Proceedings of the 2011 Winter Simulation Conference
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

A CASE FOR VIRTUALIZATION OF CONTENT DELIVERY NETWORKS

André Moreira Victor Souza
Josilene Moreira Per P. Karlsson

Djamel Sadok

Arthur Callado

Moisés Rodrigues
Marcio Neves

CDN and Cloud Computing Lab
Ericsson Research
Torshamnsgatan 39A, P.O. BOX 1153
Kista, 164 22, SWEDEN

Federal University of Pernambuco
Av. Prof. Moraes Rego, 1235
Recife, 50670-901, BRAZIL

ABSTRACT

Content Delivery Networks have gained a popular role among application service providers (ASPs) and
infrastructural companies. A CDN is an overlay network that gives more control of asset delivery by stra-
tegically placing servers closer to the end-user, reducing response time and network congestion. Many
strategies have been proposed to deal with aspects inherent to the CDN distribution model. Though most-
ly very effective, a traditional CDN approach of statically positioned elements often fails to meet quality
of experience (QoE) requirements when network conditions suddenly change. In this paper, we introduce
the idea of CDN virtualization. The goal is to allow programmatically modification in CDN infrastructure
designed for video distribution, adapting it to new operating conditions. We developed a complete simula-
tor focused on CDN overlay network characteristics where we implemented several approaches for each
of the CDN elements. Our results show a decrease of 20% in startup delay and network usage.

1 INTRODUCTION

Content Delivery Networks have gained a popular role among application service providers (ASPs) and
recently telecom operators such as AT&T. A CDN is an overlay network that gives more control of asset
delivery while monitoring network load. It strategically places servers closer to the user, reducing re-
sponse time and network congestion (Khan and Buyya 2007). When a client makes a request for content,
the CDN redirects it to an optimally located mirrored server that should perform transparent and cost ef-
fective delivery to the end user. Today, there are a large number of successful commercial CDNs such as
Akamai and Limelight, and other non-commercial ones, such as CoDeeN (Wang et al. 2004) and Co-
ralCDN (Freedman et al. 2004) providing services including video distribution.

Many strategies have been proposed to deal with aspects inherent to the CDN distribution model, for
example: the placement of surrogates and replicas, redirection mechanisms, cache replacement strategies
and accounting. Though mostly very effective, they often fail to meet the high throughput demands of
flash crowd events, for example. Furthermore, due to the distributed nature of CDNs and their varying
demands, it remains difficult to predict an optimal configuration, for example, a suitable placement of
caches given the network topology. This leads to spikes of poor performance, despite an overall good
performance. To circumvent such shortcomings, some approaches have been proposed, for example
(Chenyu et al., 2006) and P2P assisted CDNs (Sidiropoulos et al. 2008; Padmanabhan and Sripanidkul-
chai 2002; Lyer et al. 2002). This work introduces and evaluates the benefits of using a Virtualized CDN.
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CDN resource virtualization allows to programmatically create, remove or change location of the
CDN components, adapting them to new operating conditions. Also, it enables an isolation of the virtual
structure, allowing multiple instances of CDNs in a multi-provider scenario.

This work evaluates a virtualized CDN designed for video distribution. We developed a complete si-
mulator focused on CDN overlay network characteristics where we implemented several approaches for
each of the CDN elements, supported with strategies for the placement of surrogate servers, request-
routing strategies and content outsourcing. By evaluating scenarios specifically created including complex
flash-crowd events, generated by ProWGen (Busari and Wiliamson 2002), we show the actual benefits of
Virtualized CDNs.

2 RELATED WORK

Coordination is a requirement for the deployment of some new technologies and protocols (for example:
differentiated services, IP multicast, secure routing and IPv6). The cost of implementing such a technolo-
gy is usually not backed up by revenue increase since the service will only work when coordinated among
networks. Based on this problem, (Feamster et al. 2007) propose a connectivity model where infrastruc-
ture providers are separated from service providers. In this view, the coordination of infrastructure up-
grade is made easier since it will not require several entities to agree simultaneously with the change. This
decoupling allows each provider to implement its own network architecture and even different architec-
tures for different services, resulting in a virtualization of the network infrastructure.

Using the same approach of virtualization through the separation between service and infrastructure
providers, (Zhu et al. 2008) propose a three-layer network model called Cabernet. The infrastructure layer
is connected to a service layer through the intermediation of a connectivity layer. This connectivity layer
is responsible for providing a single view of the network (multi-provider infrastructure) for the service
layer and also for guaranteeing the quality of service requested. Zhu et al provide a discussion on the use
of this model for IPTV delivery using the traditional but not widely deployed multicast in the network
layer as a means of video distribution, which is much more effective than performing multicast in the ap-
plication layer.

Another approach for virtualization, proposed by (Carapinha and Jiménez 2009), is the formalization
of the basic components of network virtualization as links (physical and virtual ones), nodes (substrate
and virtual) and networks. This allows for the creation of fully virtualized network on top of a substrate.
The virtual network provider will find the appropriate means for establishing the service requested by the
service provider and allocate resources from the infrastructure provider. Carapinha and Jiménez provide a
tentative list of which parameters are required for the creation of a link (endpoints and traffic characteris-
tics), for nodes (ID, physical location and CPU/Memory/Storage capacities) and for networks (ID, start
time, duration and levels of reliability and preemption).

One approach for the use of network virtualization without altering the business model is the use of
Netlets (Volker et al. 2009), which are programmable containers for network protocol stacks. The con-
tainer is composed of a data plane and a control plane. This allows the rapid reorganization of overlay
networks, thus allowing virtualization and fast deployment of novel networks.

An architecture for CDN sharing, called peering, is presented in (Buyya et al. 2006). In this paper, au-
thors cite known proprietary CDN networks and deliver an open, service-oriented architecture that allows
inter-CDN communication and Service Level Agreement (SLA) negotiation. However, the paper does not
present protocol solutions or implementation results.

Finally, (Plagemann et al. 2006) advocate that the basic operations of a CDN, such as content crea-
tion, retrieval, modification and (re)location should be part of the underlying infrastructure, then called
Content Networks. Authors assert that the field lacks a thorough common terminology and try to provide
one.

To the best of our knowledge, no work detailing Quality of Experience (QoE) parameters under the
virtualization of a CDN network was published to date.
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3 THE CASE FOR VIRTUALIZATION

Virtualization and particularly OS virtualization has been around since the early days of computing as
witnessed by those who developed software for or used mainframe computers in the 70’s. More recently,
VMWare emerged as a popular technology to offer different OSs over personal computers.

Server level virtualization is an expanding market. Companies such as HostingAce offer Virtual Pri-
vate Servers (VPS) as a solution for webmasters, designers, developers, and business owners. In the tele-
com arena, virtual circuits have been seen as logical connections with possibly varying capacities while
sharing the same physical circuits. Similar logically isolated tunnels have been used to offer the separa-
tion of traffic between concurrent users and increase security. Such concept has been at the heart of com-
munication technologies such as Virtual Private Networks (VPNs), Virtual LANs (VLANs) and MPLS
tunneling. A VPN user is then under the false impression that its network is isolated from others and that
it has all the network resources for itself. In a way, virtualization is all about concurrent but safe sharing.

Though historically proven, virtualization has not been used on a large scale when it comes to servic-
es, mostly due to the research versus production network duality (for a proposal for smoother virtualiza-
tion experiments in the Internet using PlanetLab, see (Anderson et al. 2005)). But this hopefully is all
about to change with the advent of CDNs and the Cloud Computing paradigm. There are some benefits
for providing virtualization specific to the application of Content Distribution Networks:

1. The outsourcing of the physical infrastructure should work in the benefit of the CDN providers as
they do not have to deal with network failures and management. They nonetheless, need to man-
age their services in order to ensure customer satisfaction, know when they need to ask for re-
sources or release idle ones.

2. There would be some benefits also if one considers that various service providers may interact
with each other and negotiate new services or resources dynamically. One may think of a content
provider asking for a feed from another one to cover a new event in a remote place where it has
no presence.

3. A CDN provider may negotiate with more than a physical provider and combine their networks to
build a single virtual network. This gives the CDN provider independence in choosing its trans-
port provider and the possibility to reach new customers previously not covered.

To summarize, virtualization is a mechanism or a design concept that may be used at different system
levels. This flexibility makes virtualization a powerful and hard functionality to fully manage, develop
adequately and explore its potentials.

4 CDN ARCHITECTURES

A CDN is a highly complex overlay network composed by a set of elements that acts in a coordinated
way to achieve targeted efficiency and QoE for the end-user. Application-specific servers and caches at
several places in the network handle the distribution of specific content types (e.g.Web content, streaming
media, news information, and real time video) (Khan and Buyya 2007). The basic components of a CDN
are:

a) Origin Server: represents the actual content owner. It publishes the content in the CDN, by dis-
tributing the objects to the surrogate servers. A technical issue that arises here is how the content
outsourcing will be made. Content outsourcing is of three types: cooperative push-based, non-
cooperative pull-based and cooperative pull-based (Khan and Buyya 2007).

b) Surrogate: surrogate or replica servers are caches that store copies of the origin server content.
Each surrogate server has a database that contains a list of all available streaming sessions, ob-
jects stored in the surrogate and information from the monitor and for the management of CDN.
Placement of surrogates in a CDN is closely related to the content delivery process. It is a key is-
sue of a CDN. To solve it, some theoretical approaches have modeled the problem as the “center
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placement problem”: for the placement of a given number of centers, the question is then to mi-
nimize the maximum distance between a node and the nearest center. Some variants of this prob-
lem are the facility location problem, the use of k-hierarchically well-separated trees and the min-
imum K-center problem (Jamin et al. 2000). Due to the computational complexity of these
algorithms, some heuristics such as Greedy replica placement (Krishnan, Raz and Shavitt 2000),
Hotspot (Qiu et al. 2001), Tree-based (Li et al. 1999) and Topology-informed placement (Jamin
et al. 2001) were developed. They take into account existing information from a CDN, such as
workload patterns and the network topology.

c) Redirector. The Redirector or request-routing system performs the task of estimating the most
adequate surrogate server for each different request and client. The most adequate surrogate may
not be the “closest” one. Hence, a request-routing system uses a set of metrics such as network
proximity, client perceived latency, distance, and replica server load in an attempt to direct users
to the closest surrogate that can best serve the request. Simpler redirectors can be implemented by
modified DNS or through HTTP rewrite, for example.

d) Monitor. Its role is to probe the network and collect data that supports the tasks performed by the
redirector and the content manager.

e) Content Manager. The content manager controls how the replica objects are stored in each sur-
rogate server. It provides this information to the Redirector, to get each client served by the most
suitable surrogate. Also, the information managed by the Content Locator is stored in a database
(content DB). An important technical design issue is the caching algorithm. It can be performed
centralized in the content manager, distributed among the surrogate servers or in a hybrid ap-
proach. The caching algorithm must deal with the popularity of the content and somehow predict
the changes on the popularity to prepare the CDN for flash crowd events. It also must ensure that
at least a single copy of any of its objects must remain present in the CDN at anytime.

f) Accounting. CDN providers charge their customers according to the content delivered (i.e., traf-
fic) by their surrogate servers to the clients.

In a virtualized model, the surrogate servers may now be virtual machines instantiated in a Cloud
computing environment for example. Thus, new surrogates can be created and added to the CDN infra-
structure as operating conditions change. But, most importantly, the surrogates can be repositioned, adapt-
ing the infrastructure to new user demands and resource usage states. Thus, during a flash crowd event,
for example, it should be possible to replace surrogates to keep them closer to the source of the event, de-
creasing the startup delay experienced by clients. To accomplish this and other management level deci-
sions and changes, a new component is added: the Virtual CDN Manager (see Figure 1).

Wirtual COM Manager Content Manager
Monitar - e | Virlealzation
|: Cparations - Content Locator
& i
Manitor DB 0N Policies CDN Accounting Gontent DB

Figure 1: The Virtual CDN Manager

Such manager is responsible for detecting significant changes in network conditions and triggering
the necessary CDN resources adaptation. Thus, it may interface with the host physical infrastructure, such
as Cloud, in order to allow the dynamic allocation and release of resources (i.e. surrogates). The Virtual
CDN Manager receives information from the CDN resource Monitor including important network traffic
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metrics, and based on its policies, may therefore decide whether and how to perform adaptation. For in-
stance, if it detects a change in traffic behavior, for example, the presence of a hotspot in the virtual to-
pology that is suffering from a sudden increase in requests, it may move some surrogates around to avoid
increase in startup delay or network usage. Such policies may include information such as the granularity
of change, rate of monitoring or the desired CDN goals such as: increase availability, decrease startup de-
lay, network usage or inter-AS traffic. Also, there may be restrictions on aspects such as the maximum
number of allowed configuration changes that can be made within a given time frame, some surrogates
are fixed and cannot be migrated or removed, etc.

The virtual manager is based on the monitoring and processing of information provided by the moni-
tor (probes) to constantly check changes in network condition. This is accomplished by a utility function
that receives the probes as input to build the network state (pattern). This utility function takes into con-
sideration the desired policies and goals of the CDN and weighs the data provided by the monitor. The
system periodically calculates the result of the utility function and passes it as input to a trigger function.
The trigger function, in turn, is responsible for detecting whether the changes over time are significant, if
so, the system must perform a pre-established adaptation.

This is achieved by comparing the recent system probes to a baseline that reflects the last system
state. If it is above a certain threshold, the system would take a decision to adapt. The number of probes
(per observation window) in order to be considered as a baseline is a system parameter. They may be
weighed according to the following rule: the first probe after an adaptation has a better representation of
the baseline system state, thus it must have a higher influence on the baseline configuration. Subsequent
probes that form the baseline have their influence decreased by a factor (weight). The same rule applies to
the probe window. Figure 2 shows an example of the behavior of the weights.

weigh

Probe window
blselme window

time elapsed since baseline

Blselme currem

Figure 2: Weight of probe windows

Both baseline and probe window are monitored by the trigger. If there is a significant change in the
CDN pattern or behavior, then an adaptation (i.e. replacement of surrogates) is performed. To summarize,
the virtualization adopts the algorithm shown below:

a. Collect CDN information from DB Monitor (probes)
b. Detect the pattern (utility function from a set of information) and fix it as
baseline
c. Continuously monitor same information and compare it to baseline

- Information in a set is weighed according to a window function (weigh) and a
window size

- Windows size and function may differ in baseline and probing
d. If probe value abruptly changes (trigger function) in relation to baseline

- Adapt topology (replacement)

- Fix new baseline
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5 SIMULATION RESULTS

To evaluate some of our CDN resource management ideas, we searched the literature for available
tools. There is a notorious lack of tools supporting CDN performance analysis. In fact, to the best of our
knowledge, there is a single available CDN simulation environment, CDNSim (Stavrou et al., 2004) that
simulates a complete CDN infrastructure. CDNSim is implemented in the C programming language and
supports several techniques for server placement, server cooperation, cache organization and request
routing management. On the other hand, our experience using it has proved that it is difficult to extend,
mainly if considering our requirements for testing the impact of infrastructural changes and new resource
management algorithms. As a result, we were faced with the task of implementing a CDN simulator from
scratch.

5.1

Our Simulator was completely implemented in Java 6 and uses the Object-Oriented paradigm to represent
the components and interactions of a CDN and network structure. It uses the Desmo-J (Lachler and Page
1999) library that provides a framework to discrete-event modeling and simulation, licensed under the
Apache License. The Desmo-J facilitates simulation programming by abstracting the tasks inherent to
discrete-event modeling. Also, Desmo-J provides some useful components to help the design of discrete-
event simulation, for example, probability distributions and a result reporting system. Our Simulator ex-
tended the reporting system to include more detailed information. It presents results in a time series basis,
allowing the user to observe specific behaviors that change over time or according to a specific event, for
instance, a flash crowd event on a CDN. In addition, these results are plotted with the help of JFreeChart
library (Gilbert et al. 2011) and presented in graphics automatically while the simulation is still executing.

Simulation tool

5.1.1 Simulator basic functionalities

The structure of the Simulator can be divided into three parts, the core, the network infrastructure and the
CDN overlay. Figure 3 shows our simulator architecture.

. ) R ™
4 CDN Simulator for Video Distribution
CDN Overlay
[ Request Redirector | [ Content Manager | [ Caching Techniques |
Placement Strategies | [_Monitor Probe
Network Infrastructure
[ Application Layer | [ TransportLayer | [ Network Layer |
[ Link Layer | [ PhysicalLayer |
Simulator Core
Model Experiment
[Processes ] [ Events ]
Distributions | [Data collectors | | |[Scheduler | [ Eventlist ]

Figure 3: Simulator architecture

The core contains the main components of discrete-event design and it is mainly handled by the Des-
mo-J API. The second part represents the network infrastructure. It simulates the operation of an entire
network by reading topology configuration files (generated by a topology generating tool such as INET,
for instance) and re-creating a topology which is defined by a set of nodes and links. The network confi-
guration file provides information on how the nodes are linked as well as the parameters for the links,
such as delay, type of the queue, buffer size and speed. On each node, there is a network stack composed
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by a network layer that performs routing; the transport layer that actually implements transport protocols
including TCP and UDP; and the application layer that handles the processes that run on nodes.

The adopted routing mechanism is very simple. Packets are routed according to a router table pro-
vided in a configuration file or created at runtime based on the shortest path algorithm between nodes.
Each of these layers can also be extended to add new functionalities such as a more advanced routing me-
chanism or a different implementation of a transport protocol.

Our simulator takes advantage of these network level features as these aspects are really simulated,
i.e., packets are actually routed through the routers, and characteristics as link capacity, delay and conges-
tion are truly captured by the simulator. For example, in a flash-crowd scenario the link saturation really
occurs and then we are able to measure packet losses. Similarly, for video distribution, we provide a rea-
listic measurement of the start-up delay.

An important module within our Simulator lies at the application layer. It is designed to facilitate the
implementation of new applications by emulating a Java network programming environment. Applica-
tions that run on top of nodes can be created by inheriting an application process class and implementing
the run method. This super class provides some helpful functionalities such as sockets, that are very simi-
lar to Java Sockets. Thus, other network overlay, besides CDN, can also be implemented and simulated.
This has been very useful for our development as we were to evaluate separately a number of CDN types
such as pure CDNs, Peer-to-Peer CDNs and Hybrid CDNs. The result is a considerably plug and play
CDN dependent software overlay that makes use of a common simulation framework hence saving devel-
opment time effort and increasing reuse.

The CDN overlay is designed for video distribution. It is composed by basic CDN components: the
origin server, surrogates, a request redirector, a content distribution manager, a monitor and clients. All of
these elements are created as application processes that run on top of the network nodes. They are coordi-
nated by a main component that operates the CDN according to interchangeable strategies and algorithms.

To extend the simulator, new strategies can be created by simply implementing a specific interface.
For instance, our simulator has an interface for the placement strategy of surrogates. Such strategy is ex-
ecuted at the beginning of a simulation and its main task is to place all surrogates on network topology.
The surrogates, in turn, must use a specific caching replacement technique and a specific cache size. All
other components are instantiated in the same manner, and all their associated parameters must be speci-
fied in the CDN'’s configuration file. Thus, different CDN configurations can be simulated by creating
new strategies and then adjusting the configuration file accordingly.

5.1.2 CDN Operation

Simulation starts when a client requests an object. The coordinator instantiates the client at the appropri-
ate time and activates its thread. Firstly, the client contacts the request redirector to discover which surro-
gate will serve its request. Then, the selected surrogate starts streaming the video object to the client. Fi-
nally, when download is finished, the coordinator allows the client to release memory. The definition of
requests, video objects and where the client will be placed in network are specified by configuration files
and the distributions therein. With the exception of the requests file, they can also be established at run-
time, according to a specific probability distribution.

5.1.3 Virtualization
The virtualization model implemented is very simple. The window size for both baseline and window is

1, thus the weight based function is simplified to an identity function. The target of the system is to de-
crease network usage, so the main metric monitored by the monitor is the traffic at the nodes. The adapta-
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tion is performed by replacing the surrogates over the available nodes when a significant network state
(pattern) change is detected.

The replacement is achieved in the same way as for the placement: using one of the placement algo-
rithms implemented in our simulator. In some previous experiments, when we compared those, we veri-
fied that the HotSpot with radius 1 (number of hops) has a similar performance to that of the Greedy algo-
rithm, but at a lower computational cost. Thus, we used the Hotspot strategy in our simulations. The
Hotspot algorithm attempts to place replicas near the clients generating the greatest load within a vicinity,
which is defined as a circle centered on a node and some radius. The placement algorithm uses the infor-
mation regarding the last requests seen to decide where to setup a surrogate. However, old requests in-
formation, i.e. those before a stipulated amount of time, is discarded to avoid interference from an old be-
havior that no longer represents the system state.

All the information regarding traffic in the system provided by the monitor is mapped into a vector.
This represents the load on each link being monitored. The vector is then normalized and the utility func-
tion is defined as the dot product between the vectors from baseline and current probes. If the dot product
is bellow an established configurable threshold, the replacement is triggered. The dot product can be un-
derstood as similarity between baseline and current vectors. The closer it is to one, the less change there
was in traffic behavior as shown in Figure 4.

5.2 Scenario and Trace Data Description

For all the following scenarios, we adopted a network topology with 500 nodes and links of 1000 Mbit/s.
We placed the origin server at a center node, according to min-K center placement strategy (Jamin et al.
2000). The topology has 10 autonomous systems and was generated with the IGen Tool depicted in Fig-
ure 5. We used a non-cooperative pull-based outsourcing strategy as described in (Sidiropoulos et al.
2008). The video objects have a constant bitrate of 300 Kbits/s and follow a Zipf-like size (or popularity)
distribution. The monitor collects information every 1000 seconds. To avoid interference from old re-
quests on new replacement decisions, as described in last section, we only use the requests from the last
1000 or 2000 seconds (two scenarios), hence shortening the system’s memory. Also, experiments were
performed with 6 and 10 Caches whereas the comparison threshold was set to 0.9.

Current

Baseline

Dot product

Figure 4: Dot product between baseline and cur-
rent vectors

Figure 5: Topology used in simulations

For comparison purposes, we also implemented a virtualized model where adaptations are always
performed at fixed time. This amount of time is a parameter called virtualization time. We call this scena-
rio static virtualization as opposed to dynamic virtualization described above. Also, we have a scenario
with no replacements taking place. In this scenario, the input for the placement algorithm (initial place-
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ment) is the actual entire request file (i.e., it considers the requests that will take place during the simula-
tions, just as if it had Omniscience), which means that the cache will always have the file requested. Thus,
it works as a reasonable prediction of future (since all videos requested will already be available in the
surrogate) and is therefore used as a baseline for comparing both static and dynamic virtualization, both
of which perform placements based on recent history. It is not, however, a perfect prediction since the lo-
cation of the surrogates will not be perfect throughout the simulation (it may not be considered a perfect
scenario since the surrogates do not change location and therefore may not “move” towards the vicinity of
the clients). Consider this scenario a case where replacements are performed only once (in the beginning)
and the window is the whole simulation time.

Each scenario has one million requests distributed in 24 hours. Most requests arrive at a rate of 5 req/s
from all nodes. However, in two time intervals, between 5 and 8 hours and between 12 and 15 hours, the
rate suddenly increases to near 50 req/s and to almost 70 req/s respectively. Those are flash crowd events,
modeled the same way as in (Chenyu et al. 2006). Differently from the rest of the simulation, the requests
of flash crowd moments come from a specific AS. Thus, they concentrated in two of the 10 ASes, one at
each time interval. This should force the system to adapt itself by moving surrogates closer to that AS at
the flash crowd, and then, when it finishes, distributing them in the whole topology subsequently.

6 RESULTS

Figure 6 (b) shows the behavior of the mean startup delay during the simulation in a typical dynamic vir-
tualization scenario. As it can be seen, during flash crowd events the startup delay understandably de-
creases. This happens because the majority of clients, which are located on the same AS (source of the
flash crowd event) can reach the surrogate more rapidly as they are closer (due to surrogate relocation), at
the expense of the ones outside that AS. Thus, the other clients, the ones located outside of the source,
will have a higher startup delay. This is expected because during the flash crowd, most of the surrogates
will be closer to the AS where it is originated, then, decreasing the mean startup delay. As the number of
clients with less startup delay is much bigger, the mean is smaller for this metric. Note that the number of
surrogates is not changed throughout the simulation time.

a) Requests Table 1: Comparison among strategies
'§ None Static Vir- | Dynamic Vir-
g tualization tualization
5 s Monitor N/A 1000 s 1000 s
2
E Ll ‘ _ _ : : N Replace- N/A Each 2000s | According to
= 0 10000 20,000 30000 40,000 50.000 60.000 70.000 £0.000 90,000 ment trigger func-
Simulation time : :
\ tion Consider-
b) Startup delay ing the last
2 0,005 - 2000 s in re-
& 0,004 quests for
S 0,003 | placement al-
5 0,002 gorithm
& 0.001 # of re- 1 44 15
= oo ZS.EIOO 50.000 75 .000 placements
simulation time Transferred | 8869304 7201875 6997881 MB
Figure 6: Average request count and startup delay bytes MB MB

The results are very similar for network usage (the target). As, in these scenarios, there is no influence of
external traffic in the network, the network usage is closely related to the observed startup delay. This on-
ly happens due to the low level of congestion in the network, and more requests means greater availability
of content through peer-to-peer connections.
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The replacement of surrogates in a CDN is a costly task. It involves reallocation of resources in the
cloud. Thus, the virtualization time parameter must be a balance between a faster adaptation, which is re-
lated to more replacements, and the cost of the replacement, which is high. Concerning this issue, dynam-
ic virtualization could achieve very good results. Table 1 shows the total amount of traffic in the simula-
tion and the number of replacements. Dynamic virtualization performed 15 replacements while static
virtualization performed as many as 44 on the same scenario. So, it has a better result with fewer re-
placements. In other words, it performs the adaptation at the right time, saving costs resulting from re-
source reallocation such as in a Cloud. Figure 7 shows all-network bytes transferred results for the scena-
rios with six caches and all types of virtualization. Figure 8 shows results with ten caches.

All-network Bytes Transferred

Six Surrogates Realocation All-network Bytes Transferred

Ten Surrogates Realocation

14000

11882 27

12000 1188227 10000

9000 8673.19 867310
10000

8000

820765 847319 8420,33 868991 M Dynamic

7000 655313 674617 651728 8707 27

o000 B Static B Dynamic
0 O None 6000 B Stati
[0} Static
5000 5000 O None

GB

4000 4000

3000

2000 2000

1000

Window 1000 Window 2000
Window 1000 Window 2000

Figure 7: Comparison among virtualization strat-

> Figure 8: Comparison among virtualization strat-
egies (6 caches)

egies (10 caches)

According to Figure 7 and Figure 8, both dynamic and static virtualizations achieve very similar results
(20% decrease) in network utilization. Since static virtualization induces considerably more reallocations,
dynamic virtualization is by far the most recommended method.

For startup delay, results are shown in Figure 9 and Figure 10. As it can be seen, the results are closely re-
lated to network bytes transferred since there is no influence of external traffic. Also, it achieved a de-
crease of about 20% (best case).

Startup Delay Startup Delay
Six Surrogates Realocation Ten Surrogates Realocation
0,0080 00050
00045
0,0050 00040
0.0040 W Dynamic oo M Dynamic
v B Static z 000z W Static
E 0,0030 O None S 00025 O None
] @ 00020
0:0020 00015
00010 00010
00005
0,0000 ! 00000
Window 1000 Window 2000 Window 1000 Window 2000
Figure 9: Startup delay results (6 caches) Figure 10: Startup delay results (10 caches)

7 CONCLUSIONS

This paper presented a proposal of virtualized CDN as a promising approach. It was designed to adapt the
CDN infrastructure to the conditions of the network, mainly during some flash crowd events. The adapta-
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tion is performed by the reallocation of resources in a Cloud computing environment. The adaptations can
be either static, i.e. when adaptations occur at fixed time intervals, or dynamic, when performed according
to a monitored trigger function. The necessary simulations were conducted with a CDN Simulator imple-
mented in Java.

The utility function and triggering algorithm based on the dot product of the current and baseline
usage data of the network have shown to be effective at adapting the topology of the virtualized CDN.
Further studies including different methods will be performed. Moreover, the impact of creation of new
surrogate servers need to be further evaluated.

The simulator offers an efficient and easy-to-extend environment to evaluate the performance of CDN
strategies in realistic network conditions. It supports realistic measurements, simulating the main proper-
ties of the network and the complete behavior of the most relevant CDN components. It is an important
tool for the research community. We intend to make it publicly available to the open-source community
soon. In a near future, we plan to implement and evaluate more strategies based on existing literature and
to perform more simulations with flash-crowd events as well in networks with high-levels of congestion.
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