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ABSTRACT 

This paper introduces a cost-effective and robust positioning architecture that relies on wireless sensor 

networks (WSNs) for construction resources localization. The architecture determines the location of mo-

bile sensor nodes by evaluating radio signal strengths (RSS) received by stationary sensor nodes. Only a 

limited quantity of reference points with known locations and pre-calibrated RSS in relation to pegs are 

used to lock on the most likely position coordinates of a tag.  Indoor experiments were conducted, reveal-

ing that acceptable position estimation with 1-2 m accuracy can be obtained with this flexible sensor net-

work architecture. To simulate the dynamic setting of a construction site, controlled experiments were al-

so conducted by parking a car at various locations in the testing environment in order to evaluate the 

impact of imposed obstacles on location estimation performance. This localization technique is found to 

produce robust positioning results, thus paving the way for potential deployment in real-world construc-

tion sites. 

1 INTRODUCTION 

Emerging localization and tracking technologies enable automated data acquisition for process and 

project control in construction engineering (Jang and Skibniewski 2009). Effective management of  con-

struction resources, including workforce, equipment, and material, is critical to project success. Comple-

tion of project tasks on schedule, safely and within the planned budget needs a coordinated planning ef-

fort that allocates adequate availability of project resources (Teizer 2008). Successful construction 

projects are often determined by the level of awareness of resource status or project performance. Thus, 

timely information of these factors can assist in fast and confident real-time decision making.  

 In recent years, the need for indoor localization has also been increasing in construction sites (Khoury 

and Kamat 2009), presenting tremendous opportunities for research in this area. Construction tasks, in-

cluding inspection and progress monitoring, need to have up-to-date access to project information in in-

door or partially covered site environments, for example, tracking the steel components in fabrication 

shops for productivity control or localizing laborers in underground tunnel construction for the purpose of 

safety management.  
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 While outdoor localization techniques have been developed and deployed, indoor methods remain a 

research challenge. The Global Positioning System (GPS) is an attractive option for outdoor                  

environments, but is not suitable for indoor applications. In addition, due to the complexity of indoor   

environments, unlike outdoor environments, the development of an indoor localization technique is      

always impeded by a set of challenges including dense multipath effect, no line-of-sight, noise interfe-

rence and building material dependent propagation effects (Zhang et al. 2010). Construction environments 

add the further complexity of frequent changes to the environment, as materials, workers, and equipment 

are dynamically introduced and relocated within a site.  

 Due to limitation of the previously proposed approaches, recent construction research has also        

investigated the use of Radio Frequency (RF) technologies that measure the strength of the received    

signal (Luo et al. 2010). Though using RF signals is not the only option for indoor location tracking, RF-

based technology has the advantage of simplicity and low cost; in particular, with the advent of low-cost 

wireless sensor networks, RF-based real-time positioning solutions can be easily deployed in the applica-

tion environment (Haque et al. 2009).  

 This paper introduces a positioning architecture of wireless sensor networks that can facilitate the lo-

calization of construction resources in both indoor and outdoor environments. The introduced architecture 

has the potential to reduce the installation cost for the multiple sensing/positioning units that need to be 

installed.  

 Several experiments were conducted in order to examine the positioning performance, precision and 

robustness. We attempted evaluate the localization performance in a dynamic environment by quantifying 

the effects of unpredictable temporary and permanent obstacles that could appear at job sites. The pro-

posed system architecture is briefly described and results of the indoor experiments are then presented.  

2 BACKGROUND 

Over the past decades, construction industries have showed an increasing interest in location-aware     

systems and services (Kim et al. 2010). The information enables construction managers to be aware of the 

current state of construction resources. For many years, RFID systems and the GPS have been attractive 

options for automated tracking and monitoring of construction assets. For resource positioning, tracking 

and automated data collection in construction, there is no doubt that these mature technologies are more 

appealing than previous technologies such as the barcode. However, several limitations have been de-

tected in construction applications.  

 RFID did not meet the requirements for the harsh construction  conditions as a result of inaccurate 

positioning based on proximity (Pradhan et al. 2009), inflexible and  limited networking capabilities, and 

the high cost of RFID readers (Skibniewski and Jang 2009). Moreover, the communication distance      

between RFID tags and readers decreases significantly with the presence of metals, concrete and moisture 

in their vicinity which is commonplace on a building site (Lu et al. 2007).   

 The performance of the GPS localization system can be severely weakened due to satellite signal 

blockage and the multipath effect, which is caused by deflection and distortion of satellite signals in high-

ly dense areas and temporary structures or facilities like the scaffold and formwork on a construction site 

(Lu et al. 2007). Due to limitations of the previously discussed technologies, the usage of WSN has been 

expanding in recent construction research efforts. A WSN is a self-organizing network composed of a 

large number of sensor nodes, closely interacting with the physical world.  It features low-cost nodes, ex-

tensive network capability allowing deployment of large quantities of nodes so as to increase the network 

coverage, stability and reliability in wireless communication. In addition, low power consumption facili-

tates operation and maintenance of the system (Shen et al. 2008). Moreover, the ad-hoc network architec-

ture makes implementation and adjustment of the network flexible.  

 A new tracking architecture was implemented using wireless sensor modules by combining radio  

frequency signals and Ultrasound; the results showed accurate position estimations with enhanced net-

work flexibility (Skibniewski and Jang 2009). However, traditional ultrasound positioning has some dis-

advantages including line-of-sight  transmission, multipath, high cost and power consumption which may 
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hinder the possible applications in complicated construction environments (Shen et al. 2008). According 

to the technological functions, economics and management targets, various combinations of RFID and 

Zigbee-based sensor networks have also been applied for materials tracking and supply chain manage-

ment (Shin et al. 2011; Cho et al. 2011).  RFID tags were used to identify various kinds of construction 

materials, and the ZigBee communication technology was used to wirelessly transfer this information. 

These studies confirmed that WSN can improve the wireless communication and network flexibility but 

their primary use was only data  transmission, and not positioning.  

 Considering the features of construction sites and characteristics of indoor environments, a new    

cost-effective and energy-efficient WSN based positioning framework is proposed that can effectively 

identify and track a wide range of construction resources. This framework is expected to increase relia-

bility and robustness, which are difficult to achieve with current technologies.  

3 SYSTEM ARCHITECTURE AND POSITIONING  ALGORITHM 

In terms of location estimation by wireless networks, four different measurement principles are generally 

implemented: received signal strength indicator (RSSI), angle of arrival (AOA), time of arrival (TOA), 

and time difference of arrival (TDOA) (Shen et al. 2008). AOA, TOA, and TDOA methods demand on 

line-of-sight communication and require expensive infrastructure. They also suffer from the presence of 

different materials, equipment, and building structures at construction sites. As such, Received Signal 

Strength Indicator (RSSI) is considered to be more suitable for localization applications on building con-

struction sites. The majority of positioning systems employ the RSSI method owing to the fact that RSSI 

measurement capability is available in most wireless radio signal communication devices (Lymberopou-

los et al. 2006). 

 Localization methods can be further classified as 1) range-based, relying on estimates of the distance 

or angle between the transmitter and the receiver 2) range-free, defined exclusively by the perceived   

connection between a tracked tag and its neighbors and 3) RSSI profiling by which the perceived charac-

teristics of the tracked tag's signals are compared against pre-collected samples from known locations. By 

comparison, GPS performs triangulation based on ranges to at least four known satellites in order to fix 

the coordinates of the receiver, and calibrate the clock bias of the receiver (Niculescu and Nath 2001). 

GPS systems require expensive and energy-consuming electronics to precisely synchronize the receiver’s 

clock with the satellite’s clocks. With hardware limitations and the energy constraints of sensor network 

devices, the method underlying GPS and other range-based technology present a cost barrier for localiza-

tion by WSN. So, solutions in range-free localization are identified as a more cost-effective alternative to 

the range-based approaches for large scale sensor networks (He et al. 2003). With the range-free ap-

proach, the localization problem is easy to solve, but the estimated locations tend to be crude. So, utilizing 

the RSSI profiling method will help to compensate for the effect of environment on the reliability of the 

estimated location which is obtained from perceived RF signals (Haque et al. 2009). During the profiling 

stage, the network collects and stores in a database (maintained on a central server) samples acquired 

from tags located at known points within the monitored area. The logistics of collecting such samples 

may involve a person moving around the area with a special variant of the tag node, e.g., equipped with a 

clickable map. 

 Our proposed localization architecture implements the RF-based localization scheme  called LEMON 

proposed by Haque et al. (2009). This approach is based on sensing strengths of received RF signals and 

is a combination of a range-free method and RSSI profiling so as to take the advantages of both. This ar-

chitecture is simpler and more accurate than other approaches and the uniformity and low cost of devices 

makes LEMON a highly viable and very practical solution for construction. The infrastructure nodes of 

LEMON are low-cost low-power wireless devices [EMSPCC11 by Olsonet Communications (Olsonet 

Communications Corp 2011)]. The node makes use of the CC1100 RF module from Texas Instruments 

operating within the 916MHz band. From an operational point of view, the node is called peg when it 

captures signal strength. Pegs’ locations are fixed (stationary nodes) and their precise locations need not 
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to be known. A monitored device, i.e., one whose location needs to be estimated, is a node of the same 

type as a peg, and is called a tag.  

 The task of location estimation in LEMON consists of two phases: profiling and actual localization. 

Generally, during operation in both phases, a tracked tag periodically emits RF packets. In the profiling 

stage, tags are located at predetermined known locations called reference points. LEMON maintains on a 

central repository, a database of signal strength readings from tags in relation to all the pegs. In this phase, 

all the pegs that can hear the RF packets emitted by the tag, will forward the data reporting the RSSI 

measured to the central server. The database consists of samples which are stored as tuples  ;;C in 

which C  represents  the known coordinates of the sampled point,  stands for the association set (which 

comprises peg ID and the RSSI value received by that Peg), and  symbolizes the class of sample, identi-

fying the RF parameters of the   transmitter (such as transmission power, bit rate, and channel number). 

The task of actual localization of the tracked tag is exactly the same as the profiling stage. The only dif-

ference between the profiling phase and actual localization is that, in the profiling stage, the association 

set of tag profiling reports also include the known coordinates of the sampled point, but in the actual loca-

lization stage, the location of the tracked tags is unknown and needs to be estimated based on the location 

of sampled points.  

 In the localization stage, the server compares the perception of the tracked tag's RSSI measured by all 

the pegs in the monitored area against the RSSI profile of each profiled reference point and evaluates the 

difference between the tag and all the profiling points. If ),...,{ 1 kww  and ),...,{ 1 k  are as-

sumed to be two association’s sets, the distance between these sets is: 
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where )( ii yx   are the coordinates associated with sample i . Note that in this approach, RSSI is only 

used as a numerical attribute of a profile sample whose value should be close to the perceived value. No 

direct attempt to associate an RSSI value with the Euclidean distance is made. 

4 SYSTEM IMPLEMENTATION AND RESULTS 

Construction sites are dynamic environments which are exposed to movement of equipment, materials 

and laborers. To confirm the viability and limitations of the proposed solution and to evaluate the          

environment variation due to the presence of an obstacle, a prototype LEMON system was assessed in an 

underground parking lot on the University of Alberta campus which resembles an indoor area. The ab-

sence of decorative features in the area makes it a reasonably good approximation of a structure being 

built. That is, the space consists of concrete floor, ceiling and pillars and metal beams to support the load 

of the structure. Thus, the car park could mimic the challenges and complex characteristics found on the 

construction site with random and continuous movement of vehicles and people. In the data collection 

phase, the central node is connected via a USB dongle to a laptop, where all the data collected by the  

network were stored and processed. During the data collection, some of the collected readings were saved 

in the LEMON's profile database, when some others would be stored and used as tracking data for me-

thod verification.  

 The experiment started by deploying a number of nodes within the monitored area. Figure 1 shows a 

sample distribution of nodes for the experiment. The grid was 12 x 8m (consisting of 24 (2 x 2m) 

squares), in which 10 solid squares (all around the grid) were Pegs, while the 25 crosses marked with    

asterisks, provided profile samples whose pre-defined locations were known. The circles acted as tags 

whose locations were to be determined. Tags were placed in centers of the grid squares to compare their 

exact locations with the estimated ones so as to evaluate the accuracy of the system.  

 The objective of this test was to check the performance of LEMON under a traffic flow-controlled  

setup including four different cases: without any car, car on the right side of the monitored area, at the 

middle, and on the left. All the profiling points or tag locations, even those obstructed by a car, were   

considered. In the four “car parking” scenarios tags were located using the profiling data, which were col-

lected at reference points only from the original setup (without any parked car in the grid) in order to 

identify changes in the environment. 

 

 
Figure 1:  Experiment layout 

 

 In this experiment, the localization error magnitude is the Euclidean distance between the estimated 

and actual locations of a point. The average magnitude of error given different k  (number of best-

matched samples) and its 95% confidence level interval of the location of all the points in each case were            

investigated in order to find the best k  (Figure 2). k =6 is selected as it results in the smallest average    

localization error. Once an appropriate k  was decided and applied in all subsequent experiments, we 

turned our attention to the question of how an obstacle, which was a medium sized automobile in this 
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case, could degrade the localization accuracy. The inclusion of an automobile (or any other movable met-

al facility) is used to mock the situations commonly encountered in construction sites. 

 
Figure 2: Average localization errors and its 95% confidence level interval for different k  (no car) 
  

We tried to determine how the localization has changed qualitatively and quantitatively. To this end, we used 

localization error vectors to express the localization error. We note that such error vectors are also possible to plot in 

the case when no obstacle is present, but we nevertheless try to understand if the inclusion of the obstacle has a ten-

dency to distort the localization in certain locations (relevant to the obstacle) and in what direction  and by what 

magnitude.  

  
a) Without any obstacle b)  Car at right side 

  
c) Car at middle side d) Car at left side 

 

Figure 3. Localization error vector for different position of the car in the grid for k =6. 
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 The results are plotted in Figure 3 and they confirm our expectations to see more discrepancies close 

to the obstacle, albeit not in a systematic fashion. In Figure 3, for presentation's sake, arrows are scaled to 

half their actual magnitudes, and the tags whose location error vectors have been changed considerably 

either in error magnitude (more than 1m) or in terms of angle (more than 90
o
), are marked, respectively, 

by a blue dot and a circular ring (some points may exhibit both features). Noticeable differences in locali-

zation error magnitude and angle are shown with different icons. 

 The results from the experiments (Figure 4) indicate that the system is able to locate all the tags with 

the error magnitude between roughly 0.8m and 1.9m (with the approximate standard deviation of 1 meter 

for the case of car in the middle of the grid and 0.5 meter for the other three ones). It also demonstrates a 

metallic obstacle can change the environment and generally increases the localization error. The desired 

accuracy needed to locate  mobile laborers in construction sites is 1.5 to 4 meters (Khoury and Kamat 

2009; Torrent and Caldas 2009).  Therefore, for the prototype system, a localization accuracy of less than 

2m is acceptable and the localization error we observed in the presence of a simple obstacle was margi-

nally kept around the original localization error determined in the absence of the obstacle. The robust na-

ture of this localization technique thus implies its potential for deployment in real-world dynamic con-

struction sites, which are prone to constant changes as a result of the introduction of permanent as well as 

temporary  obstacles. It is noteworthy that the limits of the positioning accuracy can be further enhanced 

by applying a finer grid setup in RSSI profiling or applying real time error correction algorithms. The 

second alternative is more cost effective and appealing to construction applications and will be pursued in 

the future. 
 

 
Figure 4. Average error magnitude using new profiling data for different car location in the grid for k =6 

 

5 RSSI CALIBRATION UTILIZING COMPLETE AND PARTIALLY RE-PROFILING 

The construction environment changes dynamically, which would mean that localization results might no 

longer be accurate in the (continuously) modified environment. To address this problem, two remedial 

approaches can be taken; (a) systematic analytical characterization of localization distortions created by 

modifications, and/or, (b) a means to perform re-profiling, assuming it is needed, to create more accurate 

localization results. 

 We note that option (a), apart from being a demanding task that entails some form of wireless propa-

gation characteristic modeling, it would still not be sufficient because we would have to, first, identify 

that the environment has indeed changed before applying any analytical/computational localization cor-

rection model. If this requires re-measuring signal strengths (every so often) then it leads to effectively a 

form of option (b). Hence option (b) is an unavoidable step, even if it does not imply the re-measuring/re-

sampling of all points in the space of interest. Re-profiling has merit of cancelling the effects of changes 

in the environment. We conducted the following experiment: in each test bed, each time an automobile 

was introduced at any of the three locations, new reference point measurements were collected and used 

to localize the tags. Figure 4 show the localization in the modified environments by using the previous 

profile data, while Figure 5 shows the localization accuracy using the new profile data. Both are able to 
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result in the similar accuracy (Figure 4). The standard deviations are 0.47m for car on the right, 0.71m for 

car in the middle and 0.66m for car on the left side of the monitored area. 
 

 
Figure 5. Average error magnitude for different car location in the grid for k =6 

 

  Of course the suggestion for re-profiling an entire area is quite demanding. To this end, we would 

like to "stage" the re-profiling task in two steps: (i) to understand what observations could trigger the re-

profiling so no unnecessary re-profiling is performed and (ii) to determine a possible small subset of loca-

tions that, upon being re-profiled, result in improved localization. In other words, we imply a semi-

automatic process whereby the task (i) is performed automatically and then a set of points to-be-re-

profiled is prepared (again automatically) and provided to either human operators to conduct the task (ii) 

or, even, with an operator in the loop, choices for points to re-profile are given and acted upon.   

 If the localization pegs are part of a fixed (or rarely changing) infrastructure, then preference could be 

given to using them as profile points as well (we will explore this idea next), with the advantage that the 

re-profiling for those particular points can be performed without on-site human intervention (as opposed 

to re-profiling points in a construction area). 

 To address point (i), as previously seen, a significant increase of magnitude and angle change in loca-

lization error results from introducing a new obstacle to the environment. In this case, if it goes beyond a 

certain threshold (in our experiments the thresholds were 1m and 90º), re-profiling can be necessary. To 

perform task (ii) in an automatic way, we treat the pegs as profiled points (we know their exact location). 

We identified the one peg which showed the most significant localization error when it was found (ac-

cording to criterion (i)) after an obstacle was introduced. This operation is captured in Figure 6. Note that 

we are not done at this point because the location of the peg, which was identified as "most distorted" lo-

calization was based on k  measurements that could be all over the area of interest. At that point, we dis-

patched a human operator to re-profile the k  points involved. We also compared the results of this partial 

re-profiling to the results of a complete re-profiling.  

 

   
Figure 6. Selected co-located tags to be re-profiled 

  

 Table 1 shows that localization average error magnitude utilizing a number of partially re-profiled 

reference points (6) would result in the same improvement as that of complete re-profiling. These empiri-
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cal results suggest that the proposed approach can be used to monitor engineered components and con-

struction resources on a typical dynamic job site with changing locations of obstacles. With less effort in 

performing partially re-profiling, the effect of obstacles on the job sites can be controlled and the accura-

cy can be maintained on a certain level.  
 

Table 1: Localization average error magnitude using a) original profiling samples in absence of obstacle 

b) partially and complete re-profiled reference points 

 

Car position Using Orig-

inal refer-

ence points 

Using re-profiled reference 

points 

Partial(6) Complete(25) 

Car at Right 1.13 1.08 1.09 

Car at Left 1.12 1.09 1.1 

Car at Middle 1.46 1.4 1.35 

Average 1.24 1.19 1.18 
 

 

6 CONCLUSION 

The presented study introduces a new framework for automating the identification and localization of 

construction resources on indoor or partially covered construction sites. In this approach a positioning 

methodology associated with wireless sensor networks was used to facilitate data collection and pattern 

recognition. Indoor experiments assessed the feasibility of this potentially automated methodology in a 

realistic construction setting. The localization approach resulted in good estimated locations with accura-

cies ranging from 1m to 2m. Moreover, the localization accuracy in the presence of obstacles remains 

comparable to that achieved prior to the introduction of obstacles. In addition, it was found that With less 

effort in performing partially re-profiling, the effect of obstacles on the job sites can be controlled and the 

accuracy can be maintained on a certain level.. In comparison with the other technologies used for re-

source tracking in indoor or partially covered construction environments, the proposed system has the ad-

vantages in terms of networking flexibility, ease of deployment and extendibility, low cost, and the capac-

ity to operate efficiently under dynamic and harsh conditions. The robust nature of this localization 

technique thus implies its potential for deployment in real-world dynamic construction sites. Those set-

tings by nature are prone to constant changes as a result of the introduction of permanent as well as of 

temporary  obstacles. It is noteworthy that the limits of the positioning accuracy can be further enhanced 

by applying a finer grid setup in RSSI profiling or applying real time error correction algorithms. The 

second alternative is more cost effective and appealing to construction applications and will be pursued in 

the future. 
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