point, the most reasonable procedure 
seems to be to proceed with the mismatch calculation retaining the observed low-frequency cells, which 
will lead to a small expected frequency and a well-defined mismatch term. As before, calculate the 
mismatch and reduce the degrees of freedom by the number of constraints. 
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5 CONCLUSIONS AND FUTURE WORK 

We have presented a novel approach for simulation validation. Based on explicit and systematic 
elicitation of expert knowledge using structured Morphological Analysis, we use Causal Inference Theory 
to identify non-obvious statistical dependency relations that must exist in simulation (or real-world) data, 
to be consistent with experts’ mental models. This provides a quantitative methodology for validation/ 
triangulation of expert knowledge with simulation. We have demonstrated the approach on a small model 
– an open question is the utility of this approach for very large models requiring very large elicitations of 
expert knowledge and consequent simulation tests. 

There are a number of methodological questions left unanswered by this preliminary work. In 
particular, we have not explored the implications of validating expert knowledge that is incomplete or 
uncertain. Similar shortcomings exist for validating systems that violate some of the assumptions of 
Causal Inference Theory – although it seems reasonable that our approach will work on acyclic fragments 
of a system that is not generally acyclic, it remains to examine the limitations of such an approach. 

Another unaddressed area is using expert elicited information to inform experimental interventions 
that should be conducted on simulations (or real-world) systems that provide the largest amount of 
validating information per test. There is a large amount of work that has been done on interventions in the 
literature (Pearl 2000; Spirtes, Glymour, and Scheines 2000) and we anticipate this will be a fruitful area 
for further study.   
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