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ABSTRACT

We use stochastic kriging to build predictors with bounded relative error over the design space. We propose
design strategies that guide sequential algorithms with and without adaptation to the data to make allocation
and stopping decisions such that a prespecified relative precision is realized with some confidence. We
also present an empirical evaluation of the proposed design strategies.

1 INTRODUCTION

Because of their ability to capture any level of complexity, computer simulation models are often used
to represent complex systems to obtain accurate estimates of performance measures. Advancements in
computing technologies and emergence of better design and analysis methodologies has helped spread
simulation’s use as a decision support tool. Despite recent advancements, however, achieving accurate
estimates through simulation can still be very costly in terms of time and effort. If simulation-based
estimates of performance for multiple system scenarios are needed rapidly, then there may not be adequate
time for a thorough analysis of all scenarios. Our approach is to map a performance measure of interest as
a function of decision variables using the information gained by simulation runs made at carefully chosen
scenarios.

More specifically, we use the stochastic kriging method proposed by Ankenman et al. (2010) to produce
a complete performance response surface (predictor) and propose experiment design strategies to make
computational budget allocation and stopping decisions. Our goal is to create a predictor with bounded
maximum relative error over the entire design space. This objective is relevant when reducing the magnitude
of the prediction error relative to the performance measure is more critical than the absolute error of the
estimate, as is often the case when output performance has a wide range as a function of controllable
parameters. For instance, a manufacturer may be able to run a factory rather lightly loaded, or at near
capacity, depending on current sales. Product cycle times as a function of load might differ by an order
of magnitude or more over this range, making relative error control more meaningful than absolute error.

The theory of stochastic kriging advanced in Ankenman et al. (2010) is an extension of kriging. Kriging
is an interpolation-based metamodeling technique widely used with deterministic computer experiments to
mimic the true response surface when little or no prior knowledge exists about the form of the response
surface. Unlike regression models, kriging makes weak assumptions about the true surface and creates
flexible prediction surfaces using the spatial structure among design points. In deterministic computer
experiments, the true response at a design point is known with certainty and the response at other points
in the design space is predicted by the kriging metamodel. In stochastic computer simulations, however,
the true response at a design point is uncertain due to the sampling variability and therefore kriging is
not directly applicable. Stochastic kriging distinguishes two types of uncertainty about the performance
response surface: sampling error, which occurs because the stochastic simulation output is not the same as
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the true performance, and metamodel error, which arises when the response at untried settings is estimated.
The stochastic kriging method provides accurate metamodels and allows the assessment of uncertainty
about them. In addition, experiment designs used with stochastic kriging are capable of controlling both
model and sampling uncertainty. This makes it possible to “run until you are done,” i.e., increase simulation
effort until the metamodel reaches a desired level of precision.

The remainder of the paper is organized as follows: Section 2 outlines the mathematical framework
of stochastic kriging and introduces the notation used in this paper. Section 3 describes our proposed
experiment design strategies, such as stopping and design criteria, and two sequential algorithms. In
Section 4, we set up experiments to illustrate the ability of the proposed methods to predict the test surfaces
with prespecified relative error, while Section 5 reports the outcome of these experiments. We conclude in
Section 6.

2 BACKGROUND

In this section we outline the formulation of the stochastic kriging method proposed by Ankenman et al.
(2010), which sets the foundation for this paper, and much of the notation used in this paper is borrowed
from their mathematical framework.

Suppose Y(x) is the unknown response at a design point x = (x1,x2, . . . ,xd) in the d-dimensional
experiment design space of interest, X . Further suppose that an experiment design that consists of design
points xi, i = 1,2, . . . ,k, and a stochastic simulation model is used to predict the response at any x0 ∈X .
The simulation output from the jth replication of the simulation model at design point x can be represented
as

Y j(x) = Y(x)+ ε j(x), (1)

where ε j(x) is a random variable with zero mean representing the sampling error inherent in stochastic
simulation output. Although it is independent and identically distributed across replications at a design
point x, the variance of ε j(x) over the design space is not necessarily constant.

In stochastic kriging (SK), the response Y(x) at x is represented as

Y(x) = f (x)>β +M(x), (2)

where f (x) is a vector of known functions of x, β is a vector of unknown parameters of compatible
dimension, and M is a realization of a mean–zero random field with covariance ΣM(x1,x2) between M(x1)
and M(x2). Here we assume M is a stationary Gaussian random field, a typical assumption when kriging is
used in the design and analysis of (deterministic) computer experiments, and ΣM(x1,x2) = τ2RM(x1−x2;θ),
where τ2 represents the process variance, θ is a vector of unknown parameters, and RM(x1−x2;θ) is the
correlation between M(x1) and M(x2). The trend term, f (x)>β , provides a global model much like in
regression and we reduce it in this paper to the constant β0, as is often done in practice.

Combining (1) and (2) yields the SK representation of the simulation output Y j(x):

Y j(x) = β0 +M(x)+ ε j(x).

Define Σε to be the k×k covariance matrix with (h, i) element given by Cov[ε̄(xh), ε̄(xi)], where ε̄(x)
is the mean of the sampling error over all replications at a design point x and define ΣM as the k× k
covariance matrix with (h, i) element given by τ2RM(xh− xi;θ). Also let ΣM(x0, ·) be the k× 1 vector
of covariances between M(x0) and M(xi) for i = 1,2, . . . ,k. Then, the MSE-optimal SK predictor of the
response Y(x0) at any x0 ∈X can be written as

Ŷ(x0) = β0 +ΣM(x0, ·)> [ΣM+Σε ]
−1 (Ȳ −β01k

)
, (3)

where Ȳ is the k×1 vector of sample mean responses at x and 1k is the k×1 vector of ones. Equation
(3) assumes known β0, ΣM, and Σε . In a real application, they need to be estimated. Let the maximum
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likelihood estimators of (β0,τ
2,θ ) be (β̂0, τ̂

2, θ̂ ), conditional on

Σ̂ε = Diag
{
V̂(x1)/n1, V̂(x2)/n2, . . . , V̂(xk)/nk

}
, (4)

where V̂(xi) = ∑
ni
j=1(Y j(xi)− Ȳ (xi))

2/(ni−1) is an estimator of the variance of ε(xi) and ni is the number
of simulation replications at the design point xi. Then, the SK predictor is

Ŷ(x0) = β̂0 + τ̂
2RM(x0, ·; θ̂)>

[
τ̂

2RM(θ̂)+ Σ̂ε

]−1(
Ȳ − β̂01k

)
.

An MSE estimator is also derived in Ankenman et al. (2010) as

M̂SE(x0) = τ̂
2− τ̂

4RM(x0, ·; θ̂)>
[
τ̂

2RM(θ̂)+ Σ̂ε

]−1
RM(x0, ·; θ̂)

+ δ
>

δ

(
1>k
[
τ̂

2RM(θ̂)+ Σ̂ε

]−1
1k

)−1

, (5)

where δ = 1−1>k [τ̂
2RM(θ̂)+ Σ̂ε ]

−1RM(x0, ·; θ̂) τ̂2.
When a candidate design point x0 ∈X that has not yet been simulated is considered for entry to the

experiment design, an estimate of V̂(x0) is needed to calculate Σ̂ε using (4). To obtain this estimate, we
assume the true variance V(x)≡ Var[ε(x)] is also represented by a spatial correlation model. Since V(xi)

is not observable, even at the design points, we let V̂(xi) stand in for it, and we fit a standard kriging model
as if V̂ had no noise. Ankenman et al. (2010) show that the consequences of estimating V in this way are
slight as long as the ni are not too small.

3 DESIGN STRATEGIES AND ALGORITHMS

The primary focus of this section is to produce stochastic kriging predictors with bounded relative error over
the entire experimental region. In this study, only sequential methods are considered because single-stage
methods fix computational effort a priori and do not allow for adjusting the simulation effort to ensure that
a desired precision level is achieved. Sacks et al. (1989) classify sequential methods into two categories
based on whether or not the design adapts to additional knowledge about the response surface. Sequential
adaptive methods are intended to allocate more computational resources to areas of the experimental region
with high variability or intricate features. In contrast, a sequential method without adaptation uses static
allocation at every stage regardless of what is known. Section 3.1 gives examples for both types of sequential
methods that are designed to produce predictors with bounded relative error.

The relative error of the SK predictor at a given x0 ∈X can be written as∣∣∣Ŷ(x0)−Y(x0)
∣∣∣

|Y(x0)|
. (6)

Let γ be the prespecified precision level; then our objective is to achieve predictors that satisfy

max
x0∈X

∣∣∣Ŷ(x0)−Y(x0)
∣∣∣

|Y(x0)|
≤ γ, (7)

conditional on a given response surface Y.
However, since Y is unknown, relative error given by (6) can not be calculated. Recognizing this, Law

(2007) describes a method to statistically bound relative error at a single design point. In Section 3.2, we
build on this method to suggest a stopping criterion, which is based on the mean squared error (MSE)
estimator of SK prediction given in Equation (5), to bound the relative error with some confidence over
the entire design space. Finally, in Section 3.3 we formulate an optimization problem for allocation of
computational resources at each stage of a sequential adaptive method.
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3.1 Two Algorithms

In this section, we outline two algorithms, a sequential adaptive method and a sequential method without
adaptation, each with two phases. The initial phase consists of a fixed design (xi,ni), i = 1,2, . . . ,k,
simulation of it, and a resulting SK predictor. If the initial SK fit produces a satisfactory predictor then there
is no need for the sequential phase. The sequential phase allocates an incremental computational budget of
Nt on iteration t, then runs simulations and updates the predictor. Allocation of the computational budget is
restricted to candidate design points consisting of two sets of space-filling points, S1 and S2. In this study,
both S1 and S2 are Latin hypercube designs (LHD) with good space-filling properties (e.g., maximin
LHD). Space-filling designs are desirable to enable exploration and discovery of surprising behavior when
the form of the response surface is unknown. In addition, constraining candidate design points to S1∪S2
avoids clustering often seen in sequential methods. Particulars of the algorithms are given next.

Sequential adaptive method
1 Allocate n0 replications to each point in the initial design S1.
2 Make initial simulation runs and fit SK to produce the initial fit Ŷ0. If the stopping criterion is

satisfied, accept the current fit and terminate the algorithm. Otherwise, set t = 1 and proceed to the
next step.

3 Allocate Nt additional observations to one of the candidate design points in S1∪S2, based on the
design criterion advanced in Section 3.2.

4 Make additional simulation runs and fit SK to produce Ŷt . If the predictor satisfies the stopping
criterion, then accept it and terminate the algorithm. Otherwise, increment t and go to Step 3.

Sequential method without adaptation
1 Allocate n′0 replications to each point in S1∪S2.
2 Make initial simulation runs and fit stochastic kriging to produce the initial fit Ŷ0. If the stopping

criterion is satisfied, accept the current fit and terminate the algorithm. Otherwise, set t = 1 and
proceed to the next step.

3 Allocate n′t additional replications to each point in S1∪S2.
4 Make additional simulation runs and fit SK to produce Ŷt . If the predictor satisfies the stopping

criterion, then accept it and terminate the algorithm. Otherwise, increment t and go to Step 3.

3.2 Stopping Criterion

We define a measure based on the MSE estimator of the metamodel called maximum relative root mean
squared error, which at the end of iteration t is given by

max
x0∈X

√
M̂SEt(x0)

|Ŷt(x0)|
.

Using a fine grid of points P ∈X this can be approximated as

MrRMSEt = max
x0∈P

√
M̂SEt(x0)

|Ŷt(x0)|
. (8)

Based on (8) stop when
zα/2 MrRMSEt ≤ γ

′, (9)

where γ ′ is a function of γ such that a prespecified relative precision is realized pointwise with some
confidence.
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Following Law (2007), we write

1−α ≈ Pr
(
|Ŷt(x0)−Y(x0)| ≤ zα/2

√
M̂SEt(x0)

)
,

where zα/2

√
M̂SEt(x0) is the half-width of an approximate (1−α)100% percent (0 < α < 1/2) confidence

interval for Y(x0) on iteration t and zα/2 is the standard normal quantile corresponding to the probability
of 1−α/2. Thus,

1−α ≈ Pr
(
|Ŷt(x0)−Y(x0)| / |Ŷt(x0)| ≤ zα/2

√
M̂SEt(x0) / |Ŷt(x0)|

)
≤ Pr

(
|Ŷt(x0)−Y(x0)| ≤ zα/2 MrRMSEt |Ŷt(x0)|

)
[from (8)]

≤ Pr
(
|Ŷt(x0)−Y(x0)| ≤ γ

′ |Ŷt(x0)|
)

[from (9)]

= Pr
(
|Ŷt(x0)−Y(x0)| ≤ γ

′ |Ŷt(x0)−Y(x0)+Y(x0)|
)

[add, subtract Y(x0)]

≤ Pr
(
|Ŷt(x0)−Y(x0)| ≤ γ

′ (|Ŷt(x0)−Y(x0)|+ |Y(x0)|)
)

[triangle inequality]

= Pr
(
|Ŷt(x0)−Y(x0)| / |Y(x0)| ≤ γ

′ / (1− γ
′)
)
.

Thus, for (7) to hold for x0 ∈P , we set γ = γ ′/(1− γ ′) implying γ ′ = γ/(1+ γ) and the stopping criterion
in (9) can be restated as

zα/2 MrRMSEt ≤
γ

1+ γ
. (10)

3.3 Design Criterion

MrRMSE is used to determine when to stop the sequential methods. In particular, iterations continue until
MrRMSE is low enough to satisfy the stopping criterion given by (10). Thus, it is natural to focus on reducing
MrRMSE while making allocation decisions at every stage of the sequential adaptive method (sequential
methods without adaptation use static allocation rather than allocation based on a design criterion).

A simple design strategy targeted to reducing MrRMSE is to allocate Nt+1, the incremental budget on
iteration t +1, to the candidate design point that had the highest relative RMSE in the last iteration; i.e.,
to choose

argmax
xi∈S1∪S2

√
M̂SEt(xi)

|Ŷt(xi)|
.

Notice that the candidate point with the highest relative RMSE may not be the point with the maximum
actual relative error. Also note that, even choosing the point with the maximum relative error would not
necessarily lead to the greatest reduction on the left-hand side of (7), the real objective. The following
design strategy picks the point that, we believe, will reduce MrRMSE the most.

Suppose that there are K candidate points in S1∪S2 and let nt = (n1t ,n2t , . . . ,nKt) be a vector of the
number of replications allocated to these points up to iteration t. The design problem on iteration t +1 is
to choose the candidate point that is expected to improve MrRMSE the most when the incremental budget
Nt+1 is allocated to it. We consider (but do not yet simulate) allocating the budget to each candidate point
separately and calculate

max
x0∈P

√
M̃SEt(x0;nt+1)

|Ŷt(x0)|
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where Ŷt(x0) is the predictor from iteration t and M̃SEt(x0;nt+1) is the prediction of what M̂SEt(x0) would
be on iteration t +1 at a given allocation nt+1. Notice that even though no simulations are run yet at the
allocation step of iteration t +1; M̃SEt(x0;nt+1) can be calculated by updating RM(x0, ·; θ̂), RM(θ̂) and Σ̂ε

in (5) with nt+1.
Then, the design problem on iteration t +1 can be formulated as a mathematical program:

minimize
nt+1

max
x0∈P

√
M̃SEt(x0;nt+1)

|Ŷt(x0)|
(11)

subject to ni,t+1 ≤ nit +Nt+1 Ii,t+1 (i = 1,2, . . . ,K)
K

∑
i=1

Ii,t+1 = 1

Ii,t+1 ∈ {0,1} (i = 1,2, . . . ,K).

The denominator of the objective function is independent of the decision variables nt+1, because we used
the predictor from step t of the surface.

An alternative approach would be to use Ỹt(x0;nt+1), the prediction of what the surface would be on
iteration t +1 at a given allocation nt+1, in the denominator of (11). If no additional points enter the design
on iteration t +1, this prediction can be written as follows:

Ỹt(x0;nt+1) = β0 +ΣM(x0, ·)> [ΣM+Σε(nt+1)]
−1 (Ȳ −β01k

)
. (12)

Notice that only Σε(nt+1) changes with different allocations of the incremental budget. That is, our prediction
of the surface is revised simply by reweighting the current responses, Ȳ , with no new information. Similarly,
if an additional point is going to enter the design, the prediction at that point will also get some weight in
forming the prediction Ỹt(x0;nt+1), even though it is not based on any new information. This allows for the
possibility of achieving the goal in (11) by reweighting the data so as to inflate Ỹt(x0;nt+1) and (apparently)
reduce relative error. This is clearly a fictitious improvement. The following numerical example illustrates
for one particular case that this is indeed likely to occur.

Suppose there are two design points x1 and x2 at the two extremes of an interval, [0,1]. Further suppose
that there is constant variance V(x) = 0.25 over the interval, the process variance τ2 is 1, there exists
Gaussian correlation r(h) = exp(−h2) between points that are a distance of h apart, and prior to iteration
t +1, both points have had 10 replications with sample mean responses of Ȳ (x1) = 5 and Ȳ (x2) = 1. On
iteration t +1, we consider 3 allocation possibilities: nt+1 = (30,10), nt+1 = (10,30) or nt+1 = (20,20),
i.e, allocating Nt+1 = 20 only to x1, only to x2, or splitting it equally between the two. Figure 1 shows
predictions Ỹt(x0;nt+1) for these 3 alternatives and illustrates that allocating a higher percentage of the
replication budget to x1 elevates Ỹt(x0;nt+1).

4 EXPERIMENT DESIGN FOR EVALUATION

In this section, we illustrate our design strategy by producing SK predictors for one and two–dimensional
surfaces using the algorithms outlined in Section 3.

4.1 One-dimensional Surfaces

We defined four one-dimensional surfaces, Y(x), in the interval X = [1,2] for experimentation: (1) a
monotone increasing function, (2) a concave parabola, (3) a convex parabola and (4) a function with both
a local maximum and a local minimum (See Figure 2). An experiment also requires specification of the
variance over the design space. For each surface, we define variance surfacesV(x) that are (directly/inversely)
proportional to Y(x) as well as constant variance V over the interval.
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Figure 2: Four one-dimensional surfaces.
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The design points are selected from candidate sets S1 = {1, 1.25, 1.5, 1.75, 2} and
S2 = {1.125, 1.375, 1.625, 1.875}. Note that a LHD in one dimension is a set of evenly distributed
points. In the initial phase of the sequential adaptive method, each point in S1 receives 6 replications and
on each iteration of the sequential phase, a budget of Nt = 6 replications is allocated to one of the points
in S1∪S2. On the other hand, each point in S1∪S2 receives 6 replications in the initial phase of the
sequential method without adaptation, and 1 more replication on each iteration of the sequential phase.

In this illustration, the output of a replication at a design point xi is a value drawn from a normal
distribution with mean Y(xi) and variance V(xi). Depending on the form of the variance, the standard
deviation at a design point xi is one of the following:

σ(xi) = c1, if variance is constant,
σ(xi) = c2 ·Y(xi), if V(xi) is directly proportional to Y(xi),
σ(xi) = c3 /Y(xi), if V(xi) is inversely proportional to Y(xi),

(13)

where c1,c2 and c3 are constants. To keep the magnitude of the variance surface relatively stable while
changing the form of the variance, we fix c2 and choose c1 and c3 such that the integral of the coefficient
of variation over the design space is equal to c2, i.e.,∫ 2

1

σ(x0)

|Y(x0)|
dx0 = c2.

For each surface in Figure 2, two sets of constants corresponding to c2 = 0.10 and c2 = 0.25, respectively,
are used to generate a total of 6 variance surfaces. These constants are reported in Table 1. Experiments
are made for each response surface–variance surface combination, totaling 24 experiments, and results are
presented in Section 5.

Table 1: Constants that specify the variance surface.

Low Variance High Variance

Y(x) c1 c2 c3 c1 c2 c3

x2 0.20 0.10 0.34 0.50 0.25 0.86
4−12(x−1.5)2 0.26 0.10 0.58 0.66 0.25 1.45
1+12(x−1.5)2 0.17 0.10 0.23 0.41 0.25 0.59

122+35(x−2)3 +54(x−1)2−86x 0.20 0.10 0.35 0.50 0.25 0.88

4.2 Two-dimensional Surface

A second set of experiments involve a six-hump camel-back surface Branin (1972), i.e.,

Y(x) = Y(x1,x2) =

(
4−2.1x2

1 +
x4

1
3

)
x2

1 + x1x2 +
(
−4+4x2

2
)

x2
2,

where X = [−1,1]× [−1,1]. The true surface is plotted in Figure 3 on 200×200 = 40,000 equally spaced
points. Candidate sets S1 and S2 are maximin LHDs with 25 and 81 candidate design points respectively,
and constructed using MATLAB’s lhsdesign function. Two sample sets are displayed in Figure 4.

In the initial phase of the sequential adaptive method, each point in S1 receives 20 replications and
on each iteration of the sequential phase, a budget of Nt = 20 replications is allocated to one of the points
in S1∪S2. On the other hand, each point in S1∪S2 receives 20 replications in the initial phase of the
sequential method without adaptation, and 1 more replication on each iteration of the sequential phase.

As in Section 4.1, we define variance surfaces V(x) that are (directly/inversely) proportional to Y(x)
as well as constant variance V over the interval. In this two dimensional surface we set c1 = c2 = c3 = c
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Figure 3: Six-hump camel-back surface.
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Figure 4: Candidate design points.

and experiment with c = 0.2, and c = 0.4, i.e., for each variance form, we experiment with 2 variance
magnitudes, totaling 6 variance surfaces. Since the performance of the algorithms also depend on the
choice of candidate design points, 2 different S1 and S2 sets are generated. Results from 12 experiments
are also presented in Section 5.

5 RESULTS

For each of the scenarios specified in Section 4, we ran 10 macroreplications of both algorithms. Substituting
a precision level of γ = 0.10 and a confidence level of (1−α)100% = 99% in (10), the stopping criterion
we used is given by

2.5758MrRMSEt ≤ 0.0909. (14)

Each macroreplication is stopped as soon as the condition in (14) is satisfied and
MrRMSE, the maximum relative error, and the total computational resources used are recorded. For
each scenario, the average and the half-width of the 99% CI of these metrics are reported.

Tables 2 and 4 present the output from our numerical study with 4 one-dimensional surfaces using,
respectively, the sequential adaptive method and the sequential method without adaptation. Each row of
these tables corresponds to one of the 24 response surface–variance surface pairs. The first column shows
which response surface is selected, while the second and the third columns identify the variance surface
created by (13) based on the constants reported in Table 1. The other three columns are, respectively, the
MrRMSE, the maximum relative error, and the total number of replications needed to stop. Notice that both
algorithms consistently achieve maximum true relative error that is on average less than the prespecified
precision level of 10%. It is also evident from the last column that the sequential adaptive method stops
sooner than the sequential method without adaptation, using fewer resources. Finally, the required precision
is achieved faster when the variance is low.
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Tables 3 and 5 are similar in format to Tables 2 and 4 except that there is only one response surface (a
six-hump camel-back surface) with 2 distinct choices of candidate design points labeled DOE1 and DOE2;
the first column identifies this choice. In this study, neither algorithm consistently achieves maximum
true relative error that is always less than prespecified precision level of 10%. Nevertheless, when they
miss the target, the highest relative error observed is not much larger than the prespecified precision level.
Observe that the choice of candidate design points is the most significant factor in achieving bounded
maximum relative error with minimal computational effort. The form and the magnitude of the variance
surface influences how many replications are needed to stop, but is secondary to the choice of candidate
sets S1 and S2 in effecting whether the maximum relative error is less than the prespecified precision
level when the algorithm stops. Recall that the candidate sets are composed of space-filling points and not
constructed by a design criterion. Rather, the design criterion is used to allocate replications. Therefore,
if no candidate design point corresponds to a critical portion of the response surface or to a high variance
region, then regardless of the computational effort the maximum relative error is not reduced to that required
by the precision level (see, for example, the scenarios in which DOE1 is chosen and the variance surface
is proportional to the response surface). It is difficult to consistently choose a good experimental design
because the true relative error is not known to the experimenter. However, one way to ensure that bounded
maximum relative error is achieved is to choose the number of points in S1∪S2 large to allow for budget
allocation to more of the critical regions.

Table 2: Sequential adaptive method used to fit predictors for 4 one-dimensional surfaces. Average
MrRMSE, max relative error and replication budget spent are presented with their half-widths.

Surface c
Variance MrRMSE Max. Rel. Number

Form (%) Error(%) of Reps

x2

Low
constant 3.32±0.04 4.12±0.31 59±4

proportional 2.49±0.42 4.58±0.89 32±6
inverse 3.41±0.02 4.65±0.70 118±10

High
constant 3.48±0.01 5.82±0.42 292±11

proportional 3.47±0.02 5.97±0.85 156±10
inverse 3.51±0.00 5.93±0.65 678±15

4−12(x−1.5)2

Low
constant 3.38±0.04 7.10±0.85 187±13

proportional 3.30±0.06 6.51±0.55 65±5
inverse 3.49±0.01 5.97±0.85 593±21

High
constant 3.48±0.01 7.00±0.58 970±63

proportional 3.49±0.01 6.86±0.90 310±23
inverse 3.50±0.01 6.43±0.66 3682±150

1+12(x−1.5)2

Low
constant 3.39±0.04 4.91±0.62 64±5

proportional 3.04±0.34 6.16±0.81 51±7
inverse 3.37±0.05 6.49±0.70 74±6

High
constant 3.50±0.01 6.06±0.34 278±13

proportional 3.51±0.00 6.43±0.74 294±12
inverse 3.47±0.02 7.92±0.69 422±22

Low
constant 3.36±0.07 7.77±0.38 104±6

122+35(x−2)3 proportional 3.26±0.06 8.15±0.53 85±6
inverse 3.44±0.02 7.58±0.39 180±6

+54(x−1)2−86x High
constant 3.46±0.02 8.76±0.56 730±20

proportional 3.50±0.01 8.85±0.68 558±17
inverse 3.37±0.05 9.24±0.57 1349±72
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Table 3: Sequential adaptive method used to fit predictors for six-hump camel-back surface. Average
MrRMSE, max relative error and replication budget spent are presented with their half-widths.

Design c
Variance MrRMSE Max. Rel. Number

Form (%) Error(%) of Reps

DOE1

Low
constant 3.50±0.01 11.30±0.60 3750±110

proportional 3.52±0.00 11.93±0.62 16358±596
inverse 3.27±0.05 11.94±0.82 982±57

High
constant 3.52±0.00 10.71±0.56 14826±550

proportional 3.53±0.00 11.28±0.29 64392±1539
inverse 3.50±0.03 12.19±0.37 3536±212

DOE2

Low
constant 3.47±0.02 8.70±0.36 2048±116

proportional 3.51±0.01 8.28±0.31 8854±369
inverse 3.31±0.03 8.70±0.24 818±8

High
constant 3.52±0.00 8.67±0.33 8500±250

proportional 3.52±0.00 8.65±0.52 36628±1347
inverse 3.48±0.02 8.68±0.17 3286±98

6 CONCLUSION

This paper has provided a methodology that sequentially allocates simulation runs to preselected candidate
design points and has a potential to produce a complete performance response surface with bounded relative
error using the stochastic kriging method proposed by Ankenman et al. (2010). We tested this methodology
with various one-dimensional response surface–variance surface pairs as well as with a two-dimensional
surface and different candidate design points. We learned that this methodology is able to produce SK
predictors either with bounded maximum relative error or with maximum relative error that is close to
the prespecified precision level, and the choice of candidate design points is critically important in the
performance.
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Table 4: Sequential method without adaptation used to fit predictors for 4 one-dimensional surfaces. Average
MrRMSE, max relative error and replication budget spent are presented with their half-widths.

Surface c
Variance MrRMSE Max. Rel. Number

Form (%) Error(%) of Reps

x2

Low
constant 3.45±0.04 3.30±0.73 199±26

proportional 2.71±0.45 3.67±0.86 54±10
inverse 3.51±0.00 3.94±0.95 536±55

High
constant 3.52±0.00 3.56±0.61 1355±62

proportional 3.48±0.01 5.26±0.72 408±24
inverse 3.53±0.00 2.09±0.50 3612±110

Low
constant 3.50±0.01 4.77±0.36 563±29

proportional 3.42±0.02 5.65±0.65 104±11
4− inverse 3.52±0.00 4.18±0.75 2297±92

12(x−1.5)2
High

constant 3.52±0.00 4.34±0.69 3130±89
proportional 3.50±0.00 5.67±0.52 484±14

inverse 3.53±0.00 4.58±0.64 13830±300

Low
constant 3.45±0.03 5.39±0.68 99±9

proportional 3.08±0.34 5.58±0.84 67±8
1+ inverse 3.46±0.02 4.38±0.52 143±14

12(x−1.5)2
High

constant 3.52±0.00 3.95±0.39 617±29
proportional 3.51±0.00 5.52±0.47 477±19

inverse 3.52±0.00 4.92±0.85 1047±41

Low
constant 3.44±0.02 6.15±0.55 226±25

122+35(x−2)3 proportional 3.46±0.02 7.83±0.45 118±7

+54(x−1)2 inverse 3.51±0.00 3.90±0.36 851±35

High
constant 3.52±0.00 6.10±0.45 1748±63

−86x+122 proportional 3.52±0.00 8.78±0.76 651±14
inverse 3.53±0.00 3.45±0.14 5362±133

Table 5: Sequential method without adaptation used to fit predictors for six-hump camel-back surface.
Average MrRMSE, max relative error and replication budget spent are presented with their half-widths.

Design c
Variance MrRMSE Max. Rel. Number

Form (%) Error(%) of Reps

DOE1

Low
constant 3.51±0.00 12.60±0.54 2583±85

proportional 3.53±0.00 12.85±0.45 19162±606
inverse 2.51±0.01 9.40±0.46 2120±0

High
constant 3.52±0.00 12.12±0.47 10181±322

proportional 3.53±0.00 12.46±0.50 72585±2004
inverse 3.51±0.00 11.87±0.33 3169±125

DOE2

Low
constant 3.37±0.05 8.99±0.30 2268±69

proportional 3.53±0.00 9.19±0.45 11837±383
inverse 2.16±0.02 6.42±0.22 2120±0

High
constant 3.52±0.00 10.06±0.56 7724±528

proportional 3.53±0.00 10.22±0.53 45177±1626
inverse 3.48±0.02 8.06±0.20 2321±83
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