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ABSTRACT

Simulation optimization is attracting increasing research interest from the modeling and simulation com-
munity. Although there is much research on how to apply various simulation optimization techniques to
solve numerous practical and research problems, researchers find that existing optimization routines are
difficult to extend or integrate and often require one to develop their own optimization methods because the
existing ones are problem-specific and not designed for reuse. In order to facilitate reuse of the available
optimization routines and better capture the essence of different simulation optimization techniques, an
ontology for simulation optimization (SoPT) is devised. SoPT includes concepts from both conventional
optimization/mathematical programming and simulation optimization. Represented in ontological form,
optimization routines can also be transformed into actual executable application code (e.g., targeting JSIM
or ScalaTion). As illustrative examples, SoPT is being applied to real scientific computational problems.

1 INTRODUCTION

In our prior work on ontology driven simulation (Silver et al. 2010), we provided a tool for assisting a
simulation model developer to create a model from ontological information contained in domain ontologies.
Focusing on modeling, the work left out two important steps, namely design of simulation experiments
and simulation optimization.

When designing simulation experiments it is important to examine the list of inputs and the list of
outputs. For simplicity, in this paper, we assume the inputs to a model are deterministic and the outputs
from a model are stochastic. Since the outputs are stochastic, it is necessary to replicate the runs of a
simulation model to obtain statistical estimates (e.g., means, variances and confidence intervals). When
designing simulation experiments, one typically wishes to explore a subset of the input parameter space,
generating corresponding output results. Typically, enough replications should be run to obtain adequate
confidence intervals.

We divide input parameters into three categories: regular input parameters, control parameters and
model parameters.

Control parameters influence the behavior of a model and are in some sense controllable. An example
for certain metabolic pathway simulations is concentrations of enzymes that catalyze reactions in pathways.
Experiments may be conducted where enzyme levels are up-regulated, down-regulated or even reduced to
zero by knocking out the responsible gene. Metabolic pathway models can simulate these possibilities so
that the enzyme concentrations may be adjusted to optimize the production of certain bio-molecules.

Model parameters are intrinsically part of a model, but may be unknown and hence, need to be
estimated from empirical data or calibrated by comparing output results, with empirical data. Reaction
rates in metabolic pathways are good examples of model parameters. Many of these are not accurately
known in the literature and are difficult to measure directly. They may, however, be estimated by performing
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an optimization that adjusts the reaction rates with the objective of minimizing the differences (e.g., least
squares) between empirical pathway time series data and those generated by a metabolic pathway model.

As discussed, model parameters may be optimized to improve the accuracy of a simulation model,
while control parameters may be optimized to improve the outcome of the model (e.g., a better yield
of bio-molecules). Simulation optimization can be accomplished in a couple of ways. One is to simply
explore the input parameter space over a sufficiently detailed grid to produce a response surface. Then, for
example, a quadratic surface can be fit to the output points produced by the simulation. An optimization
method can now be used to find a global optimum. This approach is called Response Surface Methodology
(RSM) and is currently not considered in our work. Rather, our work focuses on simulation optimization
techniques that loosely couple a simulator with an optimizer, having them work together in an iterative
fashion. The optimizer steers the exploration of the simulator’s input space.

In this paper, we consider how optimization can be used in simulation, as well as, the types of optimization
problems that are encountered. We illustrate the approach by considering two related simulation optimization
problems from the bioinformatics domain: Mass Spectrometry and Metabolic Pathways. Based on these
case studies, we develop an ontology to complement the Discrete-event Modeling Ontology (Miller et al.
2004) that can serve as a knowledge repository for simulation optimization.

The rest of this paper is organized as follows: Section 2 introduces two scenarios in bioinformatics
research that need modeling, simulation and optimization. Section 3 categorizes conventional optimization
problems into groups based on characterization of optimization components. Section 4 reviews the current
work in simulation optimization and ontology development in Modeling and Simulation (M&S). Section 5
outlines the design of the Simulation oPTimization (SoPT). Section 6 concludes the paper and discusses
possible future work.

Notational conventions: (1) boldface letters in lower case for vectors, (2) capitalization for matrices
and random variables.

2 MODELING SCENARIOS

2.1 Scenario 1: Mass Spectrometry Model

Mass spectrometers (MS) are powerful tools widely utilized in the identification and quantitative analysis of
chemical samples due to their capacity for high-throughput, high precision and high sensitivity (Zaia 2010).
An MS experiment involves the ionization and gas-phase analysis of molecules to generate data in the form
of a mass spectrum, which is generally represented as an array of ion intensities versus mass-to-charge
ratios (m/z), providing information regarding the molecular mass of the molecules in the sample.

Given the elemental composition of a molecule (e.g., CxHyOzNuNa), the mass spectrum for this molecule
is simulated in two major steps: (1) calculate the isotopic distribution of each isotopic configuration for
this molecule via Multinomial distributions and (2) calculate the intensity via Normal distributions of all
possible isotopic configurations, as shown in Figure 1.

For example, light water (1H2
16O), semi-heavy water (1H2H16O), heavy water (2H2

16O) and heavy-
oxygen water (1H2

18O) are an incomplete list of six possible stable isotopic configurations for water whose
elemental composition is H2O. Now, suppose there are K atoms of a given element in a molecule. Each such
atom may be one of l different isotopes, and therefore, the element has a vector k = (k1, ..,kl) indicating
the number of atoms for each of the l isotopes where k1 + · · ·+ kl = K. Given a molecule with K atoms
of a certain element, the probability that the molecule has k j such atoms having isotope j ( j = 1..l), is
determined by the probability mass function (pmf) of the Multinomial distribution (Hellerstein and Neese
1999).

p(k) = p(k1, ..,kl) =
K!

∏
l
j=1 k j!

×
l

∏
j=1

pk j
j (1)
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Figure 1: Mass Spectrometry Model: elemental composition→ isotopic distribution→ simulated mass spec-
trum. Cartoon representation comes from CFG glycan structure database (available at http://www.functionalglycomics.
org/glycomics/molecule/jsp/carbohydrate/carbMoleculeHome.jsp).

where p j is the relative abundance of each of the element’s isotopes (e.g., for element Hydrogen (H),
relative abundances for 1H and 2H are 0.99985 and 0.00015, respectively). As a molecule is made up of E
elements, to determine the probability for all of the elements in the molecule, the product of E such pmfs
is required. The exact molecular mass for this isotopic configuration (k1, ..,kE) can also be calculated.

p(k1, ..,kE) =
E

∏
i=1

p(ki) (2)

m(k1, ..,kE) =
E

∑
i=1

ki ·mi (3)

where i is the index of the ith element and mi is the mass vector for the l isotopes of element i (e.g.,
for element Hydrogen (H), m = (1.007825,2.014101), representing the isotopic masses for 1H and 2H,
respectively). These probabilities and masses for various isotopic configurations correspond to intensity
and m/z readings obtained from the mass spectrometer, where z is the charge of the ion. Due to the fact
that masses are clustered and inherent properties of mass spectrometers, intensity peaks (see Figure 1) will
typically have Guassian shapes (Normal Distribution).

Each isotopic configuration has its effect on the whole simulated mass spectrum based on Normal
distributions; therefore, the actual intensity of each ζ = m/z in the mass spectrum is the sum of the
intensities of all the possible isotopic configurations at m/z. Given experimental data represented as an
array of [m/z, intensity], a peak width (w) and charge state (z), the intensity value contributed by the jth

isotopic configuration is simulated by the pmf for the Normal distribution (Han et al. 2011).

f j(ζ ) =
1

σ
√

2π
× e

−(ζ −ζ j)
2

2σ2 (4)
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where σ = 0.4247×w (Inczédy et al. 1998). Weighting this by the pmf from Equation 3, we obtain:

fG(ζ ) = ∑
j

f j(ζ )p j (5)

In summary, the input parameters to a mass spectroscopy model are listed as follows:

• Input Parameters: (1) glycan structure, (2) experimental spectrum
• Control Parameters: (1) spectrum calibration, (2) low level noise filtering. Both parameters are

controlled by the mass spectrometer, which changes the intensity response of experimental mass
spectrum.

• Model Parameters: (1) peak width, (2) charge state, and (3) relative abundance vector for each
structure.

All the inputs are real numbers. Constraints for the input parameters are in linear form with lower and
upper bounds. The goal is to minimize the errors between the two and maximize the Pearson correlation
coefficient R =

√
R2, where the coefficient of determination R2 is computed by comparing the normalized

intensity of the simulated spectrum with the experimental one. Multinomial distributions and Normal
distributions are used in isotopic distribution calculation and mass spectrum simulation, respectively.
Therefore, the overall objective function is in nonlinear form. To sum up, the problem of mass spectrometry
model calibration belongs to linear constrained, nonlinear programming. Both gradient-based and heuristic
methods can be applied to solve this particular problem.

2.2 Scenario 2: Metabolic Pathway Model

A metabolic pathway consists of a series of chemical reactions, each of which modifies the structure of a
biomolecule as it passes through the reaction. Figure 2a represents a portion of an O-linked glycan pathway.
It is made up of four substrates (molecules with which enzymes react), five enzymes, three steps and five
biosynthesis reactions. An enzyme catalyzes a reaction which transforms a substrate into a product which
becomes a substrate for the next reaction.

Our objective is to build a simulation model, which accurately represents both the qualitative (struc-
tural/visual) and quantitative (mathematical) aspects of a metabolic pathway. Biochemical pathway models
have traditionally been developed using a system of differential equations (Heinrich and Schuster 1998), but
because differential equations model only the quantitative aspects, we have chosen to use Hybrid Functional
Petri Nets (HFPN) (Matsuno et al. 2003), as shown in Figure 2, to model pathways. (See (Silver et al.
2009) for a description of using HFPNs to model biochemical pathways.)

Several of the model’s input parameters, such as concentrations of substrates and enzymes, for the
pathway can be estimated from experimental data, but accurate reaction rates are more difficult to obtain.
In order to estimate accurate reaction rates, we will use simulation optimization. The rate of a reaction is
modeled using Michaelis-Menten kinetics which makes use of the kinetics constants Kcat and Km. These
constants are the target of our simulation optimization. (See (Nimmagadda 2008) for a detailed description
of Michaelis-Menten kinetics in pathway simulation.) The biomolecule and enzyme concentrations for
the pathway can be estimated from experimental data, while the simulated results will be produced using
the HFPN model depicted in Figure 2. The output of the simulation will consist of the biomolecule
concentrations produced by each of the models three reactions at five time points over a 36 hour period.
Our optimization will use experimental results along with simulated results in order to develop an accurate
estimate of the Kcat and Km constants, which control the pathway’s reaction rates. The experimental and
simulated results will be used as input for a least squares model that will quantify the difference between
the two. The output of the least squares along with the experimental results will be used by an optimizer
to adjust the Kcat and Km constants, thus modifying the reaction rates, used in the next set of simulations.
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Figure 2: Metabolic Pathway Model. a) Substrates in each step of the O-Glycan metabolic pathway, b)
HFPN model of O-Glycan metabolic pathway. Cartoon representation comes from the CFG glycan database.

3 CLASSIFICATION OF OPTIMIZATION PROBLEMS

To facilitate component reuse, we are primarily interested in systems where simulators and optimizers are
loosely-coupled. In addition, there may be a third component, a cost analyzer. In general, the simulator
will take a set of input/parameter vectors {x}, and produce a set of output/response vectors, {Y} = R({x})
where x is thought of as deterministic and Y is often stochastic. The cost analyzer will take the response
vectors Y along with a quality vector q, and provide a set of triples {(x,Y,Z)} using a cost function to
compute Z = c(Y,q). These triples are then fed into the optimizer, which will compare these values
with those it has stored from previous iterations. After applying a stopping rule, the optimizer will either
report a solution or ask for more response data from the simulator, as shown in Figure 3. Denoting the
composition of the cost and response functions as F = c◦R, optimizations may be formulated in 6.

Figure 3: Loosely-coupled software architecture for Simulation Optimization.
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min E[F(x)]
s.t. V [F(x)] ≤ t

g(x) ≥ 0
x ∈ D (6)

where F(x) is a stochastic objective function, g is a constraint function, t is the threshold for variance and
the domain D (often a vector space) can be subsets of Rn, Zn or Bn, for real, integer or binary vector spaces,
respectively. Due to the stochastic nature of the objective function, one must focus on characteristics of
F(x), such as moments or quantiles. Typically, the mean (E) of F(x) is used. Other characteristics can be
used in constraints (e.g., limiting the variance (V ) to be within a threshold).

Now, if R is deterministic, the simulator may be thought of as a function evaluator (using either analytic
or numerical evaluation). Then F becomes deterministic, so that E[F(x)] = F(x) and V [F(x)] = 0, leading
to conventional optimization. For efficiency, the same evaluations can be produced by a meta-model, which
typically provides more rapid evaluation and produces deterministic responses ({Y} is deterministic).
Replacing F with f , this may be formulated as follows:

min f (x)
s.t. g(x) ≥ 0

x ∈ D (7)

In conventional optimization, the problem may be defined as finding the minimum value of an objective
function f (x) over domain D subject to the constraint function g(x) being non-negative. We use minimization
for simplicity (maximization could be used as well). Classification of the type of optimization problem is
primarily determined by the characteristics of f , g and D. The objective function f can be linear, quadratic
or non-linear. The constraint function may be non-existent (unconstrained), linear, quadratic or non-linear.
Note, in this paper, non-linear more accurately means what is not accounted for by the special cases of
linear (and quadratic where applicable). D is typically a subset of Rn, Zn or Bn, but may also be mixed.

A secondary classification is based on solution quality, in terms of finding a global minimum versus a
local minimum as well as whether an exact, approximate or heuristic solution is acceptable. Exact involves
convergence on a solution, while approximate typically guarantees a solution within a relative error bound
and heuristics offer no guaranteed error bounds.

Techniques and applications of engineering optimization are addressed in (Rao 2009) from a broad
perspective. Convex optimization and numerical optimization techniques are discussed in (Boyd and
Vandenberghe 2004, Nocedal and Wright 2006).

A portion of our classification of optimization methods is listed in Table 1. To save space, the column of
Constraint, including unconstrained, linear, quadratic and nonlinear constraints is omitted; the distinctions
are saved for the discussion below. Typically generalized solvers (e.g, for nonlinear programming) can
be applied to solve the more specific form (e.g., linear programming), although less efficiently. People
try to look for a one-size-fits-all solution for various practical optimization problems. However, since the
generalized solvers (e.g., for nonlinear programming) may get trapped in local optima and take much longer
time than some more specific solvers, there is a need to have several solvers (e.g., the Simplex method for
linear programming). Therefore, in order to determine the most suitable and efficient solvers, the first and
crucial step in optimization is always to determine the classification of a particular optimization problem.

Linear constrained, linear programming (LP) (8), integer linear programming (ILP) (9) and linear
constrained, quadratic programming (QP) (10) are three types of such problems. Because they are simple
to express in canonical forms, they are taken as examples to illustrate the basic components involved in
optimization, as listed in Table 2.
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Table 1: Classification of conventional optimization problems.

Objective
Function

Restriction Problem Methods

Linear

Real Linear Programming Simplex Method, Interior Point Methods
(Khachiyan and Karmarkar)

Integer Integer Linear Programming Branch and Bound
Real/Integer Mixed Integer Programming Branch and Bound
Binary Binary Integer Programming Balas Additive Algorithm

Quadratic

Real Quadratic Programming Calculus and Quadratic Simplex method
Integer Quadratic Integer Programming Special Branch and Bound
Real/Integer Mixed Integer Quadratic Program-

ming
Generalized Benders Decomposition (GBD)

Binary Binary Quadratic Programming Heuristic Methods

Nonlinear

Real Nonlinear Programming Gradient-based Methods
Integer Nonlinear Integer Programming Branch and Bound, Outer-Approximation
Real/Integer Mixed Integer Nonlinear Program-

ming
Branch and Bound, Outer-Approximation

Binary Nonlinear Integer Programming Heuristic Methods

Table 2: Examples of optimization components.

LP ILP QP

min cT x
s.t. Ax≥ b

x ∈ R+n (8)

min cT x
s.t. Ax≥ b

x ∈ Z+n (9)

min 1
2 xT Qx+ cT x

s.t. Ax≥ b
x ∈ Rn (10)

where x, b and c are the vector of input/decision variables, the constant vector, and the cost coefficient
vector, respectively, A and Q are the coefficient matrices for constraint and objective functions, respectively.
If Q is zero, (10) is reduced to (8).

4 RELATED WORK

The need of combining simulation and optimization is summarized and reviewed in (Fu et al. 2000, Fu
2001, Fu 2002, Better et al. 2008). On the one hand, simulation is an approximation to the real world,
and in most cases it is impossible to find a good enough solution by enumerating the possible scenarios in
huge search spaces, therefore simulation needs optimization techniques to provide some guidance towards
a global optimal solution. On the other hand, without the help of simulation, many real world problems are
too complicate to be modeled by explicit mathematical formulations and traditional optimization techniques
(e.g., gradient-based approaches) may not achieve satisfactory results. This has led to a major dilemma
for the researchers who want to approximate the real world as closely as possible and find a good enough
solution at the same time. According to the classification in (Fu 2002), the first situation is optimization
for simulation, while the other is called simulation for optimization.

In the M&S community, ontologies have been proposed and constructed to facilitate the sharing
of domain knowledge. The Discrete-event Modeling Ontology (DeMO) (Miller et al. 2004, Silver et al.
2010) represents the domain of discrete-event modeling and COmponent-oriented Simulation and Modeling
Ontology (COSMO) (Teo and Szabo 2008) describes the simulation components and compositions from
a component-oriented perspective. Process Interaction Modeling Ontology for Discrete-event Simulations
(PIMODES) (Lacy 2006) facilitates the exchange of model information between various simulation software
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package. The Discrete-event Simulation Ontology (DeSO) (Miller et al. 2007) is a small prototype ontology
for discrete-event simulation.

In the research area of simulation optimization, the previous effort has focused almost exclusively
on the optimization techniques and application of specific mathematical programs to practical simulation
problems. Surveys and reviews of Simulation Optimization from various aspects are given in (Andradottir
1998, Swisher et al. 2000, Fu 2001, Ólafsson and Kim 2002, April et al. 2003, Fu et al. 2005, Fu et al.
2008). A review focusing on both gradient-based techniques (for continuous parameter estimation) and
random search methods (for discrete parameter estimation) is presented in (Andradottir 1998). A review
of optimization techniques for discrete-event simulation is given in (Swisher et al. 2000) covering both
continuous and discrete input parameters. Discrete simulation optimization is reviewed in (Ólafsson and
Kim 2002). However, little work has been done to gather domain knowledge on optimization techniques
to construct an ontology that can be shared with others in the M&S community. ONTOP (Witherell
et al. 2007) is an ontology for engineering design optimization, available at http://edesign.ecs.umass.edu/
ontologies/Framework2.0/Optimization Model2.0.owl. It defines the class of Optimization Model, which
includes objective function, input and output variables, constraints, etc. For our purposes, the hierarchical
structure of the class Optimization Model is not organized suitably, and optimization problems (e.g., linear
programming) and optimization methods (e.g., Simplex method) are defined in the same place. This brings
two disadvantage: (1) it does not address the condition where one method can be applied to solve multiple
problems, e.g., Simplex and its revisions can be used to solve both Linear Programming and Quadratic
programming problems; (2) adding new mathematical programs can be difficult. For example, quadratically
constrained, quadratic program (QCQP) cannot find a suitable position because it can be put either under
Nonlinearly Constrained or Quadratic Programming.

5 ONTOLOGY FOR SIMULATION OPTIMIZATION

In order to describe numerous simulation optimization methods, some common building block components
and taxonomy need to be defined first and then be used to characterize the particular optimization problems
and specific methods. The top-level abstract classes of SoPT are Optimization Component, Optimization
Problem and Optimization Method. The relationships among them are shown in Figure 4.

Figure 4: (Left) Top level abstract classes for SoPT ontology. (Middle) Components involved in Simulation
Optimization. (Right) Optimization Method and Optimization Problem.
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5.1 Optimization Component

An optimization problem consists of several parts, the most important of which are the objective function,
the set of constraints and the domain over which optimization is to be performed. It is also important to
specify the goal of the optimization (e.g., min f (x) or maxE[F(x)], etc.) and the desired solution quality.

The subclasses of Optimization Component, as shown in Figure 4, include data types and restrictions
of input variables, objective function, constraints, solution, solution quality and optimization goal:

• Data Types: input variables may be represented in the form of vector or single element, which can
be used as the initial values and part of a Solution.

• Restriction: input variables may have restrictions on the types of numbers, e.g., real, integer, binary
and mixed (real/integer/binary).

• Objective Function: it can be a single objective or multiple objective function by using a data
property called has-MultiObjectives and needs to be represented as specifically as possible, so that
more specific methods for this particular problem can be found.

• Constraints: they have the forms of inequality or equality, and may be unconstrained, linear,
quadratic and nonlinear.

• Solution: it contains the output vector and value of the objective function.
• Solution Quality: it is used by both the Optimization Problem and Optimization Method classes

to specify which solution quality is desired for certain optimization problem sor which solution
quality can be achieved by certain optimization methods.

• Optimization Goal: it specifies the type of optimization desired on the objective function.

5.2 Optimization Problem

The subclasses within the Optimization Problem taxonomy, Linear Programming (LP), Quadratic Program-
ming (QP) and Nonlinear Programming (NLP) have object properties that link to the subclasses of both
Optimization Component and Optimization Method.

Based on the available optimization components, the aforementioned optimization problems (LP (8)
and QP (10)) can be represented as instances of the ontological class of Optimization Problem. Various
optimization components, such as constraints, restriction, solution quality can be shared between both
instances. Although LP and QP have different forms of objective functions, both can also share the same
input variable vector and cost coefficient vector as LP is special case of QP. The difference is that LP has
a zero-matrix for its quadratic coefficient matrix Q while QP has a non-zero Q.

5.3 Optimization Method

As mentioned, our primary interest is focused on iterative interaction between the optimizer and simulator.
Therefore, at this time, we do not include Response Surface Methodology (RSM) in the ontology. Although
meta-modeling is presently not explicitly included, we plan to add it, when we provide some cross linkage
between SoPT and DeMO. A meta-model could be viewed as an alternative path in Figure 3.

The Optimization Method class in SoPT is shown in Figure 4. Due to the wide variety of methods
used for simulation optimization, it is difficult to determine where to start. Because we are focusing on
iterative interaction between the simulator and optimizer, we concentrate on what the optimizer needs from
the simulator, a set of response vectors estimating a portion of response surface, and how the optimizer
explores the parameter space using search techniques. A simple illustration is a gradient based technique
(e.g., steepest descent or conjugate gradient), where search involves direction determination and how far
to move in that direction (line search).
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5.3.1 Surface Sampling

As a single data point cannot provide enough useful information regarding huge search space, surface sampling
is crucial to determine {x}i. For example, gradient based, newton and quasi-newton methods compute
first-order derivatives and/or second-order derivatives for d parameters, either directly or numerically.
When the objective function becomes nondifferentiable or noncontinuous, derivative free methods may be
helpful. For one specific point within an n-dimensional problem space, downhill simplex method maintains
n+1 points, pattern search maintains a set of points called a pattern, and random search samples from a
hypersphere around the current point. Heuristic methods often maintain a population of candidates, such
as Genetic Algorithms and Particle Swarm Optimization. Although Simulated Annealing only keeps track
of a single solution, it will choose from a number of its neighbors.

5.3.2 Search Techniques

Many optimization algorithms work in the following fashion: Iteratively establish a search direction (e.g.,
-gradient for Steepest Descent) and then move in this direction by an amount determined by a line search
algorithm that either optimizes or provides sufficient decrease of the objective function. An alternative is
to use trust regions instead of line search.

Response Surface Methodology (RSM) fits a surface to a portion of the domain D and finds the optimal
solution, e.g., using QP 1

2 xT Qx+ cT x, Ax≥ b. Meta-Modeling replaces a complex, stochastic simulation
with a simpler, likely deterministic meta-model.

5.4 Evaluation

Given the existing DeMO model and a well-populated SoPT ontology, optimization routines can be proposed
automatically based on the model information and the capabilities of available optimization routines. This
can be achieved by either applying an inference engine or running the simulation and investigating the
response surface. For example, by examining the Q matrix as well as the size of the problem, rules can
be used to select between active set and interior point methods for quadratic programming.

6 CONCLUSIONS AND FUTURE WORK

The major contributions of this paper are as follows: (1) investigated loosely-coupled software architecture
for simulation optimization based on two scenarios in the bioinformatics area. (2) developed an ontology for
simulation optimization, SoPT, to represent three fundamental concepts, namely Optimization Component,
Optimization Problem and Optimization Method, and their relationships in simulation optimization. The
ontology, SoPT is available at http://www.cs.uga.edu/∼jam/jsim/DeMO/.

Our future work includes (1) enrichment of SoPT to cover RSM and meta-modeling, (2) incorporation
of stochastic optimization, and (3) development of a small domain specific language (DSL) to transform
the ontological form of optimization routines into actual executable application code (e.g., targeting JSIM
or ScalaTion (Miller et al. 2010)).
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Inczédy, J., T. Lengyel, and M. A. Ure. 1998. Compendium of Analytical Nomenclature Definitive Rules
1997 (the Orange Book). 3 ed. International Union of Pure and Applied Chemistry (IUPAC).

Lacy, L. W. 2006. Interchanging Discrete Event Simulation Process Interaction Models Using the Web On-
tology Language—OWL. Ph. D. thesis, University of Central Florida, Orlando, FL, USA. AAI3242447.

Matsuno, H., Y. Tanaka, H. Aoshima, A. Doi, M. Matsui, and S. Miyano. 2003. “Biopathways Representation
and Simulation on Hybrid Functional Petri Net”. In Silico Biology 3 (3): 389 – 404.

Miller, J. A., G. T. Baramidze, A. P. Sheth, and P. A. Fishwick. 2004. “Investigating Ontologies for Simulation
Modeling”. In Proceedings of the 37th Annual Simulation Symposium, edited by H. Karatza, ANSS
’04, 55–63. Washington, DC, USA: IEEE Computer Society.

Miller, J. A., J. Han, and M. Hybinette. 2010. “Using Domain Specific Languages for modeling and
simulation: ScalaTion as a case study”. In Proceedings of the 2010 Winter Simulation Conference,
edited by B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, 741–752. Piscataway,
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