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ABSTRACT

Motivated mainly by infrastructure-network management problems, our group has been pursuing analysis
and design of various models for network dynamics, which vary in their specifics but broadly can be
viewed as either stochastic flow or synchronization processes defined on a graph. So as to obtain a common
framework for these models, here we introduce broad and complementary models for linear stochastic flow
and synchronization dynamics in networks, that are structured only in that the network’s state evolution
is Markov and conditionally linear. We first provide mathematical and graphical formulations for each
model, and then verify that the models are broad enough to capture several common synchronization/flow
networks. As a first analysis, graph-theoretic characterizations of these models’ asymptotics are given;
these results generalize and enhance known graphical characterizations of existing synchronization/flow
models. A comparison of the stochasticity of different flow network models within the framework is also
included.

1 INTRODUCTION

During the last 25 years, scientists in several disciplines have advanced the perspective that many complex
phenomena occurring in networks can be abstractly but fruitfully represented using simple dynamical
models defined on graphs. A number of simple graphical dynamical models have been introduced within
the scope of this science of networks (e.g., Strogatz (2001), Li and Chen (2003), Wan, Roy, and Saberi
(2008), Krajci and Mrafko (1984), Roy, Sridhar, and Verghese (2003), Xue et al. (2010)). While these
network models vary in their specifics, two common themes thread together many of the models:
1) Synchronization phenomena, wherein states or opinions of networked autonomous agents come to a
common value through interaction and communication, are widely captured.
2) Alternately, many models capture network flow dynamics, that is, the movement of material or items
among an infrastructural network’s components.

The many network models for synchronization and flow have been motivated by applications from
different research communities, and have significant differences in their dynamics: for instance, they may
have continuous-valued or discrete-valued (or hybrid) states, may have stochastic or deterministic updates,
and may exhibit complex state dependencies in their evolution (e.g., Roy, Sridhar, and Verghese (2003),
Ribeiro et al. (2007), Xue et al. (2010), Xue et al. (2010), Xue et al. (2011)). Yet, the models have in
common that the graph topology plays a critical role in the model’s dynamics. For some of these models,
connections between the graph topology and both asymptotic and transient characteristics of the dynamics
have been obtained, and in turn classes of graphs that yield desirable or undesirable dynamical properties have
been found. Very recently, for a very few network models, tools for estimation and design of dynamics that
exploit the graph topology also have been developed (e.g., Wan, Roy, and Saberi (2008), Xue et al. (2011),
Xue and Roy (2011)). However, in many of these domains, graph-based analysis and estimation/design
of network dynamics remain areas of active research, and graph-theoretic characterizations remain limited
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and incomplete. The need for further analysis and design tools for such common network models is a key
motivation for development of a common modeling framework for flow and synchronization problems, and
consequent development of an integrated toolbox for analysis and design (and comparison among models).
The research presented in this article is a first step in this direction.

In our ongoing research, which is largely focused on automated decision-management in infrastructure
networks, we are using several different synchronization and flow network models to represent both physical
network dynamics and algorithmic processes. These include both discrete-valued and continuous-valued
synchronization models for consensus dynamics and clustering processes, queueing-network and other
stochastic-flow models for traffic, and Markov-chain models, among others (e.g. Xue et al. (2011)). In
studying these various network models, we are encountering common problems in network parameterization,
simulation/analysis of dynamics, and state estimation for each model, that seem to admit similar but not
identical solutions. For some of the models, parts of the desired analysis at least are well-established and
studied, but these results often do not directly transfer to the other network models, while other analyses
perhaps have not been studied thoroughly for any of the models. A more general network modeling
framework will permit us to better understand essential properties of flow and synchronization processes,
and hence allow us to extend graph-based analysis and estimation/design tools to a much broader family of
networks. At the same time, a useful modeling framework must be sufficiently structured to permit efficient
simulation and statistical characterization of the dynamics, so as to overcome the “curse of dimensionality”
that is ever-present in complex stochastic network models.

The purpose of this article is to introduce dual stochastic modeling frameworks for flow and synchro-
nization networks that can capture numerous common models in the literature, and yet permit extensive
graph-theoretic characterization of simulated dynamics. To this end, we begin by defining the broad stochas-
tic modeling frameworks for flow and synchronization networks (Sections 2 and 3), and show that numerous
commonly-studied models fit within these classes. We then pursue an introductory graph-theoretic analysis
of the two models (Section 4), focusing here on full characterization of the networks’ asymptotics and
briefly on model comparison (Sections 4.2 and 4.3). In introducing the stochastic-modeling frameworks
for flow and synchronization, we pursue two key outcomes:
1) We illustrate a broad family of networked flow- and synchronization- processes, including stochastic
and deterministic models, discrete- and continuous-valued dynamics, and even certain apparently-nonlinear
processes, admit a common representation and common graphical analyses. This common representation,
which only enforces Markovianity and a certain conditional linearity in the state, also permits us to compare
the dynamics of different flow- and synchronization- models.
2) We aim to generalize and enhance the graph-theoretic analyses of particular flow- and synchronization-
processes in the literature. Our methodology demonstrates that graphical analysis methods that have been
developed for a particular model can provide new insights into general flow and synchronization networks.
In turn, new graph-theoretic insights can be obtained for other examples in the literature, and for new
models. For instance, our work illustrates that the graphical asymptotic analysis of Markov chains translates
to the broad flow and synchronization networks introduced here, and gives interesting new insights into
e.g. distributed averaging (synchronization) algorithms.

A Notation for Graphs: At several points, our model formulation requires definition of graphs from
state matrices describing linear dynamics on networks. The following notation will be used for such graph
definitions: for an n×n state matrix A, the notation Γ(A) will be used to describe a weighted and directed
graph with n vertices, labeled 1, . . . ,n. An edge will be drawn from vertex i to vertex j if and only if
a ji > 0 , with the weight of the edge equal to a ji.

2 THE LINEAR STOCHASTIC FLOW NETWORK MODEL

Flow network models are concerned with tracking the movement of items or material among network
components or nodes. These models have found wide application in fields ranging from traffic engineering
to cell biology (e.g., Roy, Sridhar, and Verghese (2003), Ribeiro et al. (2007)). In this section, let us
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introduce a tractable framework for modeling flow-network dynamics defined on a graph (Section 2.1),
and confirm that it encompasses several widely-used stochastic and deterministic models for flows (Section
2.2).

2.1 Mathematical Formulation

A network with n components/nodes, labeled 1, . . . ,n, is considered. We are concerned with tracking in
discrete time a scalar state associated with each network component, that represents an amount of material
or number of items (of a single type) at the component. Specifically, we use the notation ri[k] for the scalar
state of component i (i = 1, . . . ,n) at discrete time k (k = 0,1,2, . . .), and refer to this state variable as the
local quantity of component i at time k.

The local quantities of the network components are modeled as evolving in discrete time, due to
conservative flows between the components. We first posit a general stochastic model for the flows, and
discuss a linear-algebraic- and graph-theoretic- representations of the model dynamics. Subsequently, we
impose a weak conditional linearity condition on the model dynamics, that facilitates analysis.

First, let us describe the general (possibly non-linear) stochastic flow network model. In this model,
we view the local quantities of the components as being updated by a two-stage process at each time step,
namely a flow-determination stage followed by a flow-combination stage. First, in the flow-determination
stage, each local quantity ri[k] is represented as forming flows fi j[k], j = 1, . . . ,n, to the components in the
network (including the component i). Each flow is assumed non-negative ( fi j[k]≥ 0), and the total of the
flows equals the local quantity (∑n

j=1 fi j[k] = ri[k]). Flows determination from local quantities is assumed
general: it may be either deterministic or stochastic, and the flows fi j[k] may depend on ri[k] in an arbitrary
way. We permit correlation between stochastic flow determinations originating from different components,
but do assume that flow-determinations at time k are independent of the system’s past history given the
time-k local quantities. Second, in the flow-combination stage, the incoming flows to each component
are summed to determine the local quantity at the component at the next time-step. That is, we compute
ri[k+1] as follows: ri[k+1] = ∑

n
j=1 f ji[k]. We have thus specified the stochastic flow network update.

We develop a matrix-theoretic formulation of the stochastic flow network, to facilitate graphical analysis
of the model. To do so, let us define a quantity vector as r[k] =

[
r1[k] · · · rn[k]

]T , and a flow vector for

each component i as fi[k] =
[

fi1[k] · · · fin[k]
]T . To continue, we note that the flow-determination stage of

the flow-network’s update enforces that a fraction of each local quantity is directed to each component as a
flow. Thus, it is automatic that the flow vector fi[k] can be written as fi[k] = pi[k]ri[k], where the n×1 flow
fraction vector pi[k] has entries that are non-negative and sum to 1 (formally, pi[k]≥ 0 and 1T pi[k] = 1).
Here, the vectors pi[k] may be stochastically determined, and further the pi[k] may depend on ri[k]. Next,
using this expression for flows together with the flow-combination update, the quantity vector at time
k+1 can be expressed in terms of the vector at time k as r[k+1] = P[k]r[k], where the flow state matrix
P[k]

4
=
[
p1[k] . . . pn[k]

]
is a column-stochastic matrix that (in general) is stochastically-determined and

dependent on r[k]. Thus, the matrix representation has been achieved.
The above matrix notation suggests one graphical representation of the flow-network dynamics. The

(possibly randomly-generated) matrix P[k] indicates flows of material/items at time k, and hence naturally
admits a graphical interpretation. Thus, viewing P[k] as an instantiation of the flow-network dynamics, we
draw a corresponding flow instantiation graph Φ[k] as Φ[k] = Γ(P[k]) for time k. The instantiation graph
captures the particular splitting of local quantities that occur to form flows at time k, i.e. an edge is drawn
from vertex i to j if material/items flow from component i to j at that time, and the weight captures the
fraction of the quantity at component i that flows in this direction. We stress that a flow network may have
many possible instantiations, and so instantiation graphs, at each time k.

Next, let us introduce a notion of linearity in the flow-network dynamics, that facilitates many graph-
theoretic characterizations yet allows representation of several interesting dynamics. To introduce this notion
of linearity, we first note that the flow-network dynamics described above are Markovian, in the sense that
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the quantity vector at time k+1 can be determined only from the quantity vector at time k, given the whole
past history of the network. Based on this Markovian structure, we can specify the model in terms of the
conditional distribution for the quantity vector at time k+1 given the quantity vector at time k, for each
k. In turn, conditional statistics for the time-(k+1) quantity vector given the time-k quantity vector can
be envisioned. Here, let us define linearity of the model in terms of the first-moment conditional statistics,
i.e. the conditional mean for next quantity vector given the current one, or E(r[k+1] |r[k]). Specifically,
we will view the stochastic flow network as linear, if E(r[k+1] |r[k]) is a purely linear function of r[k]
for all k, or equivalently if E(r[k+ 1] |r[k]) = Q[k]r[k] for a fixed matrix Q[k] (that does not depend on
r[k]) for each k. Some remarks on linear stochastic flow networks are needed:
1) The condition for linearity does not require that the P[k] be independent of r[k], only that the conditional
mean of the next quantity vector is a linear function of the current one. One example in Section 2.2 shows
that even some dynamics with such state dependences may be linear.
2) For linear stochastic flow networks, the matrix Q[k] permits us to specify another graphical representation.
First, since the matrix Q[k] maps the quantity vector at time k to expected flows and hence the expected
quantity vector at time k+1, we refer to Q[k] as the flow expectation matrix. Second, we define a weighted
and directed flow expectation graph Φ[k] = Γ(Q[k]). The flow expectation graph captures whether or not,
on average, there is a flow between each pair of vertices at each time.
3) Some of the results that we obtain depend on time-invariance in addition to linearity of the quantity
vector’s conditional expectation. If E(r[k+ 1] |r[k]) = Qr[k] for some fixed Q for all k, we will refer to
the stochastic flow network model as a linear time-invariant or LTI one. A single flow expectation graph
Φ = Γ(Q) can be defined for an LTI stochastic flow network.

2.2 Examples

To illustrate the scope of our modeling framework, we demonstrate that three common flow network models
can be posed as linear stochastic flow networks.

Conservative Linear Fluid Flow Model

Classical fluid flow models track continuous-valued quantities (i.e., amounts of material) at network
components. In a conservative linear model, deterministic or stochastic fractions of the quantity at each
component are viewed as flowing to multiple components over each time interval (e.g., Berman, Neumann,
and Stern (1989)). The update equation of such a fluid flow model can be expressed in the stochastic flow
network formalism, as follows: r[k+1] = P[k]r[k], where the flow state matrix P[k] may be deterministic
or randomly selected from a finite sample space, but has no dependence on r[k] or any other previous state.
We note here that the jth entry in pi[k] is the exact fraction of ri[k] that flows to component j between
times k and k+ 1. That is, only the independent selection of P[k] may be stochastic, whereupon exact
fractional flows of the quantities is enacted in the network. This simple fluid flow model has been used
to represent such diverse phenomena as flow of goods and materials in transportation systems, fluids, and
queueing dynamics in a high-traffic limit.

It is straightforward to ascertain that the model is a linear stochastic flow network. To this end, let
us define P̄[k] as the expectation of P[k] (or E(P[k]) = P̄[k]). In this notation, we have E(r[k+1] |r[k]) =
E(P[k]r[k] |r[k]) = E(P[k] |r[k])r[k] = E(P[k])r[k] = P̄[k]r[k]. Thus, the model is linear, with Q[k] = P̄[k].

Markov Chain

A finite-state Markov chain is a classical stochastic model that captures a single discrete-valued state’s
Markov evolution, or equivalently the stochastic movement of a single object among a graph’s vertices.
Markov chains have found wide application in fields ranging from telecommunications to cell biology, and
have been extensively analyzed (Kemeny and Snell (1976), Brémaud (1999), Krajci and Mrafko (1984)).
Here, let us consider a Markov chain whose state can take on n possible values at each time), say 1, . . . ,n.
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The state is viewed as evolving from each value to one of the others with some probability, as captured
in a transition matrix A[k] (where, specifically, the entry a ji[k] is the transition probability from value i to
value j at time k). We note that the initial value of the Markov chain’s state is specified or described by a
probability distribution.

Let us now argue that the Markov chain can be formulated as a linear stochastic flow network with n
components. In the flow-network formulation, we will say that the quantity ri[k] of component i is 1 if the
value of the Markov chain is i (i.e., the single object is at location i), and is 0 otherwise. From this definition,
we see that the quantity vector r[k] is the 0−1 indicator vector of i (typically denoted ei) when the Markov
chain is in status i. The evolution of the Markov chain from time k to time k+1 can be captured as follows
using the flow-network formalism: each column i of the matrix P[k] (equivalently, the flow vector pi[k]) is
chosen independently to be an indicator vector, specifically to equal the vector e j with probability a ji[k]. Then
we notice that r[k+1] = P[k]r[k] equals e j with probability a ji[k] if r[k] = ei for all i and j, which matches
exactly the Markov chain’s update. In other words, this update captures that a unit quantity at component
i will flow as a single unit to a component j, with appropriate probability. Thus, we have phrased the state
update as as a stochastic flow network. To check linearity, we first note that E(pi[k]) =

[
a1i[k] · · · ani[k]

]T ,
and hence that E(P[k]) = A[k]. Further noting the independence of P[k] from the past quantity vector r[k],
we have E(r[k+ 1] |r[k]) = E(P[k]r[k] |r[k]) = E(P[k]|r[k])r[k] = E(P[k])r[k] = A[k]r[k]. Thus, we have
verified that this stochastic flow network is linear, with expectation flow matrix Q[k] equal to A[k].

A Probabilistic Routing Model

Let us describe a third common model, which we call a probabilistic routing model, that can be viewed as
a stochastic flow network. In this model, component quantities comprise integral numbers of discrete units,
each of which independently flow through the network in a Markovian fashion. Dynamics of this form
are observed in infinite-server queueing network representations, and have found application in modeling
data-packet transmission and air transportation networks among many other domains (e.g., Roy, Sridhar,
and Verghese (2003), Ribeiro et al. (2007)).

Let us describe the dynamics of such a probabilistic routing model directly in the stochastic flow-
network modeling framework. The quantity variables ri[k] that we track represent the number of discrete
units at each component i at time k, and are constrained be integral. Let us begin by describing the flow-
determination stage at each component i. At time k, each of the ri[k] units at component i are independently
routed to other components (including itself) with certain probabilities, which are specified in a probability
vector di[k] (i.e., the jth entry in di[k] is the probability with which each unit at component i will flow to
component j). Therefore, the flow vector fi[k] follows the multinomial distribution with parameters ri[k]

and di[k] (see Mosimann (1962)), and has
(

n+ ri[k]−1
n−1

)
possible values (with probabilities specified

by the multinomial distribution). The flow fraction vector pi[k] is given by pi[k] = fi[k]/ri[k], and so is
simply a scaled version of the multinomially-distributed vector pi[k]. For example, let us assume that
n = 2, r1[k] = 3, and d1[k] =

[
0.2 0.8

]T . Then, p1[k] has 4 possible values, which are
[
0 1

]T ,
[1

3
2
3

]T ,[2
3

1
3

]T ,
[
1 0

]T , with probabilities (0.8)3, (0.2)(0.8)2, (0.2)2(0.8), (0.2)3, respectively. Since we have
described the generation rule for the flow fraction vector pi[k], we have thus specified the instantiation
matrix P[k] of the probabilistic routing model.

Now, let us discuss the linearity of the model. We first note that the instantiation matrix P[k] ( which is[
p1[k] . . . pn[k]

]
) actually depends on r[k], since the distribution of pi[k] depends on ri[k]. However, the

model itself is still linear even with such a state dependence. Specifically, since the conditional first moment
of the scaled multinomially-distributed vector pi[k] is E(pi[k] |r[k]) = di[k] (which is in fact independent
on r[k]), we have E(r[k+1] |r[k]) = E(P[k]r[k] |r[k]) = E(P[k] |r[k])r[k] =

[
d1[k] . . . dn[k]

]
r[k]. Thus,

the stochastic flow network is linear with Q[k] =
[
d1[k] . . . dn[k]

]
.
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3 THE STOCHASTIC SYNCHRONIZATION NETWORK

Models for synchronization (or consensus) among networked autonomous agents have also found application
in diverse fields, including distributed computing, analog-circuit design, cell-biology, and particle physics,
among many others (e.g., Tsitsiklis (1984), Liggett (1999), Xue et al. (2010), Xue et al. (2010)).
Fundamentally, synchronization models are often concerned with tracking either physical- or information-
states of essentially autonomous agents, which through decentralized interaction or communication achieve
identical state values. Although synchronization and flow dynamics are typically present in very different
applications, we will see that the topological structures and analysis/design of flow and synchronization
networks are strongly interconnected, and a common theory can be developed for both classes of models. Our
purpose here is to introduce a general discrete-time stochastic linear modeling framework for synchronization
(Section 3.1), and to show that the model captures many synchronization models available in the literature
(Section 3.2).

3.1 Mathematical Formulation

In analogy with the flow networks, Let us first define stochastic synchronization models in some generality,
and then focus on the the linear case. Formally, we consider a network of n agents, labelled 1, . . . ,n, and
associate with each agent i a scalar variable si[k] which we call the opinion of agent i. In contrast with
the flow model, state variables may be positive or negative for the stochastic synchronization network. We
find it convenient to assemble the opinions into a single opinion vector s[k] =

[
s1[k] · · · sn[k]

]T .
Each agent is viewed as updating its opinion in discrete time, in such a way that its neighbors’ current

opinions are incorporated. Specifically, we model each agent’s next opinion as a weighted non-negative
unitary linear combination of multiple agents’ current opinions. That is, agent i’s opinion is updated as
si[k+1] = gT

i [k]s[k], where the influence vector gi[k] is entrywise nonnegative and sums to 1 (gT
i 1 = 1).

Let us stress here that each influence vector gi[k] may be a deterministic or stochastic quantity, which may
be correlated with g j[k] ( j 6= i) and may even depend on s[k] (but otherwise must be independent of the
past history of the network). Assembling the opinion-update equations of the n agents as a single vector
equation, we obtain s[k+1] = GT [k]s[k], where G[k] =

[
g1[k] . . . gn[k]

]
is a column-stochastic influence

matrix that in general may be stochastic and concurrent-state dependent.
Let us define graphs that describe the interactions among agents in the stochastic synchronization

model’s opinion update. In particular, we define an n-vertex influence instantiation graph Λ[k] at time k
as Γ(GT [k]), i.e. as the weighted and directed graph associated with the state matrix GT [k] at time k. The
graph can be interpreted as follows: an arrow is drawn from vertex i to vertex j if component i’s current
opinion influences the next opinion of component j, with the weight equal to the strength of the influence.
We notice that an influence instantiation graph may be stochastic, time-varying, and state-dependent, but
always has the property that the sum of the weights on edges entering each vertex is 1.

Finally, let us identify a subset of the stochastic synchronization network models defined above, that
are specially structured in that their expected dynamics are linear. Specifically, we call the synchronization
model above a linear stochastic synchronization network, if the state dynamics satisfy E(s[k+1] |s[k]) =
HT [k]s[k], where the influence expectation matrix HT [k] is a state-independent matrix, for each k. In
other words, we say that the synchronization network is linear, if the expectation of the next opinion vector
given the current one is a linear function of the current opinion vector. If, further, the expected influence
matrix HT [k] is time-independent (say equal to HT ), we shall call the model a linear time invariant (LTI)
stochastic synchronization network. For linear and LTI stochastic synchronization networks, we find it
convenient also to define graphs based on the influence expectation matrix. In particular, we define the
influence expectation graph at time k for the linear model (or simply the influence expectation graph for
the LTI model) as Λ[k] = Γ(HT [k]) (respectively, Λ = Γ(HT )).

3234



Xue and Roy

Remark: Trivially, the transpose of an influence matrix is a flow matrix, and vice versa. Deeper
consideration exposes a tighter duality, namely that a certain time-reversal of a synchronization process is
a flow-network dynamics, and vice versa. Details are omitted in the interest of space

3.2 Examples

To highlight the score of the linear stochastic synchronization network, we introduce three widely-studied
examples of the model.

Distributed Averaging Algorithm

Distributed averaging algorithms, in which network agents have continuous-valued opinions that evolve
according to purely linear updates, have been extensively studied. Such models have been widely used to
represent distributed decision-making processes in the computing sciences, and are classically the models
considered in synchronization processes (Tsitsiklis (1984), Blondel et al. (2005), Roy, Saberi, and Herlugson
(2007)). Let us give a precise formulation of such a model as a stochastic synchronization network. To this
end, let us consider a network model with n agents, where agent i has associated with a scalar opinion si[k]
at time k. Then, agent i’s next opinion, si[k+1], is generated as a linear combination of all agents’ current
opinions, i.e. si[k+1] = gT

i [k]s[k], where the jth entry of gi[k] is the weight of influence from agent j at
time k. We note here that the influence vector gi[k] can be either deterministic or independently selected
from a sample space at each time.

Using a similar approach to the linearity analysis of the fluid flow model, we can show that the
distributed averaging algorithm is linear, with HT [k] = E(GT [k]).

Voter Model

A voter model is a network model in which each agent independently stochastically chooses one other
agent (maybe itself) according to a probability vector, and then copies the chosen agent’s current opinion
as its next opinion (Liggett (1999), Asavathiratham (2000), Xue et al. (2010), Xue et al. (2010)). Let us
formulate the voter model as a stochastic synchronization network. We assume that each agent’s opinion is
initially an arbitrary real scalar. (Often, binary voter models, in which the opinions are constrained to be 0
or 1, are studied; however, our formulation permits propagation of arbitrary opinions.) At each time step,
agent i’s next opinion is determined as follows: the agent i selects a neighbor j with probability c ji[k] (where
c ji[k]> 0 and ∑ j c ji[k] = 1), whereupon it copies the current status of the neighbor (i.e., si[k+1] = s j[k]).
Equivalently, we can write the updating dynamics as si[k+1] = gT

i [k]s[k], where gi[k] = e j with probability
c ji[k]. Thus, we have posed the dynamics as that of a stochastic synchronization network.

Next, let us discuss the linearity of the voter model. According to the above description, we obtain

that E(gi[k]) = ci[k], where ci[k]
4
=

[
c1i[k] · · · cni[k]

]T (and cT
i [k]1 = 1).Since gi[k] is independent of

previous and current opinion, we then have E(s[k + 1] |s[k]) = E(GT [k]s[k] |s[k]) = E(GT [k] |s[k])s[k] =
E(GT [k])s[k] =

[
c1[k] · · · cn[k]

]T s[k], which indicates that the voter model is a linear synchronization

network model, with HT [k] =
[
c1[k] · · · cn[k]

]T .
One further note about the binary voter model is worthwhile. For this case, we note that the expected

opinion vector contains the probabilities that each agent has status 1.

A Mixed Model

Finally, let us introduce an apparently-nonlinear stochastic synchronization network model that is a state-
dependent mixture of a distributed-averaging algorithm and a voter model. Specifically, each agent’s opinion
at each time is assumed to be a real-valued scalar. We also associate with each agent i a threshold value,
say bi. At each time k, agent i updates its state as follows: the agent compares its current opinion si[k]
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with its threshold bi. If si[k]≥ bi, agent i randomly picks one other agent j with probability gi j, and then
copies agent j’s current opinion as its next opinion. For this case, the influence vector is gi[k] = e j with
probability gi j. If si[k] < bi, agent i computes a weighted average of the agents’ current opinions based
on weights gi1, · · · ,gin, and chooses this average to be its next opinion (i.e., si[k+1] = ∑

n
j=1 gi js j[k]). For

this case, the influence vector gi[k] is simply
[
gi1 · · · gin

]T . We note that this stochastic synchronization
network model is actually a mixture of a voting model and a distributed averaging model. We note that the
instantiation matrix G[k] (i.e., G[k] =

[
g1[k] · · · gn[k]

]
) depends on the current opinions of the agents.

Although the two synchronization mechanisms in the two operating regimes (i.e., above threshold
and below threshold) are completely different, the model is linear. Let us use notation Ḡ[k] where the
i, jth entry of Ḡ[k] has value g ji. For the case that si[k] ≥ bi (voting model phase), we can easily obtain
that E(s[k+1] |s[k]) = ḠT [k]s[k]. For the case that si[k]< bi for any i (distributed averaging model phase
for agents i), we also obtain that E(s[k+1] |s[k]) = ḠT [k]s[k]. Therefore, the model dynamics satisfy the
linearity condition.

Remark: Let us highlight the strong analogy between the the first two examples of flow models (the
fluid-flow and Markov chain models), and the corresponding examples of synchronization models (the
distributed averaging and voter models, respectively). We also note the possibility for state-dependent
update processes that are nevertheless linear in both settings.

4 GRAPH-THEORETIC ANALYSIS OF THE TWO MODELS

The infrastructure-network management applications that motivate our studies of flow/synchronization
models require a comprehensive suite of analysis, parameterization, and estimation tools for network
dynamics. In this first work, we provide only a few basic results regarding graph-theoretic analysis of
the stochastic linear flow/synchronization models’ dynamics. Although these analyses are very basic, they
are important as a foundation for more intricate graph-theoretic analysis/estimation of network dynamics,
and are important in and of themselves as enhancements of results for particular flow- or synchronization
networks, or as tools for comparing networks.

Specifically, we begin with a few preliminaries on invariants of the model (Section 4.1). The main
focus of the section is on graphical characterizations for the asymptotics of both the expected dynamics
and the stochastic dynamics themselves are given (Section 4.2). Finally, we briefly pursue a comparison
among flow models that fall within the broad class defined here (Section 4.3). Note: proofs have been
taken out in the interest of space; please see the extended document (?) for the proofs.

4.1 Preliminary Observations: Invariants

As a preliminary step, let us formalize complementary invariances in the (general, possibly nonlinear) flow
and synchronization models’ dynamics. These invariances at their essence are simply formalizations of the
principles underlying conservative flow and synchronization, respectively. Here are the results:

1. For the stochastic flow model, the sum of entries in the quantity vector remains unchanged with
time. That is, for any trajectory of the stochastic flow model, 1T r[k] is identical for k = 0,1,2, . . ..
For convenience, let us use rs to represent the total quantities in the flow network (rs = 1T r[k]).

2. For the stochastic synchronization network, an opinion vector whose entries are identical is an
invariant of the dynamics. That is, if s[k0] = c1 for some scalar c and some time-step k0, then
s[k] = s[k0] = c1 for all k > k0.

4.2 Asymptotics

We develop graph-theoretic characterizations of the asymptotics of linear time-invariant stochastic flow-
and synchronization- networks. Specifically, we first give graph-theoretic characterizations of the expected
state dynamics, in terms of the expectation graph. We then build on the characterization of the expected
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state dynamics, to relate properties of the network model’s stochastic dynamics (e.g., ergodicity) to the
graph. In the interest of space, only a few preliminary results are given here.

Let us first study the asymptotics of the expected state. A graphical characterization for both models
can be achieved, using classifications of the graph topology that are analogous to the ones used in analyzing
Markov chains (Kemeny and Snell (1976), Brémaud (1999)). In developing this analysis, it is worth
recognizing that an LTI flow-network’s expectation graph is identical to a Markov chain’s transition graph,
and in fact the precise classification used for Markov chains will suffice for flow networks. Meanwhile,
the state matrix for a synchronization network’s expected state dynamics is the transpose of that for a flow
network, and so the graph edges are reversed; thus, a slightly different classification is needed.

Let us begin by defining some terminologies for the LTI stochastic flow network’s expectation graph:
The expectation flow graph is said to have a path from vertex i to vertex j if it has a sequence of directed
edges from vertex i to vertex j. If there is a path from i to j, and also from j to i, the two vertices i and
j are said to co-transport. A set of vertices that co-transport with each other, and do not co-transport
with any vertex outside the set, is called a flow class. A flow class is called absorbing, if there is no path
from a vertex in the flow class to one outside. In other words, a flow class is absorbing if material/items
cannot flow out of the corresponding network components. The vertices within an absorbing flow class
are called absorbing vertices. A flow class that is not absorbing is called transient. The vertices within a
transient flow class are called transient vertices. For an absorbing vertex i, a notion of periodicity needs
to be defined. Specifically, the lowest common denominator among the path lengths from vertex i back
to itself is termed the period of the vertex; the vertex is called aperiodic if the period is 1, and periodic
otherwise. The vertices in an absorbing class can be shown to have the same period, so the period measure
(and periodicity) can be associated with the whole flow class.

We also define complementary terminologies for the LTI stochastic synchronization network, in terms
of its expectation graph. The expectation synchronization graph is said to have an influence path from
vertex i to vertex j if the graph has a sequence of directed edges from vertex i to vertex j. If there is
a path from vertex i to vertex j, and also from vertex j to vertex i, the two vertices i and j are said to
co-influence. A set of vertices that co-influence with each other, and do not co-influence with any vertex
outside the set, is called an influence class. An influence class is called autonomous, if there is no path
from a vertex outside the influence class to one inside. In other words, an influence class is autonomous if
the expected opinions of the corresponding network components are not dependent on previous opinions
of other network components. The vertices within an autonomous influence class are called autonomous
vertices. An influence class that is not autonomous is called dependent. The vertices within a dependent
influence class are called dependent vertices. For an autonomous vertex i, a notion of periodicity needs
to be defined. Specifically, the lowest common denominator among the path lengths from vertex i back
to itself is termed the period of the vertex; the vertex is called aperiodic if the period is 1, and periodic
otherwise. All the vertices in an autonomous influence class have the same period, so the period measure
(and the periodicity concept) can be associated with the whole influence class.

We are now ready to present results regarding the asymptotics of the expected state dynamics. For both
networks, we will characterize the asymptotics according to a classification of the graph topology, showing
that qualitatively different asymptotics result depending on the topology. We begin with the flow-network
result, which admits the well-known characterization of Markov chains as a special case.
Theorem 1 Consider an LTI stochastic flow network with expectation flow graph Γ. Then the asymptotics
of the expected quantity vector E(r[k]) are as follows:
1) The expected quantities for the network components associated with the transient vertices of Γ asymp-
totically approach 0, i.e. limk→∞ E(ri[k]) = 0 if i is a transient vertex.
2) Consider vertices in Γ that are in absorbing aperiodic flow classes. The expected quantity for each
corresponding network component reaches a limit asymptotically, i.e. limk→∞ E(ri[k]) exists for all such i.
If in fact Γ has only a single absorbing class which is aperiodic, then the asymptotic expectations at network
components associated with this class are fixed positive fractions of the expected total quantity at the initial
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time. That is, for each vertex i in the absorbing aperiodic flow class, we have limk→∞ E(ri[k]) = virs, where
vi > 0 and the sum of vi over the vertices i in the absorbing aperiodic flow class is 1.
3) In general, the expected quantities at network components corresponding to absorbing periodic vertices
are not guaranteed to converge asymptotically. However, these expected quantities sampled at intervals equal
to the period are convergent. That is, for an absorbing q-periodic vertex i in Γ, we have limk→∞ E(ri[qk+z])
exists, for z = 0,1, . . . ,q−1.

Next, let us present complementary results for the LTI stochastic synchronization model.
Theorem 2 Consider an LTI stochastic synchronization network with expectation synchronization graph
Λ. Then the asymptotics of the expected opinion vector E(s[k]) are:
1) The expected opinions of network components associated with an autonomous aperiodic class each
converge to a limit asymptotically, and further they synchronize (become equal) asymptotically. That
is, for a vertex i in an autonomous class, limk→∞ E(si[k]) exists; also, for two vertices i and j in an
autonomous class, we have limk→∞ E(si[k])−E(s j[k]) = 0. Further, the asymptotic value of the expected
opinions is a positive unitary linear combination of the initial expected opinions of the agents. That is,
limk→∞ E(si[k]) = ∑ j∈Vs w jE(s j[0]), where w j > 0, ∑ j∈Vs w j = 1, and Vs contains all the vertices in the
autonomous class.
2) If all the autonomous classes in the graph are aperiodic, then the expected opinions of all network
components converge to a limit asymptotically (i.e., limk→∞ E(si[k]) exists for all vertices i). The expected
opinion of each network component associated with a dependent vertex converges to a unitary nonnegative
linear combination of the limiting expected opinions of the autonomous classes. If in fact the graph has a
single autonomous class that is aperiodic, then all network components synchronize asympotically, to the
same limiting expected opinion as in the autonomous class.
3) The expected opinions at network components corresponding to autonomous periodic vertices are not
guaranteed to converge asymptotically. However, these expected opinions sampled at intervals equal to the
period are convergent. That is, for a autonomous q-periodic vertex i in Γ, we have that limk→∞ E(si[qk+ z])
exists, for z= 0,1, . . . ,q−1. When one or more autonomous classes are periodic, then the expected opinions
at the network components associated with dependent vertices also vary periodically, with period equal to
the least common multiple of the periods of some or all of the autonomous classes’ periods.

Remark 1: For synchronization networks, it is the autonomous classes’ initial states that impact the
asymptotic expected dynamics. The number of these autonomous classes and their periodicity structures
modulate the asymptotic expected dynamics just as for flow networks, albeit with some subtle differences.

Remark 2: Tsitsiklis (1984) provides a comprehensive study of distributed averaging in the time-varying
case; these results can permit generalization of the above results to the time-varying case.

The above theorems give necessary and sufficient graphical characterizations for the asymptotic expected
dynamics. Such graphical analysis of Markov chains is already well-known, and a partial characterization
of the steady-state dynamics was given for the binary voter model in Asavathiratham (2000). Otherwise, to
the best of our knowledge, flow/synchronization dynamics have not been related to graph class structures
as we have done here. Thus, the results provide immediate insight into the expected state’s asymptotics,
for several models including distributed-averaging and probabilistic routing ones.

Finally, let us also characterize asymptotic properties of the networks’ stochastic state dynamics, not
only the expected dynamics. We again give complementary results for synchronization and flow networks.
Here are two results for LTI stochastic flow networks:
Theorem 3 Consider an LTI stochastic flow network. The quantities ri[k] at network components associated
with transient vertices i converge to 0 in a mean square sense.
Theorem 4 Consider an LTI stochastic flow network that has a single absorbing class, which is aperiodic.
Then, given the total quantity 1T r[0], the evolution of quantity vector r[k] is mean-square ergodic.

The LTI stochastic synchronization network admits dual characterizations of its asymptotic state dynam-
ics, in terms of the underlying expectation graph structure. Specifically, the asymptotic characterizations

3238



Xue and Roy

of the synchronization network are concerned with the dependence of an opinion at some time on initial
or previous opinions of all the agents. In particular, we note that the opinion of each agent i at time k,
or si[k], can always be written as a unitary linear combination of the opinion vector at any previous time
k < k: si[k] = wT

i [k,k]s[k], where the opinion-influence vector for site i wi[k,k] is nonnegative and satisfies
wT

i [k,k]1 = 1. Here, let us present two results on the time-evolution of the opinion-influence vector:

Theorem 5 Consider an LTI stochastic synchronization network. For fixed initial time k, any element of
an opinion-influence vector corresponding to a dependent vertex in the expectation graph converges to 0
with respect to the time-index k, in a mean square sense.
Theorem 6 Consider an LTI stochastic flow network that has a single autonomous, aperiodic class. Then
the opinion-influence vectors’ dynamics for the network are ergodic, in the following sense: for fixed k0
and any i, 1

k−k0+1 ∑
k
z=k0

wi[k,z] approaches E(wi[k,k0]) in a mean-square sense, as k is made large.
We note that the ergodicity results are particularly informative, in that they suggest that certain unknown

flow/synchronization processes can be partially characterized from time histories.

4.3 Comparisons among Flow and Synchronization Models

The broad framework introduced here also permits comparison among the dynamics of different flow
models and synchronization models. That is, the formulation permits us to compare characteristics of
stochastic flow or synchronization models with different update rules, and to develop general bounds for
their dynamical properties. Here, let us present a first result of this sort, for linear stochastic flow networks.
In particular, we bound the variability of a linear stochastic flow network’s state with given expectation
matrices Q[k], and argue that a Markov-chain-type model achieves the maximum variability among all flow
networks with these expectation matrices. Here is the result:
Theorem 7 Consider a linear stochastic flow network, with expected initial state E(r[0]) and expectation
flow matrices Q[0],Q[1], . . .. Consider the variability of the quantity vector r[k]. In particular, consider the
measure L = ∑

n
i=1 var(ri[k]). Then L ≤ (1T E(r[0]))2− zT z, where z = Q[k]...Q[0]E(r[0]). The maximum

variability is achieved by a Markov chain-type dynamics. Specifically, a model in which the total quantity
is placed at a single component at the initial time (with the component chosen probabilistically so that the
expected initial state is as specified), and in which the flow state matrix at each time k is that of a Markov
chain with transition matrix Q[k], achieves the bound.
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