
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, eds.

RMSIM: A JAVA LIBRARY FOR SIMULATING REVENUE MANAGEMENT SYSTEMS

Marco Bijvank
Pierre L’Ecuyer
Patrice Marcotte

Department of Computer Science and Operations Research (DIRO)
Université de Montréal

C.P. 6128, Succ. Centre-Ville
Montréal, QC, H3C 3J7, CANADA

ABSTRACT

Revenue management (RM) is the process of understanding and anticipating customer behavior in order
to maximize revenue raised from the sale of perishable resources available in limited quantities. While
RM systems have been in operation for quite some time, they cannot take into account the full dynamic
and stochastic nature of the problem, hence the need to assess them via simulation. In this paper we
introduce RMSim, a discrete-event and object-oriented Java library designed to simulate large-scale revenue
management systems. RMSim supports all control policies, arrival processes and customer behavior models
hitherto proposed. It can therefore be used to calibrate parameters of the model and to optimize the control
policy. A key feature of RMSim is that the network RM system can be altered without having to modify the
source code of the library. Performance, flexibility and extensibility are the main goals behind the design
and implementation of RMSim.

1 INTRODUCTION

Revenue management (RM) involves the allocation of scarce resources to stochastic demand for products
that consume one or more of these resources, with the aim of maximizing total expected revenue. In
application areas such as the airline, hospitality and broadcasting industries, the network configurations and
operations can be large and quite complex. For instance, American Airlines serves 250 cities in 40 countries
with, on average, more than 3,400 daily flights (American Airlines 2011). Traditionally, mathematical
programming methods have been used to determine the control policies, since such methods are well suited
to capture network effects. A popular basic technique formulates the RM problem as a static model in
which the demand for each product is treated as a deterministic quantity equal to its expected value.

Let us consider a network with M resources and the company sells N products. The incidence matrix
A = [ai j]∈ {0,1}M×N defines which resources are used for each product. We let ai j = 1 if product j requires
a unit of resource i, and ai j = 0 otherwise. The total capacity for the resources equals C = (C1, . . . ,CM),
the prices are denoted by p = (p1, . . . , pN) and the average demand for the products equals E[D]. The
following deterministic linear program (DLP) is solved to determine the amount of capacity that should
be assigned to each product (denoted by y):

DLP(C) = max p> ·y
s.t. A ·y≤ C

0≤ y≤ E[D]

Such models oversimplify the complexities of real-world RM systems, and one has to resort to simulation-
based models to assess their real-life performance.

2703978-1-4577-2109-0/11/$26.00 ©2011 IEEE



Bijvank, L’Ecuyer, and Marcotte

Discrete-event simulation is well suited at analyzing the performance of complex stochastic systems.
Although there exist many discrete-event simulation environments on the market, none (in our knowledge)
offers predefined facilities that adequately address the specific issues and features of network RM systems.
The purpose of this paper is to introduce a new RM simulation environment (RMSim) that can be used to
build detailed simulation models for all RM systems currently in use or that have been proposed in the
scientific literature. Its primary objective is to analyze the control policies that determine the availability of
products to customers. We will also discuss how such analyses can be used to optimize the control policy.

In order to be of practical value, RMSim must be able to integrate all aspects of an arbitrary RM
system, and to run quickly, even on large networks. Consequently, component reuse and an object-oriented
development environment are crucial. This motivated the implementation of RMSim as a library of Java
classes. In particular, RMSim is built on top of the publicly available Java simulation package SSJ (L’Ecuyer
and Buist 2005, L’Ecuyer 2008), which provides a powerful simulation engine.

The main challenge of the simulation environment is to achieve flexibility while maintaining efficiency.
RMSim is not a mere black box that takes model inputs and mysteriously produces model outputs. Different
aspects of the revenue management system are implemented in packages that can be used to assemble
together a simulation model. Besides its separate components, RMSim contains a generic simulator that
connects all components of a single RM system in a modular fashion, where a user can specify the network
of resources and products, the customer segments including the arrival process and choice behavior per
segment, and the type of control policy to accept or reject a customer’s request for a certain product (see
Figure 1). For each of these ingredients, several predefined possibilities are already offered in RMSim, and
the users can easily add new ones by adding classes that implement the relevant interfaces. Furthermore,
the simulator contains an optimization package based on these components. The user can either specify
a data input file according to a fixed schema to perform the optimization and simulation without any
programming effort, or assemble (and possibly extend) pieces from the current packages to develop a
custom-built simulator tailored to her specific needs. The use of inheritance and well-defined interfaces
allows customization of the packages at minimal programming cost.

network: resources, products

RMSim
Simulator

customer
arrivals
and choice
behavior

reports:
· revenue
· load factor
· nr. of customers

operating/control policy

Figure 1: RMSim contains separate components to build a simulation model, as well as a pre-constructed
generic simulator which assembles components for a single RM system.

The paper is organized as follows. In Section 2, we present an overview of the design principles and
general architecture of RMSim, as well as a description of its basic components and their interactions. Section 3
provides more details concerning the features and functionalities of the generic simulator implemented in
the library. The usage and flexibility of the tool is illustrated by an example in Section 4. In the final
Section 5, we hint at future developments. We refer to Bijvank, L’Ecuyer, and Marcotte (2011) for a
complete documentation of all classes together with additional examples.

2 GENERAL ARCHITECTURE

The RMSim library is composed of packages that cater to the various elements of a revenue management
system. Each package is made of independent components that can be combined or extended as required.

2704



Bijvank, L’Ecuyer, and Marcotte

Elementary components include information related to resources, products, customers, choice models and
the control policy (see Figure 1).

The design principles underlying RMSim are to minimize coupling across components and provide high
cohesion within components, which provides good flexibility and extensibility. With the use of interfaces
and abstract classes we create a loose coupling of the components, where the classes are well encapsulated
such that they can be easily extended and re-used. For instance, the abstract class Controller provides
all basic properties and methods to be used for any control policy, whereas the actual decision on which
products to allocate to a customer’s request is implemented by a subclass of the Controller object.
Any new type of control policy that extends the Controller class can use the basic methods. Similarly,
the interface CustomerArrivalProcess specifies which methods need to be implemented and any
new arrival process that implements this interface can be used by RMSim without the modification of other
classes. Relating a class of a subtype to a supertype by the notion of substitutability, such that subroutines
or functions of the supertype can be used on elements of the subtype (i.e., subtype polymorphism), makes
it possible to use most of the objects without knowing the specific type of the object. The methods and
properties of the abstract class and interface are most of the time sufficient. Furthermore, the classes are
designed with a well-focused purpose and have only direct access to logically related classes to ensure
high cohesion. For instance, the Controller object connects the customer and the network (i.e., the
products and resources). Based on these design principles, the components interact independently of each
other’s implementation details. See also Figure 2. Before we discuss the individual components of RMSim,
we describe this communication mechanism first.

The components interact mostly via an observer design pattern, also known as broadcaster-listener, or
publisher-subscriber pattern (see Gamma, Helm, Johnson, and Vlissides 1995). In that framework, one or
several objects (the listeners) register their interest in being notified when an event occurs involving another
object (the broadcaster). Listeners are implemented as an interface and broadcasters are equipped with a

PoissonArrivalProcess UniformArrivalProcess · · ·

CustomerArrivalProcess

NewCustomerListener

newCustomer
(Customer customer)

broadcasts to

CustomerFactory

newInstance()

Customer

creates

CustomerSegmentChoiceModel

generatePreferenceList()

LogitModel · · ·

Product ResourceBookingClass

Resource BookingClass

Controller

selectProduct(Product[] preferenceList,
double amountRequested)

implemented
by

BookingLimitController · · ·

ExitedCustomerListener

newReservation(Customer customer,
Product product,
double amount)

newArrival(Customer customer)

broadcast to

RMSystemMeasureManager

implemented by

SimLogic

RMSystemStatProbes

RMSystemSim

RMSystemNetwork

Simulator

Figure 2: UML diagram of the most important components and their interaction in the RMSim library, where
a diamond represents a composition relationship and a triangle represents a generalization relationship (i.e.,
inheritance) (Fowler 2003).

2705



Bijvank, L’Ecuyer, and Marcotte

list of registered listeners. For instance, the Controller object is a registered listener at any subclass
of the CustomerArrivalProcess, such that the controller is notified that a decision has to be made
regarding a new customer request. The object-oriented observer design pattern ensures that components
of this messaging mechanism have limited knowledge about each other to ensure the flexibility to easily
extend the packages. We will explain this design pattern more explicitly for the RMSim library in this
section.

2.1 Simulation Horizon

Since products in a revenue management system are perishable, simulations have a natural finite time horizon
T . To cope with the time-varying nature of the arrival process (leisure customers usually book their flight
earlier than business customers), we introduce period-change events that specify instants when the parameters
of the RM system are modified, and period-change listeners that take care of the appropriate adjustments.
Any instance of an object in the library that implements the PeriodChangeListener interface can
modify specific parameter values over the course of the simulation. For instance, a Resource object
can control its availability through the modification of bid prices, while CustomerArrivalProcess
objects may update their arrival rates accordingly.

2.2 Revenue Management Network

A network is represented by M resources and N products. A resource i is characterized by its expiration
date T R

i ≤ T , its capacity Ci and one or more BookingClass objects. Product j is characterized by
a set of resources R( j) and booking class combinations Bi( j) for i ∈ R( j), sold under certain purchase
terms and restrictions at a given price. The price p j of a product j can be specific or set to the sum of the
prices for each resource-booking class combination associated with the product. The expiration date of a
product j equals T P

j = min{T R
i : i ∈ R( j)}. Since prices and capacities can vary dynamically, the objects

Product, Resource and BookingClass implement the PeriodChangeListener interface, and
the first PeriodChangeEvent objects are scheduled before the simulation starts. As a result, any
network configuration can be managed.

2.3 Customer Segmentation

A customer is represented by an instance of the Customer object and is matched to a segment according
to a set of attributes, e.g., price, origin-destination, travel time etc. For instance, price-sensitive customers
are not willing to pay extra for additional services such as fully or partially refundable products, whereas
business customers are willing to spend more money for extra comfort or a specific departure time. Within
a segment, customers request the same set of products, but not necessarily in the same preference order.
Accordingly, the CustomerSegment class specifies the subset of products that customers from this
segment may request (the consideration set), as well as their number. The generic simulator is able
to match customers’ preferences and products to generate the consideration set, but the set can also be
prespecified.

The choice of a product from the consideration set is prescribed by the abstract class ChoiceModel.
RMSim allows three privileged models of customer choice: exogenous, locational and utility-based, al-
though other models could be considered easily, given the flexibility of the tool. The only requirement
imposed is that the model should be implemented as a subclass of ChoiceModel, such that the method
generatePreferenceList has direct access to the products in the consideration set for each individual
customer. In the remainder of this subsection, we describe the three types of choice models implemented
in RMSim.

In the exogenous model, a customer has a preferred product i (either deterministic or generated from
a distribution). If this product is unavailable, she looks for an alternative product j, based on probabilities
αi j. As a result, the choice of the alternative depends on the original choice. In the locational model,

2706



Bijvank, L’Ecuyer, and Marcotte

products are characterized by a set of attributes, and the preference of an individual customer is specified
according to these attributes rather than according to the products themselves. It follows that the initial
choice consists in the product that is located closest to its location in the attribute space, and the alternative
products are considered in increasing order of their distance from the customer. In the utility-based model,
a customer assigns a utility U j to each product in the consideration set, and she selects the product with
the highest utility among the set of available products. The utility U j is usually decomposed in two parts:
U j = u j +ξ j, where u j corresponds to a customer’s nominal (or expected) utility, and ξ j, a noisy (random)
term. Within this class, we have implemented deterministic models (i.e., u j is fixed and known, and ξ j = 0)
and models where the utility values can vary from one customer to the other according to heterogeneity of
preferences among customers (i.e., U j is modeled as a random variable with a mean equal to the expected
utility). Classes of interest include random utility models such as the multinomial logit (MNL) model,
where ξ j follows a Gumbel distribution, or the mixed MNL model where u j is itself determined according
to some distribution. We refer to Train (2009), Shen and Su (2007) and Kök, Fisher, and Vaidyanathan
(2009) for further details concerning choice models in RM systems.

2.4 Customer Arrival Process

The stochastic arrival process determines the instants when Customer objects need to be created. In most
revenue management systems the stream of arriving customers from different customer segments varies
over time (Kimms and Müller-Bungart 2007). Arrival processes are generally specified for a finite time
period and implement the PeriodChangeListener interface. An arrival process has to be specified
for each customer segment, such that different types of processes could be used among different customer
segments. Currently, RMSim embeds the most widely used demand arrival processes in the RM literature,
such as the non-stationary Poisson process with arrival rate λ (t) over time t. For instance, the rate can
be piecewise constant over time, or set to λ (t) = Dβ (t) where D is a Gamma distributed random variable
and β (t) is the density function of a Beta distribution. We also implemented an arrival process where the
normal distribution determines the number of arrivals within a fixed time interval, and where these arrivals
are uniformly distributed within this interval. Besides these standard arrival processes, others can easily
be appended to the RMSim library.

In our architectural design, the arrival process does not explicitly specify the segment associated with
the customer object, which is created by the arrival process. Rather, we opted for the abstract factory
design pattern (Gamma et al. 1995) illustrated in Figure 2. The CustomerFactory interface creates
new instances of the Customer object when the method newInstance() is invoked. As a result, the
arrival process does not need to know the actual customer segment of the Customer object it creates.
Instead, a CustomerFactory object is passed to the CustomerArrivalProcess, which contains
all the information to create the appropriate customer’s (see also Figure 2). In this framework, it is easy
to extend the RMSim library to any customized arrival process.

2.5 Controller

Once a Customer object is created, the arrival process broadcasts the message that a new customer is
created to all registered objects that implement the NewCustomerListener interface. A typical object
that implements this interface is the Controller, since the control policy determines to what extend a
customer request is satisfied. A subclass of the Controller object implements the actual control policy
through the method selectProducts (preferenceList, amountRequested). This interaction
between the controller and the arrival process is depicted in Figure 2.

The most common control mechanisms are available in RMSim, either quantity-based or price-based.
In the latter type, a product is available if its revenue exceeds the sum of the threshold prices (known as
bid prices) for all resources associated with this product. That is, a request for product j is accepted if
p j ≥ ∑i∈R( j) π(i), where π(i) is the bid price for resource i associated with product j. Otherwise, the next

2707



Bijvank, L’Ecuyer, and Marcotte

product on the customer’s preference list (i.e., the ordered consideration set) is considered. Within the class
of quantity-based policies, several variants exist. In general, each booking class b ∈ Bi associated with
resource i has a booking limit qi(b), which represents the amount of capacity reserved for this booking
class. The simplest type of control is based on partitioned booking limits, where a customer request for
product j is accepted when qi(b)> xi(b) for all combinations (i,b) with i∈ R( j) and b = Bi( j), where xi(b)
denotes the number of units sold for booking class b on resource i. These booking limits are frequently
‘nested’ and the booking classes can be reindexed to ‘virtual’ classes. For a comprehensive account of
control policies, we refer to Talluri and van Ryzin (2004). Other control policies can be included in the
RMSim library through the creation of new subclasses for Controller.

Furthermore, since the controller has perfect knowledge of each customer request and the allocated prod-
ucts, theControllerobject may keep a list of all objects that implement theExitedCustomerListener
interface. Based on this feature, the information can be passed to statistical collectors to compute various
performance measures, and these are updated as the simulation proceeds.

3 ADDITIONAL FEATURES

As mentioned in Section 1, RMSim embeds, besides its basic components, a generic simulator and an
optimization package. These are described in this section.

3.1 Generic Simulator

In Section 4, we illustrate by means of an example how the components of the RMSim library may be used
to build a simulation model. However, the tool also provides a pre-compiled generic simulator that can
be used without any programming effort. The input data could be read from data files. Figure 2 provides
an overview of relevant objects used by the generic simulator. The constructor RMSystem() creates
all components of the RM simulation model and links them together, where the counters are declared
in RMSystemMeasureManager and the statistical collectors in RMSystemStatProbes. The three
types of performance measures implemented in RMSim concern (i) the revenue earned, (ii) the load factor,
and (iii) the number of (satisfied) customers. The user of the tool can specify the level of detail for each
performance indicator: per product, per resource, per customer segment, per time period or a combination
thereof. Besides a textual report on averages, variances and confidence intervals, RMSim can produce
histograms for graphical reports as well. This feature will also be illustrated in Section 4.

Another feature of the tool is that it can report the actual observations of each individual replication
instead of the overall statistics. This has two main advantages: First, it is easy to define new performance
measures. Second, individual simulation runs on different revenue management models can be compared,
since the generic simulator in RMSim exploits the concept of random number streams and substreams, where
every random component of the simulation model has its own stream of random numbers. As a result, each
random number is used for the same purpose in different configurations. At the beginning of a simulation
replication, each random number stream is reset to a new substream to maintain synchronization. This
aspect is very useful when we want to compare RM systems that need multiple random number streams,
e.g., one for the arrival process and one for making customer’s choices in choice models.

To illustrate the performance and scalability of the generic simulator, we consider a network that includes
84 resources with a capacity of 400 units each, and up to 2,000 products in total. In our simulations, we
had 16,800 customers arriving to this network. Since each customer’s request is processed immediately,
the computation time to evaluate the RM system grows linearly with the number of customers. We made
an experiment to see how the CPU time increases with the average size of the consideration set for each
customer. This set determines the number of products to consider for a customer request. The results have
been performed on a 2.0Ghz AMD Opteron 246 processor running Linux and Java, and are presented in
Table 1. We see that the average CPU time to simulate this network increases no faster than linearly with

2708



Bijvank, L’Ecuyer, and Marcotte

the average size of the consideration set. We also find that our generic simulator can handle thousands of
products and customer requests quite rapidly.

Table 1: The CPU time when the average size of the consideration set ranges between 5 and 25 products.

average size of consideration set 5.20 11.08 15.00 19.67 25.64
CPU time (milliseconds) 73 132 186 237 324

3.2 Optimization

The components of the RMSim library can also be used to construct an RM model for optimization. The
RMSim library contains popular optimization techniques such as expected marginal seat revenue (EMSRb),
deterministic linear programming (DLP), displacement adjusted virtual nesting (DAVN), and stochastic
gradient methods. The latter method is a simulation-based optimization method that uses the generic
simulator to generate sample paths during a simulation run. More information on these approaches can be
found in Talluri and van Ryzin (2004).

4 EXAMPLE OF A SIMULATOR

In this section, we present a small example to illustrate the features of the RMSim library, and the interaction
between its components described in Section 2. We consider the same network as studied by van Ryzin
and Vulcano (2008), which contains three resources, each endowed with a capacity of 100 units and 2
booking classes (see Figure 3). There are 7 products, either of the high fare (HF) or low fare (LF) type. The
price of each product is presented in Table 2. There are 10 customer segments arriving over three booking
periods according to a Poisson arrival process, where the average arrival rate and behavioral description are
specified in Table 3. The control policy is based on nested booking limits. In this example, we are interested
in comparing the performance of two optimization techniques for setting booking limits. For a resource
i, we denote the pair of booking limits as (qi(LF),qi(HF)). Using displacement adjusted virtual nesting
(DAVN), van Ryzin and Vulcano (2008) obtained the booking limits (71,100), (91,100), and (91,100) for
resources AB, AC, and CB, respectively, whereas a stochastic gradient (SG) algorithm gave the booking
limits (32,100), (58,100), and (57,100). We want to show how to construct a simulation program with our
RMSim library to compare the total revenue and compute the load factors of each resource for these two
control policies, where the load factor is defined as the percentage of the capacity sold at the end of the
simulation horizon T .

A B

C

CAB = 100

CAC = 100 CCB = 100

Figure 3: The small network example con-
tains 3 resources and 2 booking classes per
resource.

Table 2: The products and their price in the small
network example.

product revenue ($) product revenue ($)
HF-AB 300 HF-CB 200
LF-AB 180 LF-CB 100
HF-AC 200 LF-ACB 130
LF-AC 100

Appendix A contains a Java program that implements this small RM network example. Due to space
limitations, we removed the import statements. The first part declares the constants that contain the
information of Table 2 and Table 3. Next, the variables and methods are declared to create the objects
of the RM simulation model. In real-life simulators, the parameters should be read from a data file or
a graphical interface as mentioned in Section 3.1. Counters are used to keep track of observations per

2709



Bijvank, L’Ecuyer, and Marcotte

Table 3: The customer segments in the small network example.

preference order description booking period arrival rate
LF-AB, LF-ACB A to B prefer direct 1 60
LF-ACB, LF-AB A to B price sensitive 1 20
LF-AC A to C price sensitive 1 10
LF-CB C to B price sensitive 1 10
LF-AB, HF-AB A to B buy-up 2 30
LF-AC, HF-AC A to C buy-up 2 10
LF-CB, HF-CB C to B buy-up 2 10
HF-AB A to B only direct flight 3 30
HF-AC A to C high fare 3 10
HF-CB C to B high fare 3 10

single simulation replication, whereas statistical probes collecting these observations permit one to compute
confidence intervals, histograms, etc., for the performance measures of interest over all replications. In the
main method at the end of the second part, we first construct the simulator with new SimpleNetwork()
where the booking limits are based on DAVN. Next, the actual simulation is invoked by simulate and the
performance measures are displayed in printStatistics(). After each replication, the total revenue
is stored. Next, based on the same common stream of random numbers, a simulation is performed for a
policy where the booking limits are set by the SG procedure. The relative revenue gain of using SG over
DAVN is then reported and plotted in a histogram.

The constructor SimpleNetwork() creates the objects required to represent the RM network, and
connects all components together. For each customer segment, the consideration set and choice model are
constructed as well as a customer factory and an arrival process. The piecewise constant Poisson arrival
process is registered as a period-change listener to be notified when a new period starts. This allows
the arrival rate to be automatically updated over the course of the simulation. These time instances are
initiated by the PeriodChangeEvent object of each segment. Arrival times are generated with dedicated
random variate generators for each customer segment, where the underlying random number stream is
constructed by new MRG32k3a(). Finally, the controller is constructed and registered as a new-customer
listener for each arrival process. A MyPerformanceMeasure object is connected to the controller as
exited-customer listener for statistical collections. Note how products, resources and booking classes are
interconnected, as well as the products in the consideration set of a customer segment, the arrival process
and the controller.

Once the RM simulation model is constructed, the methodsimulateperforms n independent simulation
runs by invoking simulateOneReplication() n times. At the start of the initial replication, the
statistical collectors are cleared. During each simulation replication, the RM simulation model is initialized,
the simulation is performed, and observations are collected. A replication starts with the initialization of the
simulation clock, each random number stream is reset to a new substream with resetNextSubstream()
and all statistical counters are reset to zero. The elements of the revenue management system are initialized
to eliminate any side effects of previous replications, and the arrival processes are initialized by invoking the
init()methods. Next, the first customer arrival of each customer segment is scheduled with the start()
method of each period-change event. The actual execution of events is initiated with sim.start().

When an arrival process triggers a customer arrival, the newInstance() method in Customer-
Factory is called corresponding to the arrival process of the customer segment, and the factory constructs
a Customer object of the appropriate segment. The method generatePreferenceList() is then
invoked to order the products in the consideration set for the new customer according to the choice model
of the customer’s segment. The arrival process broadcasts the new customer to all registered objects

2710



Bijvank, L’Ecuyer, and Marcotte

that implement the new-customer listener interface (e.g., the controller) and the next customer arrival is
scheduled.

Based on the availability of the product in the preference list and the nested booking limits, the controller
selects the products to be assigned to the customer’s request by calling the method selectProducts.
When a different subclass of Controller is used, a different type of control policy can be specified.
Next, the customer and the assigned products (if any) are notified to the registered exited-customer listeners
at the controller. As a result, all counters are updated. When customers stop arriving, the simulation
replication ends and the observations of the counters are appended to the statistical collectors. Once all
replications have been performed, the statistical probes are used to report on the performance measures,
and the total revenue of each replication is stored in revenueDAVN.

The method resetForNewSetting() reinitializes the stream of random numbers to their initial
state with resetStartStream(), to make sure that the simulation replications with the configuration
based on SG use exactly the same sequence of uniform random numbers as the first configuration based
on DAVN. Since the parameters of the arrival process are the same for both configurations, this implies
that the sequences of customer arrival times will be exactly the same as compared to the simulation runs
for the RM system with booking limits based on DAVN (see also Section 3.1). The booking limit of each
resource-booking class combination is reset to a value based on SG. The simulation is performed for this
setting and the total revenue of each replication is stored in revenueSG. Next, we can compute the relative
revenue gain of using the booking limits based on SG compared to the values based on DAVN for each
replication r by (revSG

r − revDAVN
r )/revDAVN

r , where revSG
r and revDAVN

r denote the observed revenue in the
r-th replication when the booking limits are based on SG and DAVN, respectively. This is possible, since
the two simulations have used the same streams of random numbers. The statistics of this comparison are
reported in a histogram, which is written to the file SimpleNetwork chart.tex. This histogram is
plotted in Figure 4, whereas the statistical results are presented in Table 4. These results are consistent
with those of van Ryzin and Vulcano (2008). Figure 4 also shows histograms, produced by RMSim as
well, of the load factor for each resource AB, AC, and CB. These histograms give more detailed insights
in the different performances of the two sets of bookings limits.

relative improvement (%) of SG over DAVN
1 13 25 37

frequency

0

50

100

150

load factor: resource AB
0.7 0.76 0.82 0.88 0.94 1.0

frequency

0
250
500
750

1000

load factor: resource AC
0.25 0.39 0.53 0.67 0.81 0.95

frequency

0
100
200
300
400

load factor: resource CB
0.3 0.42 0.54 0.66 0.78 0.9

frequency

0

100

200

300

Figure 4: The histogram of the relative revenue gain when a SG algorithm is used to determine booking
limits over DAVN for 1,000 simulation replications of the small RM network example, as well as the load
factor for every resource (where blue represents DAVN and red SG).

5 CONCLUSION

In this work, we have described RMSim, an object-oriented Java-based library for building and analyzing
discrete-event simulation models of revenue management systems. It has been designed to be extensible
and flexible, while being powerful enough to simulate with ease network systems consisting of thousands
of products and customers. As a result, it can efficiently handle large and complex RM models. The
hierarchical approach adopted in RMSim allows users to tailor the tool to their specific needs, with minimal
programming effort. The next step in the design of RMSim will involve the consideration of competition
between firms having their own RM system, as well as the development of new optimization methods.

2711



Bijvank, L’Ecuyer, and Marcotte

Table 4: The statistical results on the performance measures of interest in the small RM network example.

setting perform. measure min max average standard dev. 95% conf. interval
DAVN load factor AB 0.87 1.00 0.999 9.6E-3 [0.998; 0.999]

load factor AC 0.26 0.73 0.505 0.076 [0.500; 0.510]
load factor CB 0.32 0.80 0.505 0.074 [0.501; 0.510]
total revenue 28540 36270 32124 1292 [32043; 32204]

SG load factor AB 0.70 1.00 0.917 0.066 [0.913; 0.921]
load factor AC 0.48 0.94 0.733 0.070 [0.729; 0.738]
load factor CB 0.46 0.90 0.733 0.069 [0.728; 0.737]
total revenue 30590 45170 38583 2676 [38417; 38750]

comparison rel. revenue gain 2.35% 35.50% 20.11% 6.90% [19.68%; 20.54%]

A JAVA PROGRAM OF A SMALL RM NETWORK

public class SimpleNetwork {
static final int M = 3; // number of resources
static final int N = 7; // number of products
static final int K = 10; // number of customer segments
static final String[] RESOURCE_NAMES = { "AB", "AC", "CB"};
static final int[] RESOURCE_EXP = {4, 4, 4}; // the expiration date
static final int[] RESOURCE_C = {100, 100, 100}; // the initial capacity
static final String[][] BOOKINGCLASS_NAMES = {{"HF", "LF"}, {"HF", "LF"}, {"HF", "LF"}};
static final int[][] BOOKINGCLASS_Q_DAVN = { {100, 71}, {100, 91}, {100, 91} }; // the booking limits
static final int[][] BOOKINGCLASS_Q_SG = { {100, 32}, {100, 58}, {100, 57} }; // the booking limits
static final String[] PRODUCT_NAMES = {"HF-AB","LF-AB","HF-AC","LF-AC","HF-CB","LF-CB","LF-ACB"};
static final double[] PRODUCT_P = { 300, 180, 200, 100, 200, 100, 130 }; // the prices
static final String[][] PRODUCT_R = {{"AB"},{"AB"},{"AC"},{"AC"},{"CB"},{"CB"},{"AC","CB"}};
static final String[][] PRODUCT_B = {{"HF"},{"LF"},{"HF"},{"LF"},{"HF"},{"LF"},{"LF","LF"}};
static final double[] SEGMENT_START = {1, 1, 1, 1, 2, 2, 2, 3, 3, 3}; // the starting time of each customer segment
static final double[][] SEGMENT_DURATIONS = { {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1} }; // period length of the arrival process per segment
static final double[][] LAMBDAS = { {60}, {20}, {10}, {10}, {30}, {10}, {10}, {30}, {10}, {10} }; // average arrival rate for each customer segment
static final String[][] PREFERENCESETS = { {"LF-AB", "LF-ACB"}, {"LF-ACB", "LF-AB"}, {"LF-AC"}, {"LF-CB"}, {"LF-AB", "HF-AB"}, {"LF-AC", "HF-AC"},

{"LF-CB", "HF-CB"}, {"HF-AB"}, {"HF-AC"}, {"HF-CB"} }; // consideration set per segment in decreasing order
static final int NRREPLICATIONS = 1000;
static final double LEVEL = 0.95;

// revenue management system components
Controller controller; // control policy to determine product availability
Resource[] resource = new Resource[M]; // resources in the network
Product[] product = new Product[N]; // products in the network
CustomerSegment[] customerSegment = new CustomerSegment[K]; // customer segments arriving to the network
PeriodChangeEvent[] pce = new PeriodChangeEvent[K]; // period-change event for each arrival process
PiecewiseConstantPoissonArrivalProcess[] arrivProc = new PiecewiseConstantPoissonArrivalProcess[K];

// the simulator and its counters and statistical collectors
Simulator sim = new Simulator();
double sumRevenue; TallyStore revenue = new TallyStore ("Total revenue of system"); Tally[] loadFactor = new Tally[M];

SimpleNetwork() {
for (int i = 0; i < M; i++) resource[i] = readResource (i);
for (int j = 0; j < N; j++) product[j] = readProduct (j);
for (int k = 0; k < K; k++) {

Product[] considerationSet = readConsiderationSet (k);
ChoiceModel choiceModel = new DeterministicModel (considerationSet);
customerSegment[k] = new CustomerSegment (choiceModel);
pce[k] = new PeriodChangeEvent (sim, SEGMENT_START[k], SEGMENT_DURATIONS[k]);
arrivProc[k] = new PiecewiseConstantPoissonArrivalProcess (pce[k], new CustomerFactory (sim, customerSegment[k]), LAMBDAS[k], new MRG32k3a());

}
controller = new TheftNestedBookingLimitController();
controller.addExitedCustomerListener (new MyPerformanceMeasure());
for (int k = 0; k < K; k++) arrivProc[k].addNewCustomerListener (controller);
for (int i = 0; i < M; i++) loadFactor[i] = new Tally ("Load factor of resource " + resource[i].getName());

}

// Creates a resource object based on the input date
public Resource readResource (int r) {

final int B = BOOKINGCLASS_NAMES[r].length; // number of booking classes
BookingClass[] bookingClass = new BookingClass[B];
for (int b = 0; b < B; b++) bookingClass[b] = new BookingClass (BOOKINGCLASS_NAMES[r][b], BOOKINGCLASS_Q_DAVN[r][b]);
return new Resource (RESOURCE_NAMES[r], new DateObject (RESOURCE_EXP[r]), RESOURCE_C[r], bookingClass);

}

// Creates a product object based on the input date
public Product readProduct (int j) {

final int R = PRODUCT_R[j].length; // number of resources
ResourceBookingClass[] resourceBookingClass = new ResourceBookingClass[R];
for (int i = 0; i < R; i++) resourceBookingClass[i] = getResourceBookingClass (PRODUCT_R[j][i], PRODUCT_B[j][i]);
return new Product (PRODUCT_NAMES[j], resourceBookingClass, PRODUCT_P[j]);

}

2712



Bijvank, L’Ecuyer, and Marcotte

// Combines the resource and booking class objects based on their names
public ResourceBookingClass getResourceBookingClass (String rName, String bcName) {

for (int i = 0; i < M; i++)
if (rName.compareTo (resource[i].getName()) == 0) return new ResourceBookingClass (resource[i], resource[i].getBookingClass (bcName));

return null;
}

// Selects the products in the choice set for the customers of segment k
public Product[] readConsiderationSet (int k) {

final int sizeChoiceSet = PREFERENCESETS[k].length; Product[] choiceSet = new Product[sizeChoiceSet];
for (int p = 0; p < sizeChoiceSet; p++) choiceSet[p] = getProduct (PREFERENCESETS[k][p]);
return choiceSet;

}

// Returns the product object based on the name
public Product getProduct (String pName) {

for (int j = 0; j < N; j++) if (pName.compareTo (product[j].getName()) == 0) return product[j];
return null;

}

// Sets the booking limits for each resource based on the constant BOOKINGCLASS_Q_SG
public void resetForNewSetting() {

for (int k = 0; k < K; k++) arrivProc[k].getStream().resetStartStream(); // reset random streams
for (int i = 0; i < M; i++) // set the booking limits based on SG for each resource

for (int b = 0; b < BOOKINGCLASS_NAMES[i].length; b++)
resource[i].getBookingClass (BOOKINGCLASS_NAMES[i][b]).setBookingLimit (BOOKINGCLASS_Q_SG[i][b]);

}

// Updates counters when a customer enters/exits
class MyPerformanceMeasure implements ExitedCustomerListener {

public void newReservation (Customer c, Product p, double amount) { sumRevenue += p.getPrice(); }
public void newArrival (Customer c) {}

}

public void simulateOneReplication() {
for (int k = 0; k < K; k++) arrivProc[k].getStream().resetNextSubstream(); // reset random substreams
sim.init(); sumRevenue = 0; // initialize the simulation and its counters
for (int i = 0; i < M; i++) resource[i].init(); // initialize the network and the arrival processes
for (int k = 0; k < K; k++) { arrivProc[k].init(); pce[k].init(); pce[k].start(); }
sim.start(); // perform the simulation
revenue.add (sumRevenue); // update the statistical collectors
for (int i = 0; i < M; i++) loadFactor[i].add (1 - resource[i].getAvailableCapacity() / resource[i].getTotalCapacity());

}

void simulate (int n) {
revenue.init(); for (Tally t : loadFactor) t.init(); // clear the statistical collectors to be empty
for (int r = 0; r < n; r++) simulateOneReplication();

}

public void printStatistics() {
System.out.println (revenue.reportAndCIStudent (LEVEL, 3)); for (Tally t : loadFactor) System.out.println (t.reportAndCIStudent (LEVEL, 3));

}

public static void main (String[] args) {
final SimpleNetwork s = new SimpleNetwork();
s.simulate (NRREPLICATIONS); s.printStatistics(); double[] revenueDAVN = s.revenue.getArray().clone();
s.resetForNewSetting();
s.simulate (NRREPLICATIONS); s.printStatistics(); double[] revenueSG = s.revenue.getArray();
TallyStore improvedRevenue = new TallyStore ("Improved revenue");
for (int r = 0; r < NRREPLICATIONS; r++) improvedRevenue.add (100*(revenueSG[r]-revenueDAVN[r])/revenueDAVN[r]);
System.out.println (improvedRevenue.reportAndCIStudent (LEVEL, 3));
HistogramChart hist = new HistogramChart ("", "relative improvement (%)", "frequency", improvedRevenue.getArray(), improvedRevenue.numberObs());
(hist.getSeriesCollection()).setBins (0,12,1,37); hist.setManualRange(new double[]{1,37,0,150});
hist.getXAxis().setLabels (new double[]{1,7,13,19,25,31,37}); String histLatex = hist.toLatex (6.0, 4.0);
Writer file = new FileWriter ("SimpleNetwork_chart.tex"); file.write (histLatex); file.close();

}
}

Figure 5: The Java program of the small RM network example discussed in Section 4.

REFERENCES

American Airlines, 2011. Accessed March 3, 2011. http://www.aa.com.
Bijvank, M., P. L’Ecuyer, and P. Marcotte. 2011. RMSim: A Java Library for Simulating Revenue Management

Systems. Département d’Informatique et de Recherche Opérationnelle, Université de Montréal. Software
user’s guide, forthcoming.

Fowler, M. 2003. UML distilled: A brief guide to the standard object modeling language. Addison-Wesley,
Reading, Massachusetts.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, Massachusetts.

Kimms, A., and M. Müller-Bungart. 2007. “Simulation of stochastic demand data streams for network
revenue management problems”. OR Spectrum 29:5–20.

2713



Bijvank, L’Ecuyer, and Marcotte

Kök, A., M. Fisher, and R. Vaidyanathan. 2009. “Assortment Planning: Review of Literature and Industry
Practice”. In Retail Supply Chain Management, edited by N. Agrawal and S. Smith, Volume 6, 1–55.
Springer, New York.

L’Ecuyer, P. 2008. SSJ: A Java Library for Stochastic Simulation. Département d’Informatique et de
Recherche Opérationnelle, Université de Montréal. Software user’s guide, available at http://www.iro.
umontreal.ca/∼lecuyer.

L’Ecuyer, P., and E. Buist. 2005, December. “Simulation in Java with SSJ”. In Proceedings of the 2005
Winter Simulation Conference, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines,
611–620. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Shen, Z.-J., and X. Su. 2007. “Customer Behavior Modeling in Revenue Management and Auctions: A
review and New Research Opportunities”. Production and Operations Management 16 (6): 713–728.

Talluri, K., and G. van Ryzin. 2004. The theory and practice of revenue management. Kluwer Academic
Publishers, Norwell, Massachusetts.

Train, K. 2009. Discrete choice methods with simulation. Second ed. Cambridge University Press, Cambridge,
Massachusetts.

van Ryzin, G., and G. Vulcano. 2008. “Computing virtual nesting controls for network revenue management
under customer choice behavior”. Manufacturing & Service Operations Management 10:448–467.

AUTHOR BIOGRAPHIES

MARCO BIJVANK is a post-doctoral researcher in the Département d’Informatique et de Recherche
Opérationnelle at the Université de Montréal, Canada. He received a Masters in Business Mathematics
and Informatics and a Ph.D. in Exact Sciences from the VU University Amsterdam, The Netherlands.
His research interests are in revenue management, inventory theory, operational decision making in lo-
gistics processes, and the application of operations research techniques in practice. His email address is
bijvankm@iro.umontreal.ca.

PIERRE L’ECUYER is Professor in the Département d’Informatique et de Recherche Opérationnelle, at
the Université de Montréal, Canada. He holds the Canada Research Chair in Stochastic Simulation and
Optimization. He is a member of the CIRRELT and GERAD research centers. His main research interests
are random number generation, quasi-Monte Carlo methods, efficiency improvement via variance reduction,
sensitivity analysis and optimization of discrete-event stochastic systems, and discrete-event simulation in
general. He is currently Editor-in-Chief for ACM Transactions on Modeling and Computer Simulation,
and Associate/Area Editor for ACM Transactions on Mathematical Software, Statistics and Computing,
International Transactions in Operational Research, and Cryptography and Communications. He obtained
the E. W. R. Steacie fellowship in 1995-97, a Killam fellowship in 2001-03, and became an INFORMS
Fellow in 2006. More information and his recent research articles are available on-line from his web page:
http://www.iro.umontreal.ca/∼lecuyer.

PATRICE MARCOTTE is Professor and Chairman of the Département d’Informatique et de Recherche
Opérationnelle, at the Université de Montréal, Canada. He has published more than eighty papers in
international journals and currently sits on the editorial board of Operations Research, Transportation
Science, JOTA and Operations Research Letters, the latter as area editor for continuous optimization. His
research interests in traffic models have led him to the study of network equilibrium and, more theoretically,
variational inequalities and bilevel programs. Together with a student and colleagues, he is shareholder of
a firm that specializes in the development of revenue management software.

2714


