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ABSTRACT

The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of
communicating observed sensor state information back to a control center. Typical architectures using
DNP3 have a two level hierarchy, where a specialized data aggregator receives observed state from devices
within a local region, and the control center collects the aggregated state from the data aggregator. The
DNP3 communications are asynchronous across the two levels; this leads to the possibility of completely
filling a data aggregator’s buffer of pending events, when a compromised relay sends overly many (false)
events to the data aggregator. This paper investigates the attack by implementing the attack using real
SCADA system hardware and software. A Discrete-Time Markov Chain (DTMC) model is developed for
understanding conditions under which the attack is successful and effective. The model is validated by a
Möbius simulation model and data collected on a real SCADA testbed.

1 INTRODUCTION

Supervisory control and data acquisition (SCADA) systems are used to control and monitor critical
infrastructure processes including electrical power, water and gas systems. As such, SCADA systems are
critical to our daily lives. The United States is currently conducting a major upgrade of its electrical system,
making the grid “smarter”, but in doing so adding more vulnerabilities. We have seen the consequence when
large areas lose power for an extended period of time (PNNL 2010); the obvious threat is that attackers
harm the grid infrastructure through largely electronic means.

We are interested in a vulnerability that arises within the communication infrastructure of the grid.
The Distributed Network Protocol v3.0 (DNP3) is the most widely used SCADA network communication
protocol in North America (approximately 75%) (EPRI 2008). Designed to provide interoperability and
as an open standard to device manufacturers, DNP3 has no notion of security, and most DNP3 devices
lack identity authentication, data encryption and access control. Although some enhanced versions of
DNP3, such as DNP3 Secure Authentication (DNP Users Group 2010) or DNPSec (Majdalawieh, Parisi-
Presicce, and Wijesekera 2006), have been developed but yet still under evaluation phase, the majority of
DNP3-controlled devices in SCADA networks are currently working with little protection.

Most existing works on DNP3 security scrutinize potential security risks inherent in the DNP3 protocol
specifications. A taxonomy of attacks across all layers of the DNP3 protocol has been summarized by East
et al. to show how vulnerable the protocol is (East, Butts, Papa, and Shenoi 2009). The attack we identified
in this paper is against the vendor implementation as well as the underlying communication structure. An
attacker on the network can simply send many data events to a device that temporarily buffers SCADA data
before they are retrieved by a control station. The attack fills an event buffer so as to prohibit the buffering of
critical alerts from legitimate devices, negatively impacting the control station’s situational awareness. The
simple attack works effectively because (1) many commercial DNP3 data aggregators implement shared
event buffer and (2) the communication between a control center and a data aggregator is asynchronous
with the communication between a data aggregator and relays. In addition, many proof-based Denial of
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Service (DoS) defense techniques, such as client-puzzle and public/private key, may not work appropriately
because SCADA networks are generally resource-limited and have strong real-time requirements.

In a nutshell, the main contributions of this paper are: (1) we identify a simple but very effective
flooding attack in DNP3-controlled SCADA networks. We prove the existence and effectiveness of the
attack using commercial power grid equipment in our lab; (2) we develop a DTMC model for analyzing
the effectiveness of the attack as a function of various behavioral parameters. The analytical model has
been validated by the data from the real testbed and a simulation model created in Möbius (Möbius 2010);
(3) we suggest some countermeasures against this type of attacks.

The remainder of the paper is organized as follows: Section 2 gives an overview of DNP3-controlled
SCADA networks. Section 3 describes the threat model. Section 4 introduces the vulnerabilities in DNP3
slave devices used by this attack. Section 5 explores the existence of the buffer flooding attack on a real
data aggregator. Section 6 presents a DTMC model and a simulation model of the attack, and compares
the two models with results from the real data aggregator. Section 7 discusses countermeasures against this
type of attack and Section 8 describes the related work. Finally, we draw concluding remarks in Section 9.

2 DNP3 OVERVIEW

The DNP3 protocol carries on control and data communication among SCADA system components. It is a
master-slave based protocol. Typically a utility has a central control station for managing and monitoring
its portion of the grid. The control station acts as a top-level DNP3 master, gathering data from substations,
displaying the data in a human-readable formation, and making control decisions. A data aggregator
located in a remote substation serves both as a DNP3 master to control and collect data from monitoring
devices, and serves as a DNP3 slave to transmit (on demand) all of the data it has collected back to the
control station. Figure 1 depicts the typical two-level architecture. DNP3 devices were widely used on serial
links in old days, and many of them are still in use. Newer DNP3-controlled networks use TCP/IP-based
connections where the DNP3 message is embedded as a payload of the underlying layer’s packet. As a
result, DNP3 can take advantage of Internet technology to conduct economical data collection and control
between widely separated devices. Our work focuses only on the DNP3 over TCP communication.

The data collected at the DNP3 slave is classified as being one of binary data, analog data or counter
data. Binary data are used to monitor two-state devices, e.g., a circuit breaker is closed or tripped; analog
data carry information like voltage and current on a power line. Counters are useful for reporting incremental
values such as electricity usage in kilowatt hours. Data are transmitted to a master via two modes: polling
and unsolicited response. In polling mode, a master periodically asks all the connected slaves for data,
typically in a round robin fashion. Polling mode can be further divided into integrity polling and event
polling. An integrity poll simply collects all static data with their present values. An event poll only collects
DNP3 events that flag important changes, e.g., when a binary data changes from an on to an off state or
when an analog value changes by more than its configured threshold. A DNP3 master usually issues an
integrity poll at start-up and then primarily uses event polling, with periodic refreshes with an integrity
poll. The period of integrity polling (e.g., hourly) is generally much longer than the period of event polling
(e.g., a few seconds). A DNP3 slave that is configured to use unsolicited response mode can spontaneously
send events to its master. This is useful for reporting state changes where a reaction is time-critical. The
attack we have identified exploits the unsolicited response mode.

3 THREAT MODEL

The buffer flooding attacks assume the ability to access the substation network through some entry points,
such as the utility’s enterprise network or even the Internet. Although the flooding targets are the data
aggregators within a substation, the attacks do not assume the ability to compromise a data aggregator. In
order to flood the data aggregator’s event buffer, the attackers must establish a connection with the data
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Figure 1: Two-level architecture of a DNP3-

controlled SCADA network.
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Figure 2: Time Sequence Diagram for Revealing Data

Aggregator’s Buffering Mechanism with Buffer Size

= 5.

aggregator as a legitimate relay, which can be achieved by either spoofing a normal relay or compromising
a victim relay.

No authentication is currently supported in DNP3 protocol to prevent the attackers from spoofing the
relays. The attackers can suppress a normal relay by redirecting the victim relay’s traffic to itself with
techniques such as ARP spoofing and then spoof the victim relay to establish a new connection with the
data aggregator. The attackers can also act as a secret middle man between the victim relay and the data
aggregator and aggressively replay unsolicited response events captured from the victim relay to exhaust
the buffer resource.

The buffer flooding attack can also be launched from compromised relays. The reality is that the security
of many commercial relays is only provided by having each relay require a password. Unfortunately, bad
password practices have always been observed in substation-level networks. Many operators do not change
the default password for the sake of convenience. The magic words “otter tail” was listed at the top of
an attacker’s dictionary, because it was used by a major relay manufacturer as a default password and
surprisingly was observed to remain unchanged over many SCADA systems (Shaw 2006). Furthermore,
most relays do not have a limit on the number of login attempts, which could easily make a typical automated
password cracker software effective.

4 THE VULNERABILITY

A data aggregator serves as a DNP3 master to relays and as a DNP3 slave to the control station; one can
think of it as having a master module and a slave module. The master module queries relays and stores
received events into the slave module event memory. The data aggregator responds to queries from the
control station by reading out portions of its slave module event memory. The vulnerability arises because
the aggregator’s polling of relays is performed asynchronously with the control station’s queries to it. The
slave memory is therefore a buffer, filled by responses from relays and emptied by a control station query.

Two types of event buffers are commonly used in commercial DNP3 slave devices: sequence of event
and most recent event. The former simply stores all received data in the event buffer. Every new event
occupies new buffer space; if the buffer is full then the event is discarded. This type of buffer is useful for
various applications including grid state estimation and trend analysis. By contrast, a most recent event
buffer reserves space for each individual data point that the aggregator might acquire. When an event
arrives, all the buffer locations associated with data points it carries are overwritten, regardless of whether
their current values have first been read out by a control station query.

The potential vulnerability of interest arises with sequence of event buffers, because it is fed by all
slaves from which the data aggregator acquires data. The attack has a compromised or spoofed DNP3
slave send so many unsolicited events that the buffer is filled, and events from legitimate slaves are lost
until the buffer is emptied by a query from the control station.
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5 EXPERIMENTS ON DATA AGGREGATOR

5.1 Buffering Mechanism Experiments

The DNP3 specification describes the general guidelines on event buffer semantics and leaves the imple-
mentation to vendors (DNP Users Group 2007). The vendor’s implementation is generally not publicly
available. Therefore, in order to verify the existence of this buffer flooding attack, we need to first conduct
experiments on a real data aggregator to understand its buffering mechanism.

The test data aggregator supports the three data types mentioned in Section 2 (binary, analog, and
counters). Each data type has an independent buffer. To understand how each buffer works, we connected
the device with relay A and relay B as two DNP3 slaves, and configured one host as a DNP3 master that
plays the role of a control station. Initially, we set the size of every buffer to 5, and cleared all the buffers in
the data aggregator by issuing sufficient integrity polls from the control station. Let Ai and Bi(i = 1,2, ...)
be the unsolicited response event sent from relay A and relay B to the data aggregator respectively. Each
event contains the same one data point with a different value. Figure 2 is the time sequence diagram
showing the experimental results for all three data types. The experimental results indicate that

• buffers of all three data types have the first come first serve (FCFS) scheduling mechanism.
• the counter event and binary event buffers use “sequence of event” mode, and thus are vulnerable

to the buffer flooding attack. Once the buffer was full, any incoming events were dropped, and the
event buffer overflow indicator bit in the head of DNP3 message was observed to be set to true.

• the analog event buffer uses “most recent event” mode; once the same data point was received
more than once before being read out, its storage location was overwritten. Analog event buffers
are immune to flooding, because an attacker’s flooding affects only the buffer space allocated for
the attacker’s device.

5.2 Buffer Flooding Experiments

The next experiment launches buffer flooding attacks. The data aggregator serves as a DNP3 master
to two relays, and as a DNP3 slave to a control station. The data aggregator polls the relays every 10
seconds. In addition the relays also send unsolicited response events to the data aggregator. Assume one
relay is captured or spoofed by the attacker and it can generate many unsolicited response events and stop
responding to polling requests. The unsolicited response event traffic from the attacker relay is injected
with a constant inter-event time (which we will also refer to as “constant bit rate”). A normal relay always
provides 3 events in response to a polling request, and also injects unsolicited response event traffic with
an exponentially distributed inter-event time, with rate parameter 3 events per 10 seconds. All the traffic
contains only counter events. Each event takes a value from an sequence number (continually incremented)
for identifying which events are lost (by looking for gaps in the reported sequence numbers). For these
experiments we left the counter buffer at its default size of 50 events. The control station periodically polls
the data aggregator every 10 seconds.

The attacker sending rate is chosen from 1 event/sec to 20 event/sec; each experiment generates 100,000
attack events. Figure 3 shows the fraction of dropped events for the normal relay’s polling and unsolicited
response events, under various attacker sending rates. Both types of events start to be lost when the attack
rate is 5 event/s, because the buffer fills within one polling interval. The drop fraction increases as the
attacker sending rate increases, and is nearly 80% at an attack rate of 20 event/sec. The sending rate can
be no larger than network bandwidth / packet size. For example, with a 10 Mb/s Ethernet connection and
100-byte packet (which contains four DNP3 counter events), an attacker might send up to 50,000 counter
events per second. From this we see that the buffer can be flooded and cause significant loss of real events
under attacks whose rates are far smaller than the network line rate. Of course, the control station will
realize that events have been lost (because of a status bit in the DNP3 response), and a burst of unusual
unsolicited events could easily be noticed if a sniffer was watching traffic (which is actually very unusual
in real DNP3 contexts). The flooding attack would be most effective if launched in coordination with other
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attacks (perhaps even physical attacks), denying the control station’s situational awareness of the state of
the substation.
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6 MODELING AND ANALYSIS

We develop a DTMC analytical model and a Möbius simulation model for investigating this buffer flooding
attack. Both models grant us the flexibility and controllability to explore the influence of various behavioral
parameters, some of which are hard to configure in real testbed. Once we well understand the small-scale
model (Figure 4) in this paper, we plan to conduct experiments on large-scale models of real utility SCADA
systems as the next step.

6.1 Analytical Model

The DTMC state is the buffer size at the instant a control station poll request arrives. The time-step is the
control station polling interval length. Figure 4 depicts the data aggregator’s event buffer as a queueing
system. The system has three inputs: the unsolicited response events from the attacker relay, polling events
and unsolicited response events from the normal relay. The shared buffer with finite size will drop any
incoming events once it gets full. The output is triggered by control station’s periodic polling request.
Figure 5 illustrates event arrivals within a control station’s polling interval. Here we assume that the control
station and the data aggregator are configured to have the same polling interval. The parameters of the
analytical model are summarized as follows:

b event buffer size
m max #events transmitting to control station from data aggregator per control station poll
δ control station’s constant polling interval
r attacker’s unsolicited response event sending rate, events arrive in constant bit rate
λ mean arrival rate of unsolicited response events from normal relay (poisson arrival)
w number of events collected from normal relay per data aggregator’s polling
S normalized time within time-step at which bulk arrivals from normal relay poll arrive
k time slot index, the time is slotted by the control station’s polling interval
Q(k) #events in the buffer at the beginning of kth time slot
A(k) #total arriving events during kth time slot
N(k) #unsolicited response events from normal relay during kth time slot
D(k) #departing events polled by the control station at the end of kth time slot

The queueing system can be described by Q(k+1) = [min(Q(k)+A(k),b)−D(k)]+. The system can
therefore be modeled as a DTMC, in which the time is discretized by the control station’s polling interval.
Let Q(k) be the state of the markov chain, Q(k) ∈ 0,1,2...b−m. The state transition probability is derived
by
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Figure 5: Timing Diagram of Event Arrivals.

P(Q(k+1) = j|Q(k) = i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(i+A(k)≤ m) if j = 0

Pr(i+A(k)≥ b) if j = b−m

Pr(i+A(k)−m = j) otherwise

P(A(k) = rδ +w+N(k)) = P(N(k) = n) =
(λδ )ne−λδ

n!
, where n ∈ 0,1,2...

The DTMC is time-homogeneous. Let Π = (π0,π1, ...,πb−m) denote the state occupancy probability
vector in steady state, where πi is probability that the DTMC is in state i in steady state. The dependence
on k is removed from the notation of the distribution of A as we are interested in the asymptotic behavior.
Let Li be the total number of dropped events per time slot in state i, i.e. there are i events in the buffer at
the beginning of the time slot, and Li = ((A− (b− i))+. The average number of dropped events per time
slot is computed as E(L) = ∑b

i=0 πiE[(A− (b− i))+]. The ratio of expected dropped events of all types to

expected events in a time slot is ρ = E(L)
E(A) =

E(L)
rδ+λδ+w , a value which by Jensen’s Inequality (Ross 1996)

is a lower bound on the expected fraction of all events that are dropped.
ρ bounds the overall fraction of dropped events (including attacker events); of more interest is the

fraction of events dropped events from the normal relay. Define Tf to be the time required (from beginning
of a time slot) for the buffer to fill in a time slot.

Pi(Tf = t|S= s)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P(Nf = b− i− rt) if 0≤ t < s

∑w
j=0 P(Nf = b− i−�rs�− j) if t = s

P(Nf = b− i− rt−w) if s < t ≤ δ

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(λ t)b−rt−ie−λ t

(b−rt−i)! if 0≤ t < s

∑w
j=0

(λ s)b−�rs�− j−ie−λ s

(b−�rs�−i− j)! if t = s

(λ t)b−rt−w−ie−λ t

(b−rt−w−i)! if s < t ≤ δ

where Nf is the random number of unsolicited response events from normal relay within Tf time; these

events are not dropped. Time t ∈ { b−i−z
r , where z = 0,1,2...

}∪{s} and 0≤ t ≤ δ .
The average number of dropped unsolicited response events and polling events from normal relay given

Tf can be computed respectively as E(Lur
i |Tf = t,S = s) = E(Lur

i |Tf = t) = (δ − t)λ , and

E(Lpoll
i |Tf = t,S = s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w if 0≤ t < s

∑w
j=0(w− j)P(Nf = b− i−�rs�− j) if t = s

0 if s < t ≤ δ

The average number of dropped unsolicited response events and polling events from normal relay within a

time slot can be derived respectively as E(Lur) = ∑b−m
i=0 πi

∫ δ
s=0 f (s)∑t P̄i(Tf = t|S = s)E(Lur

i |Tf = t,S = s)ds
and E(Lpoll) = ∑b−m

i=0 πi
∫ δ

s=0 f (s)∑t P̄i(Tf = t|S = s)E(Lpoll
i |Tf = t,S = s)ds, where Pi(Tf = t|S = s) is

normalized by P̄i(Tf = t|S = s) = Pi(Tf =t|S=s)
∑t Pi(Tf =t|S=s) . Thus, a lower bound on the expected fraction of lost normal

unsolicited response events is ρur = E(Lur)
λδ , while the exact expected fraction of lost normal polling events

is ρ poll = E(Lpoll)
w . ρ poll is exact because w is constant in this model.
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6.2 Simulation Model

We also built a stochastic activity network (SAN) (Meyer, Movaghar, and Sanders 1985) simulation model
with respect to the real testbed setup in Möbius v2.3.1, which provides a flexible, extensible, and efficient
framework for implementing algorithms to model and solve discrete-event systems. SANs consist of four
primitive objects: places, activities, input gates, and output gates (Möbius 2010). Figure 6 shows the core
design of the event buffer attack model. The place “EventBuffer” models the shared finite event buffer in
a data aggregator. The event buffer queues events from three data sources, which are modeled as three
activities: attacker relay’s constant bit rate traffic, normal relay’s poisson arrival traffic and normal relay’s
constant polling traffic, of which two are deterministic process and one is exponential process. The places
“UR Drop” and “Polling Drop” are used to keep track of the number of dropped unsolicited response
events and polling events from normal relay respectively. The fraction of dropped events are, for both
types, set to be steady state reward variables for simulation study.

Figure 6: SAN Model of a DNP3-controlled Data

Aggregator’s Event Buffer in Möbius.
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6.3 Model Validation

Both real testbed data and the simulation model are used to validate the analytical model. All the
parameters of the analytical model and the simulation model are taken from the real testbed: b = 50,m =
50,λ = 0.3 event/second,w = 3 event/second,δ = 10 seconds. Recall that S is the fraction of time between
successive control station polls that elapses before the data aggregator poll delivers a bulk arrival to the
buffer. We empirically determined the probability distribution of S from testbed data based on 10,000
samples and plot the empirical CDF of S in Figure 7. It is clear that S can be modeled as a uniform
distributed random variable between 0 to 10. With all the parameters in analytical model and simulation
model aligned well with real testbed setup, we vary the attacker sending rate from 1 event/second to 20
event/second with 1 event/second increment, and statistically compute the mean fraction of dropped events
for both unsolicited response events and polling events from the normal relay. For all the reward variables
in the Möbius model, the confidence level is set to 0.99 and relative confidence is set to 0.1, which means
that results will not be satisfied until the confidence interval is within 10% of the mean estimate 99% of
the time. For every experiment of the Möbius model, we conducted 10 independent runs with a different
random seed. For each experiment, the minimum number of runs is 10,000 and maximum number of runs
is 100,000. During all the experiments, the reward variables in the Möbius model are able to converge
within the maximum number of runs. The degree of closeness of two sets of data are measured by the

relative error. The relative error is defined as
|ŷ−y|

y , where y is the baseline data and ŷ are the data points

to compare with the baseline data.
Figure 8 plots our estimates of the fraction of dropped events. The real data curve plots empirically

observed fractions, the simulation model curve plots statistical estimates of the true observed fractions,
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and the analytic model plots the analytic upper bound on the true observed fractions. For the Möbius
model, the results from the 10 independent runs have little variance and are extremely close to the testbed
observations. The relative errors are also listed in Table 1. It can be seen that the analytic estimates for
both unsolicited response and polling events match those of the simulation model with very small relative
error. The analytical model and simulation model also match well with the real testbed data. Therefore,
the analytical model is validated and can be used for quantifying how the attacker’s sending rate blocks
legitimate traffic on the test data aggregator; furthermore, the simulation model can provide an accurate
and flexible environment for exploring the model’s parameter space for investigating the buffer flooding
attack.
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Figure 8: Estimated Fraction of Dropped (a) Unsolicited Response Events and (b) Polling Events from

Normal Relay, Experimental Results from Real Testbed, Analytical Model and Simulation Model.

Table 1: Relative Error of the Estimated Fraction of Dropped Events from the Normal Relay.

ŷ y
Relative Error of Drop Fraction

UR Events Polling Events

mean std mean std

Analytical Real 0.0245 0.0252 0.0535 0.0998

Simulation Real 0.0206 0.0221 0.0494 0.0754

Analytical Simulation 0.0056 0.0081 0.0105 0.0133

We observed that the test data aggregator simply sends everything inside the buffer in response to a
control station’s poll. If the number of events in the buffer is large, they will be fragmented into multiple
DNP3 data packets that are resembled at the destination. Therefore, the real testbed has the constraint that
b = m and the corresponding DTMC model has only 1 state. However, it is recommended that in 2nd-level
DNP3 slave, such as data aggregator in this case, the maximum number of items returned per poll be
configurable in order to avoid overwhelming the network link (DNP Users Group 2007). Since the feature
has been supported in many commercial data aggregators, it is necessary to evaluate whether the analytical
model correctly captures the attacker’s effect on the data aggregator when b > m. The simulation model is
used as a baseline to validate the analytical model. Let m = 30 and b = 50, now the DTMC model has 21
states. While keeping the rest parameters with the same values, we ran the same set of experiments on both
the analytical model and the simulation model, and plot the unsolicited response events and polling events
drop fractions in Figure 9(a) and 9(b) respectively. The drop fractions derived from the Möbius model are
again the average of 10 independent runs with little variance. The relative error of the unsolicited response
event drop fraction has mean of 0.0080 with standard deviation 0.0080, and the relative error of the polling
event drop fraction has mean of 0.0066 with standard deviation of 0.0050. The small relative error indicates
that the DTMC model can efficiently compute the drop fraction of legitimate traffic as accurate as the
simulation model.
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Figure 9: Estimated Fraction of Dropped (a) Unsolicited Response Events and (b) Polling Events from

Normal Relay, with b = 50, m = 30.

6.4 Model Analysis

We then explore the impact on the drop fraction of key model parameters λ , w, S and m. The idea is to
vary only one selected parameter for every set of experiments, and again measure the relationship between
the attack sending rate and the fraction of dropped events. The baseline parameters are chosen as follows:
b = 50,m = 30,δ = 10,λ = 0.3,w = 3,S is uniformly distributed between 0 and 10. Figure 10 and 11
displays the plots of drop fractions versus attacking rate for every selected parameter.
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Figure 10: Fraction of Dropped Events vs Attacking Sending Rate with varying (a) λ (b) w.

λ is the mean arrival rate of unsolicited response events from normal relay. Figure 10 (a1) and (a2)
shows that all the lines with different λ values tend to converge as the attacker sending rate increases.
Once the attacker sending rate is greater than 10 event per second, which is easy to achieve, λ has small
impact on the both types of dropped events.

w is the number of events collected from the normal relay in response to a data aggregator’s poll.
Similar to the impact of λ , the lines tend to converge as attacker rate increases and thus w also has small
impact on both types of event drop fractions, especially on the unsolicited response events.

S is the time offset between neighboring control station’s poll and data aggregator’s poll. The variation
we noted earlier was taken over successive experiments. Under the assumption that both the control station
polling is constant and that the data aggregator’s polling is constant, in any given experiment S will be
constant. We vary it here to see what impact a given constant S may have. It has little impact on the
unsolicited response events. Within a polling interval, the number of attacking events is much more than
the number of the normal relay’s polling events, therefore when the polling events arrive has minimum
impact on the drop fraction of the unsolicited response events from the normal relay. However, the value
of S greatly affects the fraction of polling events that are dropped. If the polling events arrive right after
the previous control station’s poll, there is always space in the buffer to hold them. On the other hand, if
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the polling events arrive just before the next control station’s poll, the buffer has almost surely been filled
up by the attacking events.

S varies in reality because of the uncontrollable variance in the clocks that DNP3 masters use for
issuing periodic polling requests. One enhancement could be developing rules on the data aggregator to
generate polling requests to all the connected relays right after a control station’s poll (use multicast if
supported), the polling events from normal relay can possibly enter the data aggregator’s buffer before the
attacking events overflow the buffer and minimize the fraction of dropped packets.

m is the maximum number of events transmitted to control station in response to a control station poll.
Larger m essentially means larger service rate, and results in more available buffer space at the beginning
of each time slot. Therefore, the fractions of dropped events of both types are reduced as shown in Figure
11 (b1) and (b2). However, increasing m is generally not a good solution, because the control station
actually wastes even more resources including processing power and communication bandwidth to serve
the attacking events. As a result, the attacker’s impact effectively propagates to the communication between
the control station and the data aggregator.
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Figure 11: Fraction of Dropped Events vs Attacking Sending Rate with varying (a) S (b) m.

7 COUNTERMEASURES

The key reason that the buffer flooding attack works is that the buffer space is shared among multiple
sources, and use of the buffer follows a first-come-first-serve rule. The fraction of service that a data flow
receives is always proportional to its input rate with FCFS policy when the buffer is congested. Therefore
a high load flow like those of the attacker relay’s unsolicited response events, can occupy most of the
bandwidth, and influence the low load flows, such as the unsolicited response events and polling events
from the normal relay. Another class of scheduling policies is designed with the goal of providing fair
queueing (Stiliadis and Varma 1996), such as round robin (RR), weighted round robin (WRR) and weighted
fair queueing. Applied in this context, the fair queueing scheduling policies aim to ensure that every input
flow has reserved buffer space, and the additional buffer space will be equally distributed among flows
that need more. Therefore, a reasonable defense against the buffer flooding attack is to allocate space in
a shared event buffer according to a fair queueing policy. Round robin based scheduling could be a good
choice due to the low time complexity O(1) and the low implementation cost (Guo 2001).

As specified in the DNP3 protocol standard, every DNP3 slave’s application response header contains
a two-octet internal indications (IIN) field (DNP Users Group 2007). The bits in these two octets indicate
certain states and error conditions within the slave. The third bit of the second octet indicates that an event
buffer overflow condition exists in the DNP3 slave and at least one unconfirmed event was lost because
the event buffers did not have enough room to store the information. The overflow condition continues to
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hold until the slave has available event buffer. It provides a means for the DNP3 master to detect whenever
a buffer overflow occurs. The action recommended by the DNP3 user group, and in fact many vendors
implemented in their products, is to issue an integrity poll in order to reestablish the current state of all data
in the slave device (DNP Users Group 2007). However, the action is not sufficient to protect the device from
the flooding attack discussed in this paper. The integrity poll is passively issued upon receiving a response
from DNP3 slave, and therefore it can only delay the time that next buffer overflow occurs. In addition,
an integrity poll simply asks for all the static data rather than changed events, therefore generating many
integrity polls could potentially overwhelm the network link between data aggregator and control station,
and as a result, unintentionally wasting bandwidth and processing resources. One improvement could be
applying rule-based policies to limit or filter the attacking traffic. For example, if relay A causes three
successive sets of the event buffer overflow indication bit, the data aggregator will filter any data traffic
whose DNP3 source address is of relay A. The rule will continue to take effect if the upcoming traffic from
relay A exceeds a configured threshold. In addition, if the data aggregator’s scheduling algorithm involves
computation of weight, such as weighted round robin and weighted fair queueing, we could associate the
event buffer overflow indication with an extremely small weight, and therefore minimizes the amount of
attacking traffic entering the event buffer.

Lack of authentication in the DNP3 protocol enables attackers to spoof normal relays. Researchers are
actively working on various forms of crypto-based solutions to establish strong authentication in the SCADA
environment, such as studying the practicality of various forms of key management (Piètre-Cambacédès
and Sitbon 2008), examining the practicality of using puzzle-based identification techniques to prevent
DOS attack in a large scale network (Bowen III, Buennemeyer, and Thomas 2005), or evaluating enhanced
DNP3 protocols like DNP3 Secure Authentication (DNP Users Group 2010) or DNPSec (Majdalawieh,
Parisi-Presicce, and Wijesekera 2006).

8 RELATED WORK

DNP3 was designed without concern for security because SCADA networks were physically isolated with
other networks at that time. However, with the growing of smart grid technologies, dependences of critical
infrastructures on interconnected physical and cyber-based control systems grow, and so do vulnerabilities.
The attack discussed in this work targets data aggregators, and results in the loss of situational awareness in
the control center. Detailed attacks against DNP3 specifications across all three layers were also proposed
and classified into 28 generic attacks and 91 specific instances (East, Butts, Papa, and Shenoi 2009). The
impact of those attacks could result in loss of confidentiality, loss of awareness and even loss of control. A
survey of SCADA-related attacks was conducted in (Ralston, Graham, and Hieb 2007), covering techniques
of attack trees, fault trees, and risk analysis specific to critical infrastructures. The buffer flooding attack
overwhelms the limited buffer resources in data aggregators, and thus it belongs to the class of DoS attacks.
DoS attack and defense mechanisms in the Internet have been studied and classified in (Mirkovic and
Reiher 2004). The real-time constraints and limited resources of the SCADA network makes the defense
of such DoS attack even harder. Much research has also been done on realistic cyber attack vectors and
security gaps specific to SCADA networks (Fernandez and Fernandez 2005, Faruk 2008).

Investigation of attack vectors and security gaps will result in remediation techniques that can provide
protection. Research has been done on countermeasures specific to DNP3 attacks, including data set
security (Mander, Cheung, and Nabhani 2010), SCADA-specific intrusion detection/prevention systems
with sophisticated DNP3 rules (Bond 2010), and encapsulating DNP3 in another secure protocol such
as SSL/TLS or IPSec (Graham and Patel 2004). Design guidances for authentication protocols based on
extensive studies of the DNP3 Secure Authentication was proposed in Khurana, Bobba, Yardley, Agarwal,
and Heine (2010).
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9 CONCLUSION

This paper investigates a buffer flooding attack on DNP3-controlled data aggregators. The attacker spoofs
or captures a normal relay, and floods the connected data aggregator with unsolicited response events as if
they are coming from the victim relay. The goal is to overload the shared event buffer in the data aggregator
so that events from other normal relays will be dropped upon arriving to a full buffer. The attack has been
implemented on a real data aggregator. Also a DTMC model and a Möbius simulation model have been
developed for analyzing the behavior of such attacks. Results have shown the simple flooding attack can
be very effective, and strong authentication is definitely required towards securing the DNP3-controlled
SCADA networks.
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