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ABSTRACT

Few studies examine distinct characteristics of problems studied by agent-based models and their implications
on operational validation. This paper focuses on exploratory and generative modeling perspective advocated
by the agent-based modeling paradigm. The significance of robustness is emphasized, and a robust generative
validation strategy is proposed for models used in scientific problems in which ambiguity and deep uncertainty
pervade. The strategy is predicated on the premise of creative evolutionary systems perspective that enables
viewing validation within the scientific method of falsification. That is, the strategy mimics the way
scientific knowledge is constructed and validated by groups of scientists within a scientific discipline. The
utility and feasibility of the method is demonstrated using a case study.

1 INTRODUCTION

Agent-Based Models (ABMs) are often criticized for relying on informal, subjective, and qualitative
validation procedures (Edmonds and Chattoe 2005). Because most ABMs are highly abstract and are
built from bottom up, their emergent behavior is often unpredictable. Also, a single authoritative model
does not often capture critical aspects of a multidimensional phenomena due to factors excluded during
the abstraction process (Schreiber 2002). Furthermore, ABMs are often developed for studying complex
adaptive phenomena, which involve uncertainty and ambiguity in terms of their underlying behavioral
mechanisms (Yilmaz and Ören 2009). Models that focus on human and social dynamics are especially
prone to ambiguity and uncertainty (Bharathy and Silverman 2010).

By developing a model of a complex adaptive system with large number of diverse entities that not
only interact with each other, but also adapt and learn through feedback and self-organization, one can gain
empirical insight while exploring emergent behavior. The underlying behavioral rules in such complex
systems are often unclear; hence, scientists and model developers hypothesize theoretically grounded rules
to explore their implications to discover underlying plausible mechanisms that help explain the behavior
of such systems (Yilmaz and Hunt 2011). In such problems, there can be one or more valid models that
can be considered as plausible. Therefore, while developing a single authoritative model and validating its
behavior against theory, system, and/or empirical data is feasible, such a strategy may not be robust in the
presence of uncertainty and ambiguity that pervade complex adaptive systems.

Figure 1 depicts three major types of agent-based models used in complex systems simulations. The
area marked with variability assumes the existence of an authoritative model. Using this model, experiments
can be conducted by varying the experiment space, which is comprised of parameters that define the system
configuration and the context in which the experiment takes place. By selecting parameters, as well as their
range and constraints, one can observe and test the consequences of various assumptions for the purpose
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of understanding a system or predicting its behavior. Substantial validation research has been conducted
and principles of validation are well understood in this domain (Balci 2003, Balci 2004, Yilmaz 2006).

!

Figure 1: Generative and Exploratory Simulation.

The domain of exploratory modeling focuses on conducting computational experiments in the presence
of deep uncertainty (Davis and Bigelow 2000). Seeking strategies that perform reasonably well across a large
number of plausible, yet unknown states is especially critical. Similarly, in scientific discovery, scientists
seek to discern mechanisms that are capable of explaining as many targeted observable measures as possible.
Exploratory modeling and analysis considers both structural and parametric uncertainty. Constraints and
structural relations on selected operating principles are varied to refine mechanisms to explore implications
of the constraints on the hypothesis space. However, in early phases of foresight, there is often lack of
clarity about which operating principles are applicable. This is the domain of generative modeling, for
which agent-based models are widely used (Epstein 2007).

To introduce the Robust Generative Validation (RGV) strategy, we use the metaphor of traditional
cycles of scientific advancement, where multiple hypotheses are formulated from a body of knowledge and
their testable consequences are evaluated. The proposed work is predicated on the conjecture that creative
evolutionary systems (Bentley and Corne 2002) coupled with the principles of complex adaptive systems
thinking facilitate reconsidering the use of simulation so that creative discovery of a diverse portfolio of
sufficiently valid models can be discovered. In our strategy, generation of models and their validation
testing are coupled together, and the feedback from the validation process affects generation of increasingly
accurate models. By doing so, we intend to mimic the way scientists collectively construct and validate
increasingly precise and accurate knowledge in an incremental and iterative manner.

The rest of the paper is structured as follows. In Section 2, we overview validation and verification of
simulation models, including agent-based models. The conceptual basis for RGV is introduced in Section
3. Section 4 demonstrates its applicability using a case study. We conclude in Section 5 by summarizing
the method and discussing potential avenues of future research.

2 BACKGROUND

A model is a representation or abstraction of something such as an entity, a system or an idea. Simulation
is the act of experimenting with or exercising a model or a number of models under diverse objectives
including problem solving, training, or acquisition. Since a model, by definition, is an abstraction or
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approximation, its representation is never expected to be perfect. Therefore, substantiating the sufficient
accuracy of a simulation model continues to pose significant technical challenges (Balci 2010).

Verification and Validation are intended to assess the accuracy quality characteristic of a simulation
model (Balci 2004). Simulation Model Verification deals with the assessment of transformational accuracy
of the model and addresses the question of Are we creating the model right as intended? Simulation Model
Validation deals with the assessment of behavioral or representational accuracy of the model and addresses
the question of Are we creating the right model? (Balci 2003).

ABM enables conceptualizing systems in terms of interacting autonomous entities, called agents.
Complex adaptive systems are comprised of such interdependent, networked, and distributed agents that
can adapt (Miller and Page 2007). Agents have perception and social ability to perform goal-directed
knowledge processing over time, on behalf of humans or other agents in software and physical environments.
The core knowledge processing abilities of agents include: reasoning, motivation, planning, and decision
making. The factors that may affect decision making of agents, such as personality, emotions, and cultural
backgrounds can also be embedded in agents. Since agent-based modeling advocates a bottom-up view
of system representation, the underlying mechanisms and their explanation in terms of agent behavior
and interaction rules are crucial. The emergent behavior can be counterintuitive, and such behavior can
be construed as novelty and new knowledge, instead of inaccuracy. ABM also provides a framework for
tuning the complexity of agents by allowing model developers to refine agents’ behavior, interaction rules,
ability to learn, and evolve across multiple levels of resolution. As ABMs are increasingly being used in
computational science, especially in biomedical, therapeutic (Hunt, Ropella, Lam, Tang, Kim, Engelberg,
and Bahaei 2009), and social sciences (Miller and Page 2007), scientists are developing incremental and
iterative refinement protocols (Hunt, Ropella, Lam, Tang, Kim, Engelberg, and Bahaei 2009) to discover
plausible explanations of scientific phenomena, not simply for prediction, but also for understanding and
discovery.

Our focus in this article refers to challenges of validating ABMs involved in mechanism discovery. For
such problems, the underlying behavioral rules and interaction mechanisms are often unclear, imprecise,
and uncertain. To gain empirical insight into such problems and to be able to generate behavior that mimics
expected behavior or theoretical regularities, model development and refinement should synergistically be
coupled with evaluation and validation.

3 CONCEPTUAL BASIS FOR ROBUST GENERATIVE VALIDATION

In developing a conceptual basis for the proposed Robust Generative Validation method, we refer to the
strategies used by scientists in generating and validating knowledge. Falsification, originally promoted by
Karl Popper, is a scientific method that views knowledge creation and validation as a formal activity, where
theories and models that make failed predictions are ruled false and those that make good predictions are
provisionally accepted and selectively retained, until new evidence comes along. Scientific method also
involves an active process that facilitates construction of knowledge. As such, we consider validation as
an incremental and iterative generative (i.e., constructive) search and decision-making process and seek a
method to partially automate it.

3.1 Structuring Robust Generative Validation

As advocated in (Klahr and Dunbar 1988), scientists coordinate search in two spaces to construct and
find valid models: a space of experiments and a space of hypotheses. Hypotheses are the tentatively
assumed propositions in regard to either operating principles and mechanisms or outcomes with testable
consequences. Once generated, hypotheses are evaluated for their plausibility. In this study, we view
hypotheses as the mechanisms that are comprised of activities within and interactions between agents.
Hypotheses are generated and evaluated as a result of experimentation; in this case, simulation. The
experiment space involves selecting both the endogenous and exogenous variables and their values.
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Figure 2 presents critical components of a hypothetical interactive, simulation-based generative validation
system that explores both spaces. Using initial information about basic building blocks and configuration
of system’s processes and activities, scientists employ computational models and scenario generators to
create ensembles of plausible models. Each scenario consists of a particular choice of (adaptive) mechanism
embedded within a single model generated from the hypotheses space and a specific point in the experiment
space (parameters and their values), coupled with an expected regularity or outcome. Following initial
claims about robust mechanisms generated by the RGV system, scientists can test and revise mechanisms
through setting new experimental conditions that invalidate current mechanisms (path b) and then generate
and explore alternative promising mechanisms (path c). Furthermore, scientists can interactively inject new
targeted attributes (path e) or environmental conditions and search for significantly different mechanisms
(models) (path d).

Figure 2: Robust Generative Validation Process.

Exploratory modeling software enables model developers to navigate through the large numbers of
scenarios required to make up a model portfolio and to formulate rigorous arguments about intervention
choices based on these explorations. A scenario generator uses the relationship among the variables to
create members of scenario ensembles. In contrast to a traditional model that is typically designed to
produce a comparatively small number of predictive conclusions, a scenario generator should yield a full
range of plausible alternatives. Next, we examine a strategy that has the potential to enable designing such
exploratory modeling and creative scenario generation systems.

3.2 Designing RGV as a Creative Evolutionary System

To facilitate creative construction of scenarios and explore their consequences within the aforementioned
hypotheses and experiment spaces, we design RGV as a Creative Evolutionary System (CES) (Bentley and
Corne 2002). To formalize RGV, we define the structure of the domain of models as a graph of model
ensembles, G = (V,R), where V is the set of nodes, and each node v ∈V denotes an ensemble of models,
and R is the set of relations depicting affinity (e.g., similarity in terms of function and form) between the
ensembles. Each ensemble E refers to a single hypotheses space and has a neighborhood N(E), which
refers to a connected subgraph of G containing E. For our purposes, each ensemble contains a collection of
metaobjects, each one of which specifies the schema of a corresponding model. Models within an ensemble
follow the structural and behavioral constraints and assumptions underlying the mechanisms hypothesized.
Figure 3 depicts the structure of graph of ensembles. The strength of relations (e.g., w(i,k) or w(k, i))
between ensembles signify the degree of similarity analogues in the source ensemble exhibit with respect
to phenotypic attributes of the target ensemble’s referent.

In accordance with the evolutionary dynamics used in CES, to evolve model schemas and their
metaobjects, we need an encoding scheme. Although the encoding of a schema depends on the purpose of
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Figure 3: Graph of Model Ensembles.

the study and experimentation space (i.e., factors to vary and their levels) that will be evolved during the
process of generative simulation, for simplicity and purpose of demonstration, we may assume that each
schema is a binary sequence of length n from the space {0,1}n. We denote the set of schemas with S and
define a population function, P, as

P : V → S (1)

The population function can be extended via a neighborhood function N : V → 2V , which returns for
a given node x ∈ V , all nodes, y ∈ V in G, where (x,y) ∈ R. Hence, P(N(E)), where E ∈ V , returns all
schemas contained in the neighboring ensembles. One can however also access schemas within a given
ensemble by taking neighborhood equal to a specific ensemble. At any given round of generation, T ,
the schema population of the neighborhood of an ensemble, E, is given by P(N(E),T ). Similarly, the
population of a specific ensemble is defined as P({E},T ), and the number of schemas in ensemble is
N = NE;T .

3.2.1 Evaluation

Given the above specification, we need to define evolutionary aspects of the ensemble. Three major factors
are of interest. First, models that exhibit behaviors similar to those targeted must be favored, as they
generate sufficiently valid behavior, if a similarity measure value exceeds a prespecified threshold. Second,
those models that use divergent mechanisms yet have a sufficient level of validity may facilitate discovery of
novel mechanisms. Consequently, they should be retained. Finally, those models that demonstrate success
in generating behaviors and features imposed by neighboring ensembles (i.e., hypotheses spaces) should
be favored, as they may be able to extend their usefulness and scope. Models that satisfy the constraints of
multiple phenotypic attributes will relate to schemas from more than one ensemble: they are expected to
have larger impact. The similarity for a given ensemble v is defined as Fa : S→ [0,1]. Fa(s), where s ∈ S,
returns similarity of the analogue with schema s within the ensemble v. For a given schema, its performance
is the degree of similarity of corresponding analogue behaviors to targeted phenotypic attributes. The extent
function, Fe : N(E)×S→ [0,1], measures the degree of relevance of the schema with respect to ensembles
in N(E). The total similarity of schema s in ensemble E is the weighted sum of its validity and extent:

f (s) = αaFa +αeFe (2)

where αa +αe = 1. Adjustment of these parameters enables examination of alternative population
evolution strategies. So doing may suggest effective and efficient methods for discovering analogues that
are qualified to mimic selected sets of attributes.
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3.2.2 Generation

The similarity functions specify how the schemas in the ensemble will be judged. Schema generation uses
general schema transformation operators. A transformation operator is defined as a function t : Sm→ S for
some integer m. The generative simulation system has a collection of operators, R = {ti, i = 1,2, . . . ,J}, that
enable generation of alternative forms and structures. Elaboration involves refinement of a schema and is
similar to a mutation operation with m = 1, while combination is analogous to a crossover operation, with
m = 2. Each transformation operator, ti, is associated with a weight, wi, that determines frequency of its
application. The generation of new schema involves a stage of schema selection, followed by interactions
to create new schemas. At each round, schemas with similarity values less than a predefined threshold are
dropped. The remaining population in P({E}, t) representing ensemble E is replaced with a new interim
population φ consisting of schemas in P({E},T ) with different frequencies. Using the conventional GA
fitness proportionate parent selection mechanism, we compute for each schema its probability of selection:

f (s)
∑ j∈E f ( j) . The expected number of copies of each schema (metaobject) in the interim population is then

given by f (s)
f

, where f = 1
N ∑ j∈E f ( j) the average similarity measure of the population. The frequency of

each schema is therefore approximately proportional to its total similarity. The interaction between selected
schemas proceeds as follows. A schema is selected from the interim population φ . A transformation
operator t j is selected with a probability proportional to its weight w j. If the arity of the transformation
operator is m, then the remaining m− 1 schemas are randomly selected from the interim population φ .
Following application of the transformation operator the produced schema is included in the new population:
P({E},T +1). The interaction process is repeated N times to generate a new full population.

3.2.3 Transfer

Given the set of edges, R ⊆ V ×V of the ensemble graph, G, each edge (Ei,E j) is associated with two
components: wi j and w ji. These components, shown in Figure 3 as the strength of relations, are positive
integers that define transfer rates from Ei to E j and E j to Ei, respectively, and Q = ∑ j wi j ≤ N. Each
schema s in the ensemble has a propensity to transfer µ(s), which is a monotonic function of the change
of similarity over k iterations. Initially, wi j for each ensemble i is set to a low value. These transfer rates,
which emulate conceptual transfer and analogy-based discovery, may change over time. Learning takes
place as information about the similarity of copied and transferred models is gathered. If models that are
transferred from Ei to E j improve their average similarity, the transfer rate for migration from Ei to E j
is updated to increase number of transfers; otherwise, the transfer rate is decreased. At each round of
evaluation, for every (Ei,E j) in the analogue ensembles graph, the population in ensemble i is scanned
to locate K schemas with µ(s) ≥ γtrans f erT hreshold and from these schemas a subset of size proportional
mi j
Q schemas are selected for transfer to E j. The generation and transfer mechanisms update the contents

and structure of the ensemble graph as a complex adaptive system mimicking an evolving ecology. The
network of ensembles enables interaction between models. The boundaries may denote separate attributes
and targeted objectives in the referent. Ensembles communicate with each other and share models across
their boundaries. Valid models are discovered through continual flows of models so that ensembles in the
graph can sustain themselves and improve the impact and usefulness of local solutions.

4 CASE STUDY: APPLICATION OF RGV TO COLORSCAPE MODEL

To illustrate the use of the evolutionary dynamics of coupled generation and evaluation (i.e., validation)
processes, we developed an agent-based model, called ColorScape. The model aims to capture the formation
and development of scientific disciplines. Both traditional and virtual scientific communities can be simulated
using ColorScape.
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4.1 Validation Framework

To generate and validate mechanisms and experiment spaces capable of exhibiting behavior consistent
with available empirical data for both types of communities, we conducted two experiments. To gain
preliminary insight about the use of RGV, we simplified the method presented in Section 3. Instead of using
a network of ensembles, in each experiment we applied the strategy with a single ensemble containing a
large population of models. In the first case, our aim is to discover sufficiently valid models that are capable
of generating the structural characteristics of the overlay map of traditional scientific communities. The
second experiment is intended to discover plausible models that can generate regularities observed in the
empirical network structure of a virtual scientific organization, called Open Biomedical Ontologies (OBO)
Foundry.

(a) Overlay Map (b) OBO Network

Figure 4: Empirical Collaboration Networks.

Figure 4 illustrates the two empirical network structures against which we validate generated models.
Network metrics such as density, clustering coefficient, core-periphery ratio, and degree centrality are
used as validation criteria. The generic and customizable simulation model and its associated validation
framework are implemented by RePast. RePast provides mechanisms of both single run and batch run.
However, the configuration parameters cannot be evolved during either single or batch run. So, a new
runner that inherits the default runner of RePast is introduced so as to dynamically translate the gene
(model schema) to configuration parameters and collect the outputs that are required for the computation
of similarity (validation) measures.

As shown in Figure 5(a), the abstract GA class implements all other functions except fitness function.
The fitness function is overridden by a child class that runs the simulation model after converting the gene
to the configuration parameters. Figure 5(b) shows the sequence diagram of the validation framework.
The main class invokes the genetic algorithm embedded within the RGV method, which in turn invokes
simulation model for similarity (validation metric) value.

In the main function, the class GAColorscape is instantiated with four parameters: population size,
gene length, maximum generations, and the runner object for Colorscape. Then the genetic algorithm
implemented in the class GAColorscape is started. When the fitness value of a specific gene is needed, the
gene is converted to configuration parameters and then the RunColorscape is invoked with the configuration
parameters as input arguments. In RunColorscape, the configuration parameters loaded from default batch
run XML file of the Colorscape model are updated. Next, the Colorscape model is replicated 30 times with
configuration parameters. For each single run of the Colorscape model, output metrics such as density,
centrality, clustering coefficient are stored. Finally, the reciprocal of the distance between the output metrics
and expected values is calculated as the fitness of the gene.

4.2 The ColorScape Model

ColorScape is an agent-based model used to study collective creativity in epistemic communities. Three
major components are used to specify growth and development of scientific communities: domain, maturity,
and resources. Domain refers to discipline, whereas maturity indicates the degree of development in that
specific domain. Resources held by a community are vital to undertake scientific activities. In order
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(a) (b)

Figure 5: Class and Sequence Diagram of Framework.

to visually depict the evolving states of communities, the HSB (Hue, Saturation, and Brightness) color
model is used. Hue indicates the domain of a community. Saturation within the color spectrum represents
maturity. The degree of brightness corresponds to the level resource. Figure 6 depicts the snapshots of our
model with grid and network topology respectively, where each cell represents a community whose color
corresponds to its internal state. As shown in Figure 6, the state space of communities exhibits a color
landscape.

(a) 2D (b) Scale Free

Figure 6: Snapshots of ColorScape Model.

The behavior of scientific communities in ColorScape is comprised of six subprocesses: resource
allocation, interaction within community, learning, innovation, growth, and fade. Resource allocation
refers to strategies that distribute resources to communities. Two factors are considered for distribution:
resource size and allocation strategies. Interaction within a community refers to scientific activities at
the macro level i.e., community is driven by funding to improve its maturity. Learning and innovation
between communities mimic the boundary processes among communities, i.e., communities affect and are
influenced by peer communities. There are two options of innovation: reorganization and specialization.
A parameter named reorganization tendency is used to determine the type of innovation. Learning and
innovation describe the influences from peers, so there is a parameter called receptivity that is defined as the
ratio of the sum of influences of neighbors to its own resistance. Growth is defined as the process through
which communities extend and increase their influences, where growth threshold defines the frequency of
growth operation. Fade refers to disappearance of the community due to loss of resources. Besides these
parameters, there are two additional ones: population and communication frequency. Population refers to
the initial number of communities, whereas communication frequency denotes frequency of communication
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between communities. In the next section, we discuss how to encode these configuration parameters into
genes that constitute the model schema.

4.3 Model Schema Encoding and Decoding

In an earlier study, we identified twelve resource allocation strategies. Figure 7 shows a sample of gene
after encoding the configuration parameters of the ColorScape model, where the total number of bits is 21.

Figure 7: Gene Encoding.

To calculate the fitness of each gene, the gene has to be translated (decoded) into configuration parameters
of the experiment space. The ColorScape model is then batch run with the given the parameters and value
assignments. The results returned from each simulation are then used as input to the fitness function.
Within the 21 bit gene, the first two bits are used to decode population variable, denoting different range of
community numbers (e.g., 00→10, 01→50, 10→100, 11→200). Bits 2 through 5 designate the allocation
strategy variable that refers to resource distribution styles such as uniform allocation with fixed external
resource, allocation proportional to contribution etc. The resource variable controls the amount of external
resource (e.g., expertise, funding) allocated to a community at each time step, and bits 6 and 7 are used
to denote resource levels that vary from low to high. Tolerance is decoded by bits 8 and 9. It denotes
ability of a community to innovate; whereas, receptivity considers ability of a community to learn from
peer communities. Bits 10 and 12 are used to specify different levels of reorganization tendency. This
variable is used to control propensity to create new sub-communities that is similar to speciation tendency
in ecological systems.

4.4 Fitness

The fitness is the indicator showing how close simulation outputs produced by a model defined by an
instance of a schema are against the target system i.e., OBO data. As a general measure of the degree
of socio-technical interaction, we use and interpret density, centrality, clustering coefficient, average path
length and core/periphery ratio so as to identify the OBO network. The core/periphery network pattern
is considered as a stable, sustainable, and innovative structure (Krebs and Holley 2002). Given the same
number of core members, increasing level of periphery members is beneficial for bringing new external
ideas. The core/periphery ratio is used to measure the percentage of the members in the core to the members
in the periphery. The fitness is a function of the distance between metric values generated by the ColorScape
Model under an evolving set of configuration parameter values and the corresponding values of the same
metrics observed within the OBO network.

4.5 Preliminary Results

In this preliminary experiment, instead of using a network of ensembles, we instantiate two independent
ensembles of model schemas. These two ensembles are used to discover valid models capable of generating
structural regularities observed in the overlay map and OBO data, respectively. In this experiment, we did
not allow transfer between two ensembles. Future work will extend this study to facilitate convergence to
a set of model schemas that are successful in generating phenotypes (attributes) of both empirical data.

Table 1 presents a comparison of network metrics generated by RGV system against the corresponding
metrics derived from the OBO data (expected values in the table). Since the confidence intervals of metrics
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Table 1: Simulation vs. OBO Data.

Metrics Mean Value Confidence
Interval at
90%

Expected
Values

Number of Communities 55.633 [46.076,
65.190]

49

Density 0.605 [0.521,
0.689]

0.549

Clustering Coefficient 0.846 [0.812,
0.881]

0.880

Centrality 0.355 [0.302,
0.407]

0.405

Average Path 1.404 [1.317,
1.491]

1.406

Core/Periphery Ratio 50.9 [37.2, 64.6] 23.5

generated from the simulation data contain the corresponding values observed in the OBO network, we
conclude that the ColorScape model can generate network structures similar to OBO.

In addition, the best configuration parameters against the network of OBO are recorded in Table 2. From
the table, we can observe that the best configuration has a medium level tolerance (0.6), high receptivity
(0.9), and high degree of communication frequency (1.0). These are peculiar characteristics of open source
science communities.

Table 2: The Best Configuration against OBO.

Name Value
Population 30
Resource Size 1
Tolerance 0.6
Reorganization Tendency 0.5
Receptivity 0.9
Allocation Strategy Uniform allocation with technology transferring
Communication Frequency 1.0
Threshold to Grow 0.5

Table 3 summarizes the comparison of network metrics generated by the ColorScape model with the
corresponding metrics from the science overlay map (expected values in the table). Although the metrics
of the overlay map do not fall into the confidence interval of the ColorScape model, we can still observe
sufficiently similar simulation outputs for the purpose of our study. Considering the relatively large size of
the network (222 nodes and 6820 edges), high degree of randomness and multiple fitness objectives (i.e.,
metrics), it is reasonable that the ColorScape model does not produce exact same outputs for both open
source and traditional scientific enterprise structures. However, if the objective metrics are reduced, then
the ColorScape model is able to produce sufficiently similar outputs to the science overlay map as well.

Based on the exploration within the experiment space, we instill confidence that the ColorScape model
is a general purpose model that is capable of creating network patterns similar to both traditional science
(e.g., overlay map) and open source communities (OBO).
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Table 3: Simulation vs. Overlay Map.

Metrics Mean
Value

Confidence
Interval at
90%

Expected
Values

Number of Nodes 296 [272, 320 222
Density 0.214 [0.194,

0.233]
0.139

Clustering Coefficient 0.574 [0.559,
0.589]

0.648

Centrality 0.354 [0.342,
0.366]

0.216

Average Path 1.847 [1.821,
1.873]

2.415

Core/Periphery Ratio 77.3 [65.5, 89.1] 73.0

5 CONCLUSIONS

In this study we introduce a validation framework for agent-based models by taking advantage of operational
principles of creative evolutionary systems to facilitate exploration and exploitation within the hypothesis
and experiment spaces of model specifications. Based on the experiments conducted using the ColorScape
model, we observe that the framework can successfully be leveraged in practice to synergistically integrate
validation and generative modeling processes. The ability to instantiate, generate, transform, execute, and
if necessary, evolve multiple models of interacting mechanisms, in parallel, all of which take similar but
slightly different perspectives on the same referent system, opens the door to the automatic generation and
selection (by falsification) of many somewhat different hypothetical, including non-intuitive mechanisms
for a referent. Such an exponential increase in model and hypothesis throughput could promote scientific
discovery while increasing opportunities for creative leaps.
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