
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

USING APPROXIMATE DYNAMIC PROGRAMMING TO OPTIMIZE
ADMISSION CONTROL IN CLOUD COMPUTING ENVIRONMENT

Zohar Feldman
Michael Masin

IBM Haifa Research Labs
Haifa University Campus

Haifa 31905, Israel

Asser N. Tantawi
Diana Arroyo

Malgorzata Steinder

IBM T. J. Watson Research Center
19, Skyline Drive

Hawthorne NY 10532, USA

ABSTRACT

In this work, we optimize the admission policy of application deployment requests submitted to data centers.
Data centers are typically comprised of many physical servers. However, their resources are limited, and
occasionally demand can be higher than what the system can handle, resulting with lost opportunities.
Since different requests typically have different revenue margins and resource requirements, the decision
whether to admit a deployment, made on time of submission, is not trivial.
We use the Markov Decision Process (MDP) framework to model this problem, and draw upon the
Approximate Dynamic Programming (ADP) paradigm to devise optimized admission policies. We resort
to approximate methods because typical data centers are too large to solve by standard methods. We show
that our algorithms achieve substantial revenue improvements, and they are scalable to large centers.

1 INTRODUCTION

Today, large data centers that automate on-line deployment of virtual machines (VM) that vary in resource
requirements, lifetime and revenue margins face the possible loss of revenue at high utilization. As the
utilization of a data center approaches its capacity, some deployments fail due to fragmentation in the
data center. The problem of resources provisioning and dynamic placement of deployments has received
a great deal of attention over the years (cf. Urgaonkar, Shenoy, and Roscoe 2002 and references therein).
These works propose resource provisioning techniques that satisfy service levels agreement (SLA), taking
into account workload traces and profiles, possibly taken while in service. Although existing intelli-
gent placement technology can effectively minimize fragmentation, a solution that relies entirely on such
placement technology may still suffer revenue degradation. For example, some deployments have higher
revenue margins than others, and therefore a system that takes that into account will offer improved overall
revenue than one that does not. It may be preferable to fail a deployment with lower revenue margin
even though enough capacity is available in order to leave capacity for future deployments with larger margins.

We model the cloud admission problem as a Markov Decision Process (MDP). The MDP framework is
broadly used to model and solve dynamic control problems (Puterman 1994), and therefore arise as a natural
framework to model the cloud admission problem. MDPs can be solved analytically or numerically using
dynamic programming (DP) methods. Unfortunately, these methods are not applicable for high-dimensional
problems, a phenomena which is often referred to as the curses of dimensionality (Bellman 1961). Data
centers are typically large and may include hundreds and even thousands of nodes. The number of states
in which the system can be, tends to be immense. This leads to the fact that only very small instances can
be solved efficiently by standard DP methods.
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To overcome this difficulty, we draw upon techniques from the Approximate Dynamic Programming (ADP)
paradigm. Comprehensive study on ADP can be found in D.Bertsekas and J.Tsitsiklis (1996) and Powell
(2005). In very general lines, ADP is a generic name for a large set of techniques that approximate the
value function in one way or another. Many of these techniques utilize simulation, and do not rely on
having parametric model.
ADP was shown to achieve good results in many hard problems which could not be solved by standard DP
techniques. However, there are also examples in which it fails miserably. Moreover, since ADP methods
are typically involved with problem-specific configuration and design parameters setting, it is a common
feeling that making it work properly is a work of art.

We explore several ADP schemes to solve our problem. In the first approach, the optimal value function
is approximated using sample runs produced by simulation. This is achieved by using the Bellman optimality
equations for states that are visited throughout the simulation. We use several common techniques such as
post-states, basis functions, and states aggregation in order to reduce the problem complexity.
In another approach, we enhance the previous schema by introducing classification (e.g. decision tree) to
represent our policy. The learning set, used to build the classifiers, are pairs of visited states and actions
that optimize the future approximated value. For last, we propose a schema based on parametric policies.
Namely, we consider a parametric family of policies, and optimize the parameter to obtain the best policy.
We show that this approach is very attractive in several aspects.
Our proposed algorithms are designed to cope with large data centers, and the policies we derive are
simple and easy to implement (in fact, parametric policies can be implemented by rule engines). We also
propose a way to use our algorithms together with additional components, like forecast, to form a proactive
deployment management system. The system we propose is proactive in the sense that it continuously
makes prediction about the future behavior, and updates the policy in order to better prepare to changes in
demand and requirements.

The remainder of the paper is organized as follows. In Section 2 we describe in details the cloud
settings, and define the cloud admission problem. In Section 2.2 the cloud admission problem is modeled
as a Markov Decision Problem. We continue with a presentation of our ADP algorithms and their specific
configuration in Section 3, accompanied by a numerical study. In Section 5, we describe the proactive
admission management system that proactively handles the admission of deployment requests. Finally, we
conclude this work and propose future research in Section 6.

2 PROBLEM FORMULATION

2.1 Cloud Settings

The cloud setting can be described as follows. The data center is comprised of K physical machines
called nodes. Each node k has a specific capacity ck j from resource type j = 1, . . . ,J. In our case, we
consider three types of resources (J = 3): disk space, cpu and memory. The cloud receives deployment
requests of I types which vary in different aspects. We model the arrivals of each type i = 1, . . . , I as a
Poisson Process with rate λi. Each deployment has a life time assumed to follow exponential distribution
with type-dependent mean µi. It is assumed that the life time of a deployment is known at the time it is
submitted to the data center. Moreover, each deployment consumes a certain amount of resources during
the time it is hosted. We denote by di j the resource requirement of deployment type i from resource j. The
resource requirements are deterministic. Each deployment of type i has a profit rate ri, such that a successful
deployment is awarded with a profit ri times the time units it is deployed on the cloud. The reward rate
for each customer is determined by contract, and is typically correlated with the resource requirements.
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The handling of an incoming deployment request includes two decisions: first, it has to be decided
whether to admit the request or reject it. Second, in case it is admitted, it has to be placed on a specific
node that can satisfy its resource requirements. There are no backlogs, so when a request is rejected it is
lost. Obviously, a request is automatically rejected when there is no node with sufficient resources.
Our objective is to maximize the long-run revenue coming from admitted deployments.

2.2 MDP Model

We model the cloud system as a Markov Decision Process (MDP) M = (S,A,P,R), where S is the set of
states that the system can reach in each point it time, A is the action space - the set of admissible actions
that can be taken in each state and P is a transition probability function that specifies the probability to
transfer from state to state when taking a specific action. R is the reward function received when taking
action a in state s. The cloud system is actually a Continuous-Time Markov Decision Processes (CTMDP).
We therefore describe the MDP induced by it.
In our case, a state s ∈ S is represented by a vector s = (p,s11, . . . ,s1I, . . . ,sKI). p denotes the pending
deployment request type taking values in 1≤ i≤ I that indicates the type of the request, or the value 0 in
case there is no pending request; sk j denotes the number of requests of type i hosted on node k (i.e sk j
constitute the unraveling of the matrix of number of requests of type j on machine k). In our model, we
choose to separate the admission and placement decisions. In fact, we assume we are given a placement
function hpl : S→{1, . . . ,K} that returns for any state s the node on which the pending request should be
deployed. Therefore, the actions that can be taken in each state s only refer to the admission as follows

as =

{
1, admit pending request p;
0, otherwise.

In principal, it is also possible to make the admission and placement decision together. This means the
action space can take values between 0, . . . ,K. However, we separate the decisions for two main reasons:
first, it simplifies our problem considerably by reducing the action state from |K+1| to 2; second, it enables
the incorporation of general placement policies that take into consideration other factors like load balancing
etc.
The reward R(s,a) is given by

R(s,a) =
{

rp ·µp, a=1;
0, otherwise.

The transition probability is induced directly from the admission decision and the following event in the
system, which can be either a new request arrival or a hosting termination. First, in case there is a pending
request and the admission decision is to admit, the number of hosted deployments from that type will
increase by one in the node returned by the placement function hpl . Then, if the following event is a request
arrival, the first component of the state will change to the corresponding type; inversely, if the event is a
termination of deployment of type i from node k, the corresponding number of deployed requests decreases
by one and the first component is set to 0 (no pending request). The transition probability function from
state s to state s′ is given formally in (1). With a slight abuse of notation, we use p and sik to denote the
pending request type and number of deployed requests in state s respectively, where p′ and s′ik are used to
denote the same in state s′.

Ps,a
(
s′
)
=



λi
λ̄ (s,a)

, a∗ p = 0, p′ = i,s′ = s;
sk jµ j

λ̄ (s,a)
, a∗ p = 0, p′ = 0,s′ = s− ek, j;

λi
λ̄ (s,a)

, a = 1, p = j, p′ = i,s′ = s+ ehpl(s), j;
sk jµ j

λ̄ (s,a)
, a = 1, p = l, p′ = 0,s′ = s− ek, j + ehpl(s),l;

0, otherwise.

(1)
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λ̄ (s,a) is the sum of all transition rates from state s given by

λ̄ (s,a) =
I

∑
i=1

[
λi +

K

∑
k=1

skiµi

]
+a ·µp.

The objective criteria is the discounted expected reward given by

max
π

J (π) = E

[
∞

∑
t=0

γ
Tt R(st ,π (st))

]
, (2)

where γ is the discount factor, and Tt is the time of the decision epoch t.

Dynamic Programming (DP) is based on estimating the value function V (s), which represents the value
of being in state s. The value function is given by the Bellman’s equations

V (s) = max
a

{
R(s,a)+ γ (s,a)∑

s′
Ps,a
(
s′
)

V
(
s′
)}

. (3)

In CTMDP, the discount factor depends on the state and action, and can be expressed by γ (s,a) = λ̄ (s,a)
λ̄ (s,a)−lnγ

.
Once the optimal value function is obtained, the optimal policy is derived using

π (s) = argmax
a

{
R(s,a)+ γ (s,a)∑

s′
Ps,a
(
s′
)

V
(
s′
)}

. (4)

The curses of dimensionality associated with DP refer to its sensitivity to the size of the state space, the
action space, and the complexity of the probability transition function (the number of states reachable from
each state). DP becomes impractical for problems with high dimensionality in any of these dimensions.
In our case, it is easy to see that even very small examples yield a very large state space. For instance,
consider a cloud with 10 nodes and 2 types of requests. The first type occupies half of a node resources
and the second type occupies a quarter. Each node has 9 possible states, and overall 910 states which is
around 3.5 billion states. This number is several orders larger than what standard DP methods can handle.
We therefore resort to an approximate approach called Approximate Dynamic Programming (ADP). We
describe how ADP is applied to our problem in the next section.

3 ADP ALGORITHMS

ADP in general is concerned with finding near optimal policies by making some form of approximation
to the value function. Powell (2005) and Powell (2009) describe a generic ADP schema that we use in
Algorithm 1. In each iteration n, we progress according to a sample path ωn. In each step t, we update
the value function approximation V̂ (st). We proceed to the next state according to the dynamic function
S (st ,at ,Wt+1 (ωn)), which calculates the next state given the current state st , the chosen action at and the
new information (event) Wt+1 arriving at time t +1.
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Algorithm 1 (Sample Value Iteration)

Initialization Initialize V̂ (s), set n = 1
Step 1 Generate sample path ωn

Step 2 For t=0,. . . ,T do:
Step 2a Set at = argmaxa R(st ,a)+ γ (st ,a)∑Pst ,a (st+1)V̂ (st+1)
Step 2b Set vt = R(st ,at)+ γ (st ,at)∑Pst ,at (st+1)V̂ (st+1)
Step 2c Set V̂ (st) = (1−βn)V̂ (st)+βnvt

Step 2d st+1 = S (st ,at ,ωn)
Step 3 if n = N return V̂ , else increment n and go to Step 1.

Note that the implementation of Algorithm 1 requires a look-up table in order to represent the value
function approximation V̂ (s) for each visited state. In addition, for each visited state, an expectation is
needed to be calculated. To avoid this, we use the concept of post-state (cf. Powell 2005).

3.1 Post States

A post-state sa
t is used to describe the state of the system right after an action was taken at state st but before

the arrival of a new event. In our setting, sa
t is the state right after we make our admission decision but

before the occurrence of a new request arrival or deployment termination event. Since sa
t can be calculated

independently of events that occur after step t, The expectation on Step 2a and Step 2b in 1 is replaced
with maxa R(st ,a)+ v̂(sa

t ). In this case, instead of using (4), the policy is derived by

π (s) = argmax
a

R(st ,a)+ v̂(sa
t ) . (5)

We also note that our post-states can never have a pending request (p = 0), and therefore incorporating
them in the schema brings additional value of reducing the state space. The value function is fitted around
the post-state, so Step 2c is replaced with V̂

(
sa

t−1

)
= (1−βn)V̂

(
sa

t−1

)
+βnγ

(
sa

t−1,0
)

vt .
Algorithm 1 evolve by exploring all the states traversed by simulation. However, their number may still be
very large, especially for large instances. This results with highly inaccurate approximation of the value
function. In what follows, we apply two common techniques to represent the value function in a more
compact way: basis functions and state aggregation.

3.2 Basis Functions

A very well known approach to simplify the value function representation, and consequently the learning
procedure, is to use basis functions (also called features). A basis function φi (s) is a real-valued function
of the states. Basis functions are used to approximate the value function by a weighted sum as follows
V̂θ (s) = ∑i θiφi (s). Our problem reduces from approximating the value for each state to approximating
only the weights θ that define the value for all states. Since the number of basis functions is significantly
smaller than the number of states, we are facing with a much simpler task. There are several alternative
methods to calculate the weights. A very well known method is temporal differences learning (cf. Boyan
2002, Lagoudakis and Parr 2003).
We use a simple schema as in Powell (2008), according to which the weights are updated using stochastic
gradients θ = θ +βt

(
vt −θ T φ(st)

)
φ (st).

The simplest form of basis functions are polynomial functions of the state components. In lack of good
insights about the shape of the value function, they are probably the most appealing choice. We consider
several other types of basis functions. The first one is based on the number of admissible deployments
given by

φ
AD
i,k (s) = min{k,ADi (s)} ,
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where ADi (s) is the number of admissible requests of type i when the state is s. The rational behind the
bound k is to make the value function rather constant when the cloud is empty, and then when the cloud
is quite utilized, the value changes as the number of potential request deployments changes.
Another form of basis function is

φ
UL
i (s) =ULi (s) ,

where ULi (s) is the usage level of resource i in the cloud. This is calculated by dividing the resource
consumption over all physical nodes by their total capacity.

3.3 States Aggregation

Another alternative to represent the value function in a compact way is to use aggregation functions.
Aggregation functions Gg (s) map each state s in the original state space S into a significantly smaller state
space S′. S′ can be a sub-space of S, or comprise states with entirely different form. Aggregation functions
are used to approximate the value function as follows V̂ (s) = ∑g wgV̂g (Gg (s)). That is, we use a value
function approximation for each aggregation level g and the overall approximation is expressed as a linear
combination of these value function. Consequently, in each state we update the value function of each
aggregation level according to v̂g

(
Gg
(
sa

t−1

))
= (1−βt) v̂g (Gg (sa

t ))+βt v̄ ∀g.
Again, we experiment with several types of aggregation functions. One alternative is to aggregate states
by the maximal resource usage level rounded to the nearest grid point with granularity α .

GUL (s) = round
(

max
i

ULi (s),α
)
.

round (x,α) is the mathematical function that rounds x to the closest grid point with resolution α . More
formally, round (x,α) = round (x/α) ·α , where round (x) is the function that rounds the number x to its
closest integer. For instance, round (0.77,0.05) = 0.75 since 0.75 is the closest number to 0.77 on the
grid {n ·α|n ∈ Z}. In a variation of this aggregation function, we also looked at node-specific usage level
aggregation. For example we aggregated states according to the usage level in their least utilized node,
or several nodes. Alternatively, we also consider aggregation function based on the number of admissible
requests.

GAD (s) = (AD1 (s) , . . . ,ADI (s)) .

3.4 Classification-Based Policy

The methods proposed above assist us with approximating the value function more efficiently (but less
accurate, of course) than DP methods. However, in order to derive the policy by the value function, we
are still required to calculate the best decision for each state either by (4) or (5). Obviously, calculating
the policy in advance for each possible state is troublesome, since we would have to keep a huge look-up
table. In contrary, using the value function approximation to calculate the optimized decision in real-time
entails run-time performance issues. Ideally, we would like to have a more compact representation of the
policy. Classification has been used for this purpose in several works (cf. (Liu et al. 2010); Rexakis and
Lagoudakis 2008). In addition to being more consumable, classification-based policies has an appealing
added value of providing structural insights.
In our schema, in conjunction to updating the value function approximation of each visited state, we also
store the state and its optimal decision in a training set that is used for building a classifier. We found
decision trees to be most appealing classification method in particular to our setting. The formal procedure
is depicted in Algorithm 2.
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Algorithm 2 (Sample Value Iteration with Classification)

Initialization Initialize V̂ (s), set n = 1
Step 1 Step 1a Generate ωn

Step 1b Set T S = /0
Step 2 For t=0,. . . ,T do:

Step 2a Set at = argmaxa R(st ,a)+ γ (st ,a)∑Pst ,a (st+1) v̂(st+1)
Step 2b T S = T S

⋃
{〈st ,at〉}

Step 2c Set v̄ = R(st ,at)+ γ (st ,at)∑Pst ,at (st+1)V̂ (st+1)
Step 2d V̂ (st) = (1−βt)V̂ (st)+βt v̄
Step 2e st+1 = S (st ,at ,ωn)

Step 3 Use training set T S to obtain a classifier πC

Step 4 if n = N return V̂ , else increment n and go to Step 1.

3.5 Parametric Policy

For last, we also consider parametric policies as an alternative to use classification for approximating a
policy. A parametric family of policies πθ (s) =H (s,θ) is defined by a deterministic function H : S×Θ→A,
which returns an action for each state s and parameter choice θ . The parameter θ can be in general a vector
defined on a support set Θ. The goal in the parametric approach is to find the optimal parameter value
θ ∗ ∈Θ that gives rise to the best policy πθ . Parametric policies are appealing mostly because of the fact that
it is much more intuitive and sometimes insightful to come up with decision schemes than thinking about
value function approximation, which is a more abstract concept. In addition, parametric policy can capture
parametric business rules, which are common approach to implement policies in practical applications.
The parametric approach to policy learning is today one of the main research issues in reinforcement
learning, usually under the name of Policy Gradient Algorithms (cf. (Bhatnagar et al. 2009) and references
therein).

Algorithm 3 (Parametric Policy Optimization)

Initialization Initialize θ

Step 1 Sample k states and set S to be that set.
Step 2 For each s in S do:

Step 2a For each a in A(s) approximate Q̂π (s,a)
Step 3 Solve θ ∗ = argmaxθ ∑s∈S Q̂π (s,Hθ (s))
Step 4 if θ ≈ θ ∗ return π (θ),else set θ = θ ∗ and go to Step 1.

Algorithm 3 describes our parametric policy optimization procedure. In each iteration, a set of
states is sampled using simulation. We use one long simulation run, and take any other i’th state we
visit. Next, for each one of the states and admissible action, we approximate the state-action value
Q̂π (s,a) = R(s,a)+ γ (s,a)∑s′ Ps,π(s) (s)V π (s) using roll-outs. A roll-out used to approximate Q̂π (s,a) is
a simulated trajectory of the process starting from state s with decision a, and proceeding according to the
policy π thereafter T time units into the future. Given the state-action value approximations, we proceed
by solving the optimization problem θ ∗ = argmaxθ ∑s∈S Q̂π (s,H (s,θ)). Since H (s, ·) is not guaranteed to
have any specific form, we use a heuristic called the Cross-Entropy method, to approximate θ ∗. Finally,
if the obtained policy πθ is not changed relative to previous iteration the policy is returned as the optimal
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policy, otherwise the procedure is repeated with the new policy.

We have experimented with several simple parametric rules. The most prominent among them, is the
following threshold policy

HT H (s,θ) =
{

1, UsageLevel (s,n)< θp;
0, otherwise.

UsageLevel (s,n) is the utilization of the most utilized resource, in the least utilized node (in the same
sense), in state s. In general, this rule can refer not only to the least utilized node, but also to the second
least utilized or any other order.
A results summary of a selection of our experiments is provided in Section 4.

4 NUMERICAL EXPERIMENTS

Our experiments are based on the following basic settings. There are seven types of deployment requests.
Their characteristics are summarized in Table 4.

Table 1: Basic Cloud Settings.

Type B2 S2 G2 B4 S4 G4 P4
λ 24 3 2 2 0.25 0.25 0.0625
µ 1 8 8 2 16 16 64
dcpu 1 2 4 2 4 8 16
dmem 2 4 4 4 8 16 16
ddisk 1 2 2 4.86 5.85 5.85 11.70
r 0.085 0.17 0.68 0.34 0.68 1.2 2.4

r
dcpu

0.085 0.085 0.17 0.17 0.17 0.15 0.15

The cloud is comprised of eight identical nodes with the following resource capacities: cpu capacity
is c1 = 32, memory capacity c2 = 64 and disk space c3 = 29.26.
We produce several scenarios with varying cloud sizes and load factors, by scaling the basic settings. This
is achieved by multiplying the number of nodes, and the overall arrivals rate. The load factor in our case
is defined by

LF (λ ,µ,d,c,K) = max
j

∑i
λi
µi

di j

K · c j
. (6)

λi
µi

di j is the offered load on resource type j, coming from requests type i, and the summation of them yield
the overall offered load on resource j. The offered load can be interpreted as the expected resource usage
in steady state, assuming the cloud has infinite resource capacities. Dividing the offered load on resource
j by the total resource j capacity K · c j gives the load factor, indicating how loaded resource j is. It is
easy to see that the basic settings yield a load factor 1. Moreover, the restricting resource in our case is
cpu. The ratio between the cpu requirement and the revenue rate would give us some sense about which
are the more favorable request types and which are less. For instance, the last row in Table 4 shows that
types B2 and S2 are ”less profitable” than others.
The baseline policy we use for comparison is a naive ”Admit All” policy. According to this policy, each
deployment request that arrives to the system and can be hosted on one of the nodes, is accepted; otherwise,
it is rejected. We use the same placement function hpl in all our experiments. Our experiments revealed that
the choice of a placement function has a strong impact over the profitability. The placement function we
chose is one that is rather simple to implement, and performs not worse than any other complex placement
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function we experimented with. This placement function keeps all nodes ordered by their usage level. The
first node is the node with the greatest usage level, and the last is the least utilized node. Whenever a new
request needs to be placed, the selected node would be the the first node, starting from the most utilized,
that can accommodate the request. Note that in order to maintain the order, it is only required to permeate
the place of the node whose state was changed, either because of a new deployment or a termination.
Simpler placement functions like Round Robin or First Fit were found to be significantly inferior.

Table 4 summarizes the results of 9 scenarios. The size of the cloud was varied between 8, 80 and 800
nodes; the load factor was varied between 1, 1.2 and 1.4. Altogether, there are 9 combinations corresponding
to the 9 scenarios. We ran all of our algorithms on each of these scenarios, and compared the obtained
policies to the naive ”Admit All” policy. All of the policies were evaluated by simulation. We constructed
confidence intervals using conventional formulas with confidence level of 0.95 and accuracy of 0.01. The
discount factor we use in each of the experiments is 0.99. We denote by Jp the discounted reward of policy
p, divided by the number of nodes, where p takes the following values

AA Admit All policy
BF The policy obtained by the generic schema with basis functions.
AGG The policy obtained by the generic schema with state aggregation
CLSS The policy obtained by applying classification to the best between the basis function schema or

aggregation schema
PAR The policy obtained by the parametric policy schema

The displayed results always refer to the best design choice in each schema. For the schema with basis
functions, the number of hosted deployments of each type produced the best results. Namely, there are
two basis function for each deployment type, corresponding to the number of hosted deployments of that
type in the power of i = 1,2. For the state aggregation schema, we found that aggregation based on the
usage level of the least x utilized nodes, with granularity α works best. In each experiment, we used
several levels of aggregation corresponding to each combination of α = 0.05,0.1 and x = 3,10,20. The
classification is always added on top of the basis function approximation or the aggregation schema. When
it is incorporated with state aggregation, we use the most aggregate level (i.e., smallest α and largest x)
state attributes to train the decision tree. With basis functions, the values of each basis function were used
as the attributes.

Table 2: ADP Algorithms Results.

#Nodes Load Factor ĴAA ĴBF ĴAGG ĴCLSS ĴPAR

8 1.0 3.65 3.7(+1.1%) 3.73(+1.64%) 3.71(+1.64%) 3.78(+3.56%)
1.2 3.78 3.98(+5.3%) 4.01(+6.1%) 3.98(+5.3%) 4.05(+7.1%)
1.4 3.82 4.31(+12.8%) 4.28(+11.5%) 4.26(+11.5%) 4.29(+12.3%)

80 1.0 4.13 4.14(+0.2%) 4.17(+1%) 4.17(+1%) 4.18(+1.2%)
1.2 4.14 4.38(+5.8) 4.18(+1%) 4.37(+5.5%) 4.43(+7%)
1.4 4.09 4.79(+17%) 4.21(+2.6%) 4.77(+16.5%) 4.79(+17%)

800 1.0 4.31 4.32(+0.2%) 4.33(+0.5%) 4.32(+0.2%) 4.37(+1.4%)
1.2 4.26 4.38(+2.8%) 4.35(+2.1%) 4.36(+2.3%) 4.46(+4.7%)
1.4 4.17 4.77(+14%) 4.36(+3.8%) 4.77(+14%) 4.79(+14.5%)

Table 4 highlights several major findings. First, it is interesting to see that with Admit ALL (AA)
policy, the revenue increases with the load factor in a small data center (8 nodes), and decreases in a large
data center (800 nodes). Since there is no penalty for rejecting requests, we expect the optimal revenue to
increase with the load factor. Therefore, there is a good potential for improvements in revenue. Second,
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in all cases, our algorithms achieved significant improvement. The percentage in parenthesis next to the
estimated revenues, represents the improvement over Admit All policy. The parametric policy seems to
achieve the best results in all cases, and it works well also in large instances. As expected, the improvement
is more significant as the load factor increases. It is also interesting to see that the incorporation of
classification to the basic schema does not come at the expense of performance, yet it produces simpler
policies.

5 PROACTIVE CLOUD DEPLOYMENT MANAGEMENT

In previous sections, we described efficient methods to produce optimized admission policies for cloud
systems. In this section we take one step further and describe a deployment management system that
handles the admission of deployment requests while taking into account predicted behavior. This system
derives the relevant parameters needed to carry out the optimization, and also decides when it is necessary
to update the policy. Ideally, we would like this system to have advanced predictive capabilities, so that
we could prepare for irregular behavior before they happen. For instance, if there is a football game,
and during this time, it is predicted that the demand of a certain deployment type (e.g. football site) will
increase, we would like the system to update its policy to reflect this modified behavior. We may want to
stop accepting requests from other types or conversely we would like to accept more. This way of thinking
falls into what we call proactive event-driven computing paradigm. Figure 1 proposes a conceptual model
of such a proactive system.
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Figure 1: Deployment Management System.

The deployment management system consists of several modules:

1. Admission Control Module - handles the executing the admission policy
2. Placement Module - places the admitted request on a specific physical node
3. Data Center - contains the physical nodes
4. Database - stores historical transaction and relevant data that can be used to forecasting
5. Predictive Module - analyze historical data and apply statistical tools to predict the future load
6. Policy Optimization Module - calculates optimal policy for specific settings
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The flow between the modules goes as follows: Virtual Machines (VM) requests that arrive to the cloud
first go through the Admission Control Module, on which the admission policy calculated by the Policy
Optimization Module is deployed. Based on the request type and the state of the system, the request may
either be admitted or rejected. In case it is admitted, it is sent to the Placement Module which in turn
places the request on a physical node according to a placement function. Each event of the system, either
a request arrival or a deployment termination is logged in the Database. The Database contains historical
requests and deployments data. More specifically, the type of event, arrival time, termination time, resource
consumption as well as external relevant data. Based on this data, the Predictive Module periodically polls
the tables in order to calculate a forecast on future arrival rates for all types, the expected life-time and
resource requirements. Whenever the forecast differs from the current model, the new parameters are sent
to the Policy Optimization Module. This module generates a simulation according to the new parameters
and runs the ADP algorithms to obtain a policy. This policy is updated back in the Admission Module.
Special considerations as to how much time to run the optimization, what is considered significant change,
and how far into the future to look, are interesting, but are out of scope of this paper.

6 CONCLUSIONS

In this work we use MDP to model the admission control of deployment requests to a cloud hosting
system. We focus on the goal of optimizing the long-run reward received from the deployments that were
admitted to the cloud. However, the same approach can be applied to other objectives, such as service level.
Since the state space tends to be immense, we resort to approximative methods. We have introduced three
main algorithms built upon common approximation approaches from the field of ADP and Reinforcement
Learning.
We show through a numerical study that our proposed algorithms achieve substantial improvement in prof-
itability compare to naive admission policies. Moreover, the main advantage of our proposed algorithms is
that they are applicable to large cloud systems in the sense that both the optimization and the execution of
the derived policies are almost independent of the size of the cloud. The parametric policy approach seems
the most attractive for several reasons. It produced the best results, it is compact and easy to implement,
and it is much easier to design than the other approaches.
We also use the admission control in a broader context of a deployment management system. We describe
a complete solution that includes prediction and optimization in order to pro-actively prepare for predicted
workload.

A very interesting future direction is to address service level agreements (SLA) implicitly in the model.
The most popular type of SLA in the context of the cloud, is the blocking probability - the percentage of
requests from a specific customer that are rejected and hence lost. These can be measured on different
time basis such as a day, a week, a month or a year. Another important research question is what should
be the optimal resource capacities and design of the cloud. In this work, the capacities were assumed
to be given. In practice, there is a trade-off between factors that tend to increase the capacities such as
SLAs and revenues, and factors that tend to decrease the capacities such as energy costs, maintenance
costs, depreciation etc. In order to obtain a truly optimized cloud system, the design, capacity planning
and admission control should be addressed together.
There are also more advanced settings that were not regarded in this work. Some of these include time
varying parameters, batch arrivals of requests, deployments with changing resource requirements and more.
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