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ABSTRACT

The load on today’s service-oriented systems is strongly varying in time. It is advantageous to conserve
energy by adapting the number of replicas according to the recent load. Over-provisioning of service
replicas is to be avoided, since it increases the operating costs. Under-provisioning of service replicas leads
to serious performance degradation and violates service-level agreements. To reduce energy consumption
and maintain appropriate performance, we study two service replication strategies: (1) arrival rate based
and (2) response time based policy. By simulation, we show that the average number of service replicas
and response time can be reduced especially when combining our proposed replication strategies and load
balancing schemes.

1 INTRODUCTION

Service-oriented systems, composed of distributed web services, are commonly hosted in cloud environ-
ments (Alonso, Casati, Kuno, and Machiraju 2004, Papazoglou, Traverso, Dustdar, and Leymann 2008).
Clients’ requests, consisting of multiple invocations of web services, show a strong time varying behavior,
e.g., time of day and day of the week effects (Arlitt and Jin 2000). Such systems process clients’ requests by
invoking corresponding types of service compositions, which are often represented as business processes
or as workflows of services and typically deployed upon startup of the system.In this paper, the term
“composition” refers to any composition of Web services, and the term “composition execution engine
(CEE)” refers to middleware for executing compositions, such as BPEL engines (Bianculli, Binder, and
Drago 2010). A dedicated engine, i.e., composition execution engine, invokes corresponding services, of
which multiple replicas are deployed on different system components.

Providers of service-oriented systems aim at delivering performance targets specified in service-level
agreements in a cost effective manner. Clearly, the performance of the systems hinges on the scalability of
the CEE and service replicas in processing time-varying requests. When a CEE effectively distributes loads
onto service replicas, the response time, i.e., service composition invocation time and the corresponding
queueing times, can be reduced (Bjorkqvist, Chen, and Binder 2010) without incurring extra operational
cost. Statically providing a maximum number of service replicas may guarantee the required performance
at a high operation cost, i.e., the cost is directly proportional to the number of active service replicas.
Related studies (Chen, Das, Qin, Sivasubramaniam, Wang, and Gautam 2005, Lin, Wierman, Andrew, and
Thereska 2011) show that dynamically and accurately adjusting service capacities, i.e., the number of active
service replicas, according to clients’ workloads leads to a significant cost saving without performance
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degradation. Consequently, to strike a good balance between performance targets and operational cost, it is
crucial to control the number of active replicas for each service, as well as to choose invocation distributing
algorithms at the CEEs.

Optimal provisioning of service replicas are mainly shown for simple web hosting systems (Gandhi,
Gupta, Harchol-Balter, and Kozuch 2010, Lin, Wierman, Andrew, and Thereska 2011), i.e., clients send
requests directly to a single service, modeled as a single queue with multiple servers. The load balancing
effect among service replicas is thus not considered by most existing studies on dynamic service provisioning.
The optimal rule of thumb is to control the number of service replicas as a non-decreasing function of
arriving requests. However, it is not clear what the optimal replication policy is for service systems
consisting of CEEs and multiple services with multiple replicas. The interaction of load balancing among
multiple replicas and replication policies is not well understood.

In this paper, we consider a provider of a service-oriented system, which consists of a CEE as well as
different service replicas. The CEE handles all clients’ requests by executing compositions and invoking
services. Consequently, all the workload and performance metrics related to service replicas can easily be
collected by the CEE. Various load balancing schemes, e.g., join the shortest queue (JSQ), can easily be
embedded in the CEE when invoking a service from a replica. To minimize the operational cost while
maintaining target performance metrics, we develop a service replica controller in the CEE, which adjusts
the number of active service replicas based on observed statistics, e.g., the arrival rate and response time.
Essentially, the CEE decides which service replica to invoke when executing compositions, and it decides
when to activate a particular service replica, respectively when to reduce the number of active replicas.

In particular, our performance objective is to minimize the number of active service replicas while
maintaining a target system utilization. To such an end, we first consider two load balancing algorithms,
random, a completely load oblivious one, and join the shortest queue algorithm, an almost optimal strategy
(Gupta, Harchol-Balter, Sigman, and Whitt 2007, Whitt 1986) in different system scenarios. To dynamically
adjust the provisioning of replicas according to the workloads, we develop a service replica controller based
on two policies, which activate and deactivate the active number of service replicas in slotted windows.
The first policy is based on the observed service arrival rates, denoted as A-policy. The second policy
controls the number of active service replicas via observed response time, referred to as R-policy.

The scientific contributions of this paper are twofold. First, we build a service-oriented system model,
which captures key system features, i.e., a CEE and multiple service replicas. In turn, we investigate how
a CEE can dynamically adjust the replicas provisioning by adopting load balancing algorithms and service
replication policies. Secondly, we develop two service replication policies, A-policy and R-policy, for
service-oriented systems. Both policies are very effective in reducing the number of active servers while
maintaining the performance targets, i.e., utilization and response time.

This paper is organized as follows: The system architecture is explained in Section 2. The proposed
service replication policies are described in Section 3. Section 4 contains the experimental results. Section
5 concludes this paper.

2 A SERVICE-ORIENTED SYSTEM

The basic components of a service-oriented system, depicted in Figure 1, are clients, a CEE, and service
replicas. In the following, we first explain the client requests of different types of service compositions and
how the CEE invokes the corresponding services from active service replicas. Secondly, we illustrate the
algorithms in the service invoker. The service replica controller and its replication policies are introduced
in the next section.

1. Clients and Request workloads
Clients send their requests to the CEE. We categorize workload requests into multiple types, each
of which are defined by the flows/composition of available services in the system. A request may
consists of multiple service invocations. Each type of workload request has different characteristics,
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Figure 1: System architecture of a service-oriented system.

i.e., different time-varying arrival rates. We assume that each request type is a Poisson process
(Kleinrock 1976).

For example, a system considered has two kinds of services, S;,S,. Two types of requests’ service
compositions are {S;,5>}, and {S2,S,}. For the first type of workload, S| is first invoked and then
S»>, whereas S, is invoked twice consecutively in the second type of workload.

Composition Execution Engine (CEE)

Once a request is received by the CEE, it immediately starts executing the requested workload.
The CEE uses one of T threads, to select and invoke the corresponding services, which are defined
in the composition of request workload. During the time when service invocation is executed
on replicas, the CEE threads are idling. Note that we interchangeably use replicas and service
replicas. The CEE invokes the services in a stateless fashion, i.e., each service invocation decision
is made independently of the previous invocations. For example, when the composition of a request
is {51,852}, a CEE thread randomly selects and invokes one of the service 1 replicas. After the
invocation of service 1 is completed, the CEE thread proceeds to invoke service 2 from one of its
replicas.

We assume a CEE has a single queue and multiple threads, which can only process a single request
at a time. All clients’ requests are served by CEE threads in a FCFS scheduling discipline. The
service selection and invocation of each thread is done independently from the others. A highly-
level queueing schematic of a service-oriented system is illustrated in Figure 2. We further assume
that a CEE thread has a time overhead, ¢., to select and invoke services specified in the request
compositions and 7, is modeled by an exponential distribution with a rate ..

Services and service replicas

The system hosts multiple types of services, denoted by S§;, each of which has n; number of
active replicas. A maximal number of service replicas, N, can be used among all service types,
i.e., Y;n; < N. Service replicas can be activated or deactivated in slotted windows by the service
replica controller. When the controller deactivates a replica, the replica receives no more invocation
requests, but it still needs to complete the processing of any remaining service invocations in its
queue. When a replica is activated, it takes negligible warm up time before starting to process the
incoming service invocation requests.

We model each service replica as a simple queueing system with one queue and one server, as
shown in Figure 2. An active replica processes service invocation requests sent by the CEE in
a FCFS manner, and the invocation time is assumed exponentially distributed with a rate u; The
response time of an service invocation is the sum of the invocation time and the queueing time at
the service replica.
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Figure 2: An abstract queueing model of a service-oriented system.

2.1 Service Invoker

As the CEE executes clients’ requests and invokes compositions of services from replicas, performance
metrics, e.g., the invocations at replicas’ queues, and average response time of service invocation, can be
collected from the CEE with a low overhead. As a result, we focus on centralized algorithms to design
the service invoker as well as the service replica controller described in the following section.

For all services in a composed request, the service invoker selects one of the available replicas to send
the request to via load balancing algorithms. The two load balancing algorithms considered are random and
Join the Shortest Queue (JSQ). The random algorithm is completely load oblivious, whereas JSQ is load
aware and efficient in reducing response time (Gupta, Harchol-Balter, Sigman, and Whitt 2007, Bjorkqvist,
Chen, Vukolic, and Zhang 2011) and balancing loads on replicas.

3 SERVICE REPLICA CONTROLLER AND REPLICATION POLICY

Intuitively, over-provisioning of service replicas may lead to a low response time of service invocations
and low utilization of active replicas, whereas under-provisioning of replicas leads to the opposite. For a
system provider, in addition to fulfilling client requests with low response times, it is crucial to manage the
replicas in a cost effective manner, i.e., keep the number of active replicas low and the active replicas well
utilized. Consequently, we aim to control service replicas such that the utilization of the active replicas is
maintained at a target value and the response time is low. Nonetheless, the lower the number of activated
replicas is, the more cost savings can be achieved.

The service replica controller here can activate and deactivate service replicas of different services in
slotted windows. At the beginning of a control window, statistics are collected from all active replicas and
replicas are then set to be activated or deactivated according to the replication policy. To achieve a target
utilization and low response time with a minimal number of active replicas, we develop two replication
policies: an arrival rate based policy (A-policy) and a response time based policy (R-policy).

3.1 Arrival Based Policy: A-Policy

To capture the time-varying nature of the request workloads, the A-policy collects the arrival rates, A;(z),
i €{l,...I}, of all services in all control windows, # € {1,...T}. Note that A;(¢) is the aggregate number
of arrivals to all replicas of service i. As the utilization of the active replicas needs to be kept at a target
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value, U*, the A-policy activates a number of service i replicas, n;(t), such that

Ai(1)

<U*, Vit
Mini(t)

Ui(t) =

where A;(¢) is the estimate of A;(r) and y; is the average invocation rate of a single server i replica. The

A-policy uses the most recently observed value as a prediction for A;(¢), i.e., using the arrival rate of the
previous control window,

Ai(t) = Ai(t — 1), Vi,r.
Essentially, the A-policy controls n;(¢) by

Ai(r —1)
= Vi, t.
m(0) = 1% ]
The A-policy aims to maintain the target utilization of system without optimizing the response time
of service invocations. As the arrival rates are aggregated from all active replicas, the A-policy overlooks
the impact of the load balancing algorithm used in the service invoker.

3.2 Response Time Based Policy: R-Policy

The R-policy aims to maintain the target utilization of the service replicas by monitoring the average
response time of the service invocations over active service replicas, R;, which implicitly incorporates the
effect of load balancing algorithms used at the invoker. The R-policy first computes the target response
time, R}, based on the target utilization and system model described below. Thereafter, it increases or
decreases the number of service replicas depending on the difference of observed response time, R;(7), and
R;.

To compute the target R} from U*, we assume all active replicas are equally utilized at the target
utilization, U*, in all control windows. With such an assumption, the response time of all active replicas can
be predicted by the single service replica, which is a well analyzed simple queueing system. Furthermore,
we propose to compute R} base on a simple M /M /1 queueing system (Kleinrock 1976),

)]

Note that M/M/1 is an simple first order estimation, which may not be accurate on all workloads, e.g.,
different statistical distribution, different systems scenarios, and different service invocation algorithms.

The R-policy adjusts the number of replicas by incrementing (decrementing) x’ (x?) the number of
existing active service replicas at the beginning of the windows. When observing that R;(r — 1) is above R*,
the R-policy activates ¥’ more replicas for service i. To avoid a severe under-provisioning of replicas, the
R-policy is conservative in deactivating replicas, i.e., replicas are deactivated only when R(r — 1) < R*«
where 0 < & < 1. The higher the o value is, the more aggressive the R- pohcy is in decrementing the
number of service replicas. For example, the R-policy sets R* =5, y' = x¢ =2, and a = 0.8. When
R(t — 1) is observed to be less than 5+ 0.8 time units, two service replicas will be deactivated. When
R(t— 1) is more than ¢ time units, two extra service replicas will be activated. Note that the values of ',
x? and o can be optimized by training the controller with different workloads, but such an optimization
procedure is out of the scope of this paper.

4 EVALUATION

In this section, we evaluate the proposed replication policies combined with service invocation algorithms
by the saving of replicas and target performance metrics, i.e., the response time and the utilization of the
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replicas. We first describe the simulated environment and clients’ workload requests in two different system
scenarios. Our evaluation results, based on the average of ten simulation runs, show that both service
replication policies, the A-policy and the R-policy, can effectively reduce the consumption of replicas,
especially when using the JSQ balancing algorithm, while maintaining the target utilization and minimizing
the response time of service invocations.

4.1 Simulator

We built an event-driven simulator of service-oriented systems, shown in Figure 2, in Java. Clients generate
requests, which ask for different types of service compositions. A CEE has T = 500 threads to select and
invoke composed services in a request in a parallel fashion. The processing time of selecting and invoking
a service by a CEE thread is modeled using an exponential distribution with a rate . = 2. The service
invoker uses random or JSQ algorithms for selecting service replicas on a per service invocation basis. The
service replication controller uses either the A-policy or the R-policy to activate/deactivate replicas of all
services at the beginning of a window, which has a fixed length of 500 seconds.
In particular, we consider the following two specific system scenarios and their request workloads:

e System scenario I:
The system provides a single kind of service, namely Sy. Clients’ requests correspond to three types
of request workloads (or service compositions): {So}, {So,S0}, and {So,S0,S0}. The maximum
number of replicas available is 25. The arrival rates of each workload type is depicted in Figure
3 (a). The average service rate of a single service replica is uy = 1, following an exponential
distribution.

e System scenario II:
The system provides two services, namely Sp and S;. Clients requests correspond to three types of
request workload (or service compositions): {S1,S1,S0}, {So0,S0,51}, and {S,S0,S1}. The maximal
number of replicas available for So and S| are 28 and 18, respectively. The arrival rate of each type
is depicted in Figure 3 (b). The average service rate of a single service replica for Sy and S| are
Uo =1 and yu; = 1.5, following exponential distributions.
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(a) System scenario 1. (b) System scenario II.

Figure 3: Arrival rates of different types of clients’ requests (service compositions).

Note that we further assume client requests of all types arriving at both system scenarios to be Poisson
processes with average rates as depicted in Figure 3. Moreover, we assume the request arrival rates to be
constant within a control window.

We set the target utilization of the active service replicas to be 80%, U* = 0.8, for both the A-policy
and the R-policy under both system scenarios. Following Eq. 1, the target response time is R* = 5 for the
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Table 1: System scenario I.

Replication policy A-policy R-policy Static Policy
Invocation algorithm | random \ JSQ | random \ JSQ random
| Replica savings [%] | 26.65 | 26.58 | 15.08 | 24.05 | 0 \
y Uo [%] | 7305 [ 7326 | 6299 [7041 ] 5327 |
y Ry [s] | 56 | 168 ] 503 [ 431 ] 267 |

R-policy. The other parameters used in the R-policy are the number of replica increments, x', the number of
replica decrements, ¥, and the response time tolerance threshold for deactivating replicas, &. As optimal
values of those parameters depend very much on the workloads, we specify them in the subsections of
system scenarios.

We collect the following performance metrics when evaluating the two proposed policies combined
with the invocation balancing algorithms:

e Replica savings. This is computed as the average number of active replicas normalized by the
maximal number of replicas available for each service. Using this metric, one can estimate the cost
savings, given the target performance.

e U, average utilization of active replicas of S;. This is computed from the utilization of the active
replicas of service i, U;(t), across all control windows.

e R;, the average response time of an invocation of service i. In particular, to achieve U* = 80%, the
R-policy adjusts the number of active replicas by maintaining R; = 5.

e The average response time of all types of client requests, each of which consists of one or more
service invocations. This value includes the CEE processing time, the service invocation time and
the corresponding queueing times.

For the purpose of comparison, we additionally simulate the static replication policy which keeps the
number of active service replicas at the maximum, in combination with the random policy.

4.2 System Scenario I

The control parameters used in the R-policy are ¥’ =1, x¢ =1, and a = 0.8. Essentially, the R-policy
activates one more replica when the observed response time of service invocation is more than R* =5,
whereas it deactivates one replica when the observed response time is less than 4 (5-0.8). We summarize
the simulation results of scenario I in Table 1. In Figure 4, we illustrate the run-time results of a single
simulation run under the A- and R- policies combined with JSQ. The following observations can be made:

e In general, the A-policy can achieve a better replica saving and target utilization value, U* = 80%,
than the R-policy. As the A-policy does not consider the impact of invocation algorithms, there
is no difference in replica savings between random and JSQ. On the contrary, the R-policy can
achieve higher replica savings under JSQ than random.

e JSQ can efficiently decrease the response time of service invocation, especially when the number
of replicas are well provisioned. Under the A-policy and JSQ, the response time is lower than with
the static policy while achieving a better replica utilization and cost saving.

o From the perspective of the response time, the R-policy indeed achieves its target values, i.e., 5, for
both random and JSQ algorithms, though the average utilization of active replicas, Uy, is slightly
below the target value. As the R-policy only activates and deactivates one replica at a time, it adjusts
the number of service replicas in a smooth manner. Consequently, the values of Ry(¢) and Upy(r)
depicted in Figure 4 (b) both oscillate more with the R-policy than with the A-policy. Clearly, the
incremented and decremented number of replicas specified in R-policy are highly correlated with
the workload. The optimal parametrization of the R-policy will be future work.
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Table 2: System scenario II.

Replication policy A-policy R-policy Static policy
Invocation algorithm random JSQ random JSQ random
Services S() ‘ Sl S() ‘ Sl So ‘ S1 S() ‘ S1 S() ‘ Sl
] replicas saving [%] \ 15.40 \ 11.33 \ 14.93 \ 11.30 \ 11.17 \ 11.12 \ 18.79 \ 20.74 \ 0 \ 0 ‘
] Ui[%] \ 72.94 \ 72.86 \ 72.87 \ 73.01 \ 69.45 \ 72.55 \ 75.54 \ 81.10 \ 61.63 \ 64.64 ‘
y Ri [s] | 979 | 420 | 324 | 1.23 | 775 [ 466 [ 893 [ 481 | 339 | 245 |

o From Figure 4 (a), it can clearly be seen that the A-policy can maintain the target utilization values
with a maximum of one window delay, due to the last value prediction of arrival rates. Nevertheless,
such a prediction scheme for arrival rates may not be optimal for highly varying request workloads.
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(a) A-policy with JSQ. (b) R-policy with JSQ.

Figure 4: System scenario I: run time results of all control windows.

4.3 System Scenario I1

The control parameters used in the R-policy are y' =3, ¥¢ =1, and o = 0.8. Essentially, the R-policy
activates three more replicas when the observed average response time of service invocation in a window
is more than R* = 5, whereas it deactivates one replica when the observed response time is less than 4. We
summarize the simulation results of scenario II in Table 2. We illustrate the run-time results of a single
simulation run under the A- and R-policies combined with JSQ in Figure 5.

The workload in scenario II is more dynamic than scenario I, as shown by A;(¢). Compared to scenario
I, the replica savings of both A- and R-policies decrease. Moreover, the difference in replica savings
between the A- and R-policies diminishes. For Sy, the R-policy combined with the random algorithm can
have a better replica saving, lower utilization, and lower response time than the A-policy with the random
algorithm. This implies that the last value prediction for arrival rates used in the A-policy may not optimal.
On the other hand, the parameters used in the R-policy appear to be reasonable choices.

The utilization of active replicas for all services under both policies are well kept under the target
values, whereas the invocation response times are quite above the target response time, 5, especially for Sp.
Similar to scenario I, one can make the observation that (1) JSQ reduces response time effectively under
a given policy, (2) the values of U;(¢) and R;(r) fluctuate more under the R-policy, and (3) the difference
between JSQ and random is smaller when applying the R-policy.
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Figure 5: System scenario II: run time results of all control windows.

4.4 Response Times of Client Requests & Service Invocation

We depict the response times of client requests, which are configured into three types in scenarios I and II,
in Figure 6. For scenario I, the request response times are well captured by the response time of service
invocations and CEE processing time. Specifically, applying the A-policy and JSQ results in the lowest
request response times. Similarly, for scenario II, the request response times are well reflected by the
invocation response times under both policies and algorithms, except the R-policy combined with JSQ.
When applying the R-policy with JSQ, the replica controller is so aggressive in saving replicas that all
active service replicas, as well as the CEE, become very saturated (see replica savings in Table 2). Although
the CEE here has a high number of threads, it is still limited in accommodating all the arriving requests
immediately and the queueing times are incurred at the CEE.

20 : 40 :
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0 : ‘ 0 : ‘ ‘
Type 1 type 2 Type 3 Type 1 Type 2 Type 3
(a) System scenario 1. (b) System scenario II.

Figure 6: The average response time of all three types of client requests.

S CONCLUSION

In this paper, we study a service-oriented system hosting a CEE and multiple services. To achieve the
objectives of reducing the operational cost, maintaining the system utilization, and minimizing the invocation
response time, we develop two service replication policies, namely A-policy and R-policy, in combination
with different load balancing algorithms, random and JSQ. Our simulation results show that both proposed
policies can achieve the objectives under different system scenarios and request workloads well. In particular,
when applying the A-policy with JSQ, replica saving can be maximized and a very low response time
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maintained, compared to the static provisioning of a maximal number of replicas. In the future we will
explore our proposed replication policies using real system traces and develop auto tuning mechanisms for
workload prediction, used in the A-policy, and control parameters, used in the R-policy.
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