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ABSTRACT 

We developed an integrated inter-building physical and human network model to predict the energy con-
servation for an assumed urban residential block. We utilized an Artificial Neural Network to predict 
hourly energy consumption in both the first physical and second human stage.  In the first stage, simulat-
ed data were exported from EnergyPlus, and the optimal scenario was found to consume 12.28% less en-
ergy than the base scenario. In the second stage, the human network closeness index was obtained from a 
residential experiment to represent occupants’ network connections.  We found that energy consumption 
can be further reduced up to 51.75%. Finally, hour-by-hour energy consumption prediction under various 
levels of occupant networks was examined, and we found the block exhibits a potential of conserving 
57.68% of the original energy consumption. An integrated understanding of physical and human network 
models on inter-building level energy consumption will enable us to better achieve energy efficiency ob-
jectives. 

1 INTRODUCTION 

There is strong political and societal will to reduce energy consumption in the built environment both 
domestically and abroad.  The emphasis of much of this discussion, in particular where energy consump-
tion reductions are included, focuses on the consumption of individual buildings.  Yet this narrow focus 
on individual building consumption may be at the expense of potential savings that could result from ex-
amining energy consumption and conservation at the inter-building level.  By examining groups of build-
ings, the full potential for energy reduction may be realized from a more harmonized interaction between 
individual buildings. These interactions can adopt the forms of optimized architectural and technical de-
sign, or coordinated electricity consumption, or even well connected occupant networks, all with the goal 
of better aggregate performance. At the inter-building level, two potential approaches have been consid-
ered very recently by researchers; a physical track which examines the potential impact on energy con-
sumption when one building’s impact on the energy consumption of another building is considered, and a 
human track which examines how building occupants may encourage energy conservation behaviors by 
other building occupants. Although we have seen recent research efforts to understand the aggregate ef-
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fect of buildings on other buildings (Stromann-Andersen and Sattrup 2011) and building occupant net-
works (Peschiera, Taylor, and Siegel 2010), the approach to inter-building energy modeling that effective-
ly integrates physical and human networks deserves attention. 

Occupants’ interpersonal connections can provide occupants the incentive to consume less energy, os-
tensibly due to a motivation that they want to keep up with their peers. This interpersonal effect on energy 
consumption has been observed and empirically supported in an experimental study (Peschiera, Taylor, 
and Siegel 2010). The researchers found that the peer network produced significant savings over the study 
period, indicating that a socially proximal norm provided with feedback could encourage reductions in 
energy consumption. Although the peer network is formed on a single building level, it can be generalized 
to the occupants’ networks at the inter-building level, thus serving as a pivotal point between the two lev-
els. 

Artificial Neural Networks(ANN)are a recently developed approach that would be applicable to ana-
lyze the peer network effect described previously. ANN are computational tools which derive from bio-
logical neural networks. Analogous to a biological NN, an artificial NN can be trained of complex causal 
relationships among numerous factors. Because of this learning ability, ANN has been used in many 
fields for prediction, among which energy consumption is one area where ANN is highly suitable. ANN 
has the potential to model non-linear processes such as building energy loads and socio-economic factors 
(Aydinalpkoksal and Ugursal 2008), and it is more efficient than traditional simulation tools (Kalogirou 
2000). Besides, ANN belong to the class of ‘data-driven’ instead of ‘model-driven’ approaches, thus little 
assumption and rationalization about relationships between variables is needed when exploring a new 
phenomenon. Because of its capability to model non-linear energy consumption under various socio-
economic backgrounds and its simplicity, we chose it as the simulation tool for this study. 

With the motivation to integrate the physical and human networks to examine the energy consump-
tion dynamics at an inter-building level, the sections below are organized as follows. Section 2 contains 
the description of the urban residential block in study, prior research on the physical modeling of building 
networks, and our ANN approach. In Section 3, the models and data are specified. The simulation results 
and analysis are presented in Section 4, followed by conclusion and contributions in Sections 5 and 6 re-
spectively. 

2 BACKGROUND 

2.1 Urban Residential Block Description 

We designed a typical American block of six residential single-family houses of three different sizes 
(Figure 1) located at Albany, New York. Every house has two floors: on the ground floor there are a 
kitchen, a living room, a connection area, and a bathroom, and on the upper floor there are two or three 
bedrooms, a bathroom and another connection area. The architectural properties of the buildings compris-
ing the urban residential block were realistically designed with appropriate material physical properties 
for the floors, external walls, internal partition walls and roofs. Every indoor thermal zone was described 
by specific occupant schedules (Tronchin and Fabbri 2008) which associate appropriate internal gains 
values to  human body functional activities, lighting, hot water needs, personal computer use, cooking ap-
pliances, etc.  

2.2 Physical Scenarios and Optimization 

The network energy efficiency assessment from a physical point of view is the starting point of this re-
search.  We examine an urban residential block to understand the impact of surrounding buildings on the 
energy consumption profile of an individual building. Because of the disparate modification strategies 
needed in summer and winter, and also the inverse inter-building effect from mutual shading of adjacent 
buildings on energy consumption in the two periods, only the summer period is chosen (May 1 to Sep-
tember 30) in this study to accurately evaluate the different scenarios’ effects. And to fully take account 
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of the inter-building effect within the group of buildings to serve our purpose of the study, we simulate 
the block as a whole, instead of a single house or a single room in a house. 
 

 

Figure 1: Urban residential block modeled (plan view). 

 Based on the base case inter-building simulation afforded by the building simulation program Ener-
gyPlus (U.S. Department of Energy), other various envelope scenarios were studied, considering different 
envelope reflectance levels and positions, as well as shielding system visible-solar transmittance. Two 
groups of different scenarios were studied (Table 1) based on scenario 0 (the base case scenario): the first 
group(1,2,3)focused on solar and visible transmittance levels of diffusive venetian blinds, while the se-
cond group(4,5,6,7)described high reflectance(90%) in different directions.  

Table 1: Scenarios characterization. 

Scenarios Solar and visible venetian blinds transmittance Envelope superficial properties 

0  100% (no blinds) Thermal Emissivity=90% 
Solar-visible absorbance=60%

1  75% (with blinds) Base case envelope reflectance
2 50% (with blinds) Base case envelope reflectance
3  25% (with blinds) Base case envelope reflectance
4 100% (no blinds) High reflective facade  
5 100% (no blinds) High reflective lateral walls
6 100% (no blinds) High reflective back walls 
7 100% (no blinds) High reflective envelope 

 
From a physical point of view, we compared all the scenarios in terms of electricity demand. Sum-

ming the total energy consumption over the summer period in study, we found scenario 3 to be the most 
energy efficient scenario. Specifically, scenario 3 consumes 12.28% less energy than the base scenario 0. 
It expresses the important role of the shielding system design during summer assessments. The conven-
ient adjustment of venetian blinds avoids it from exerting negative impact to the thermal conditions in 
winter, ensuring scenario 3’s benefit to the energy savings even if measured in the whole year period as 
well. With the above amount of energy savings achieved by optimizing physical features of the block, in 
this paper we will explore how the inter-building human networks can contribute to further energy con-
servation. 

2.3 Artificial Neural Network 

Researchers have applied ANN to forecast short term energy load (Kiartzis, Bakirtzis, and Petridis 1995; 
Khotanzad et al. 1997), for individual buildings or nationwide (Mihalakakou 2002; Aydinalp, Ugursal, 
and Fung 2002). ANNs have also been used to predict energy savings from building retrofits (Cohen and 
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Krarti 1995) and conservation campaigns (Mahmoud and Alajmi 2010). Mahmoud and Alajmi (2010) 
used neural networks to assess the energy conservation induced by resident awareness resulting from en-
ergy campaigns, which is similar in nature with our study as both address the influences from awareness 
of occupants. Given the somewhat widespread use of ANN, we conclude it is suitable for our study.  
 However, in terms of incorporating socio-economic factors, existing efforts to model energy con-
sumption adopt either a macro or micro level point of view. At the macro level, the socio-economic fac-
tors, such as population and average income, are taken into account in nationwide studies (Nizami 1995); 
while in micro level studies, details such as dwelling ownership and size of residence represent individual 
building information (Aydinalpkoksal and Ugursal 2008). To date, an intermediate view that examines 
energy consumption of a group of buildings that incorporates human networks as a socio-economic factor 
is lacking. This study aims to fill this gap by establishing an inter-building level network and incorporat-
ing the physical and human factors sequentially into the neural network. Detailed occupancy schedule and 
activities settings in EnergyPlus are socio-economic attributes in addition to the peer network effect that 
models how residents can influence each other’s energy use.  Taken together, these socio-economic fac-
tors make the physical-human integration examined more realistic. Given the optimized physical features 
of the cited buildings as networks study as a starting point, this paper explores how the personal network 
connections in the inter-building occupant network could affect the overall energy efficiency performance 
of the block. 

3 RESEARCH DESIGN AND METHODOLOGY 

3.1 Models and Variables 

Two models are adopted in this study.  The first model is applied to predict energy consumption in an op-
timal physical building network scenario.  The second model is applied to predict further energy conser-
vation under the added influence of the human networks that occupy the buildings. The two models are 
expressed in equations (1) and (2) respectively. 

 
E ൌ fሺT୭୮, T୭୳୲, Solar, Occupሻ         (1) 
E ൌ fሺT୭୮, T୭୳୲, Solar, Occup, Networkሻ       (2) 

 
 In equations (1) and (2), E represents energy consumption in kilowatts, which is the sum of cooling, 
hot water, lighting and other room electricity usage. Other than the term ‘Network’ in (2) which is derived 
from a residential experiment as a human network parameter, all other variables are exported as the simu-
lated hourly data from the EnergyPlus program. The physical meaning of the variables are stated in Ta-
ble2. 

3.2 Research Methodology 

The two models in 3.1 will be incorporated into two stages in this study respectively.  The methodology 
flow chart of this study is illustrated in Figure 2. It can be divided into the individual building level and 
the inter-building level conceptually, as well as two stages operationally.  The box with a dashed outline 
is information we draw from earlier studies.  

3.3 ANN Architecture 

Multi-layer feed-forward neural network is constructed for simulating the building networks. This neural 
network contains one input layer, one output layer, and two hidden layers each with ten hidden neurons in 
between. The transfer functions are chosen as log-sigmoid transfer function and linear transfer function 
for the hidden layer and output layer respectively, while the weights matrices W and bias vectors b are 
randomly generated. The structure of this neural network is shown in Figure 3, with all settings above in-
serted.  
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Table 2: Description of variables 

Variable Description
Dependent 
variables 

E: Energy 
consumption[kWh] 

Energy consumption= Cooling consumption +  Hot water 
consumption + Room electricity and Lighting consumption

Cooling consumption 
[kWh] 

Energy that indoor environment needs to obtain and maintain 
thermal target in summer.

Hot water consumption 
[kWh] 

Energy that indoor environment needs to produce the 
necessary hot water amount for human activities.  

Room electricity and 
Lighting consumption 
[kWh] 

Electricity that indoor environment needs to keep up all the 
electric supplies for occupants’ activities and for lighting 
system.

Independent 
variables 

Top: Operative 
temperature [K] 

Indoor operative temperature. Average values within the free 
running buildings.

Tout: Outdoor 
Temperature [K] 

Outdoor dry bulb temperature. Typical of the considered site 
weather (Albany, NY).

Solar: Solar Gains [kWh] Short-wave solar radiation transmission through all external 
windows, varying with time and weather. 

Occup: Occupants gains 
[kWh] 

Sensible gain due to occupants related to activities
schedules.

 

 

Figure 2: Research methodology flow chart  

compare 

Block energy simulation on 
physical features 

Artificial Neural Network Simulation 

Predict energy consumption in 
optimal physical scenario 

Residential experiment on human 
networks

Derive interpersonal closeness in-
fluence

Predict further energy conserva-
tion with human networks 

Stage1 
with Model 1 

Export physical parameters and 
energy consumption 

Individual building level 

Inter-building level 

Stage2  
with Model 2 
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Figure 3: ANN architecture 

 The independent variables vector elements enter the network from the input layer, linking to the hid-
den layer. After adjusted by the weights matrix W and bias vector b, initial outputs are directed from the 
neurons in the two hidden layers to the transfer function f, and then reach the neurons in the output layer. 
Through the same process with different settings of W, b, and f, outputs are obtained from the outlet of 
the output layer. Back-propagation is one of the most widely used training algorithms and is selected for 
use in our study (Rumelhart, Hint, and Williams 1986).Through a back-propagation algorithm with learn-
ing rate 0.1, the neural network is trained and the error is minimized. In our case, error is the difference 
between the output and the target, which is the dependent variable E simulated in EnergyPlus.  

3.4 Data 

3.4.1 Data in Model 1 

Data for model 1 are exported from EnergyPlus.  These data are drawn from our previous work on physi-
cal building network energy consumption. Each of the variables is a vector of 3,672 hour-by-hour ele-
ments during the summer period, using May 1 to September 30typical weather measurements in Albany, 
New York.  

3.4.2 Additional Data for Model 2 

The ‘Network’ data in model 2 is derived from one of a series of experiments held in one Columbia urban 
multistory residential dormitory in New York City (Peschiera, Taylor, and Siegel 2010). The data for 
model 2 were imported from the data collected in this series of experiments from November 2009 to 
March 2010. Each resident classifies every other resident either as a stranger, acquaintance, friend, or 
close friend.  Ratings of 0, 1, 2, and 3 indicate the closeness of the relationship. Then summation of these 
numbers is taken for each resident throughout his/her network, and is applied as the closeness index of 
each resident’s connection. After regressing energy reduction over the experiment period on this index, 
interpersonal closeness’ influence on energy conservation can be expressed in percentage value. With 
significance level of less than 5%, the conservation for an increment of 1 of the closeness index is found 
to reduce the energy consumption of the occupant by 3.45%. 

This closeness index serves as a bridge from individual building level network to inter-building level 
network analysis. We analogously compare each house to each other house in the block as each resident 
to each other in the urban residential building. Because the block consists of six houses, each house has 
five potential connections, with each rating from 0 to 3 as closeness. Altogether, each house’s closeness 
index to the network ranges from 0 to 15. Uniformly random numbers on [0,15] are generated as ‘Net-
work,’ and the variable ‘E’ for model 2 to is adjusted by equation (3) from ‘E’ in model 1 and serves as 
the updated target value. 

 
Eሺmodel	2ሻ ൌ Eሺmodel	1ሻ ∗ ሺ1 െ network ∗ 3.45%ሻ     (3) 
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3.4.3 Data Processing 

Data first go through a preprocessing procedure, such as normalization to [0,1], to fit into the neural net-
work dataset. The dataset is then divided into three subsets as training set, validation set, and test set, each 
contains 50%, 25%, and 25% of the total set respectively. The training set is used for computing the gra-
dient and updating the network weights and biases, and the data in the validation set is being monitored 
for its error to verify that the network does not overfit the data, while test set error is an indicator of gen-
eralization of the trained network. 

4 ANALYSIS 

4.1 Prediction of Block Energy Consumption Under Optimal Physical Scenario 

This subsection displays prediction results of stage 1, where the variables of model 1 under the optimal 
scenario(s3) are used to train the neural network. The validation result of the entire dataset is shown in 
Figure 4, and the energy consumption for a typical week in summer (August 19th to August 25th) is con-
tained in Figure 5. 
 

  

 Figure 4: Validation of model 1      Figure 5: Energy consumption under s3 

 Both figures support the validity of the simulation results of the artificial neural network. In Figure 4, 
simulated output points are placed against their targets, i.e., prior simulated results from EnergyPlus. The 
entire dataset approximately fall along a 45 degree line, verifying the proximity of the output and target 
values. Altogether, the correlation coefficient R between the two is high at 0.99329. In Figure 5, the ma-
jority of the simulated energy consumption points coincide with the prior simulated measurements of en-
ergy consumption. The percentage difference between the predicted values and previously simulated val-
ues is 0.04%, but it will vary for each simulation due to the randomly generated weights matrix and bias 
vector. The first five days of the week have different period consumption pattern with the last two days, 
which is because of disparate occupant schedule settings for weekdays and weekends. 

4.2 Prediction of Further Energy Conservation Under the Peer Influence of Human Networks 

As changing physical features results in optimized energy efficiency shown in subsection 4.1, introducing 
interpersonal closeness index into the network in stage 2 will lead to further energy conservation. The val-
idation result of the entire dataset is shown in Figure 6, and energy consumption under four levels of hu-
man network closeness settings during the same week is shown in Figure 7. 
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 Figure 6: Validation of model 2       Figure 7: Energy consumption under human networks 

 Supported by a correlation coefficient of 0.99353, the neural network incorporating human closeness 
index is well trained and provides strong predictive capability. Figure 7 shows energy consumption of the 
block for a typical day with the following human network settings: 

 each family is ‘stranger’ with the other five families, thus the closeness index for each family is 0; 
 each family is ‘acquaintance’ with the other five families, then the closeness index for each fami-

ly is 5; 
 each family is ‘friend’ with the other five families, then the closeness index for each family is 10; 

and 
 each family is ‘close friend’ with the other five families, then the closeness index for each family 

is 15. 
 An increment from each level of interpersonal networks to the next closer level will lead to an energy 
conservation of approximately 3.45%*5=17.25%, and a maximum of 3*17.25%= 51.75% energy savings 
are achieved when all families are close friends with each other, both of which are consistent with the 
simulated result from ANN as shown in Figure 7.There are numerous intermediate closeness levels be-
tween the all-stranger and all-close-friend levels, hence actual energy use reductions would likely fall 
somewhere within this range.  Values for differing levels could also be derived from applying the trained 
ANN. However, only the four unified network constructs are displayed here for simplicity. The shape of 
each line has a trough between 9am to 4pm, which is results from the occupant schedule setting that peo-
ple are generally out of their homes during the day on weekdays. 
 To integrate the physical and human stages, recalling scenario 3 consumes 12.28% less energy than 
the base scenario 0, the block shows a potential of consuming 1-(1-12.28%)*(1-51.75%)=57.68% less en-
ergy than the baseline block scenario in which no residents influence each other’s energy consumption. 

5 CONCLUSION 

In this paper we drew from earlier research that modeled a physical building network of a typical urban 
residential block of homes and that examined the role of peer networks on energy consumption in an ur-
ban residential building.  We then applied artificial neural network methods in two stages to examine the 
impact of integrating buildings as networks and human occupant networks on energy consumption. In the 
first physical stage, an optimized scenario was selected in which blinds transmittance was minimized dur-
ing summer.  In this case we found the energy consumption to be 12.28% less than the normal base sce-
nario. Using hourly data exported from EnergyPlus with the physical settings of this scenario, we then 
applied artificial neural network methods to predict inter-building level total energy consumption under 
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the optimized physical scenario for best energy efficiency. To include the inter-building occupant network 
influence on individual energy consumption decisions, we incorporated a closeness index derived from a 
residential experiment to predict further energy conservation under the influence of human networks in 
the second stage. Hourly energy consumption series were obtained for multiple assumed occupant net-
work closeness settings, with the maximum of 51.75% energy savings when all families are close friends 
with each other. Integrating the physical and human stages, the block shows a potential of consuming 
57.68% less energy than the baseline block scenario in which no residents influence each other’s energy 
consumption. Both ANN models achieve as high as 0.99 correlation coefficients for the entire dataset, sta-
tistically supporting the above quantitative conclusion.  

6 CONTRIBUTIONS AND IMPACTS 

This study answers the question of how occupant network closeness could affect the overall energy per-
formance at the inter-building level for an optimized physical building network design. Although the op-
timized human network design where occupants for all neighboring buildings in an urban residential 
block are close friends is unlikely, it is important to note the substantially larger potential impact of an op-
timized human network over an optimized physical network of buildings.  Future research should empiri-
cally examine whether and at what point a synergistic effect between physical networks of buildings and 
human networks occupying those buildings may occur leading to more optimal energy conservation out-
comes.  Occupant network influence may potentially be harnessed by urban planners to promote residen-
tial energy conservation in combination with physical designs by, for example, including more shared 
spaces where neighboring occupants may interact or installation of shared energy monitoring systems and 
incentives. The potential impact of inter-building level energy management is quantitatively illustrated by 
these results.  Adopting a network perspective of urban residential buildings and the networks of individ-
uals that occupy them has the potential to result in better energy efficiency and reduction in greenhouse 
gas emissions. 
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