
Proceedings of the 2011 Winter Simulation Conference
S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, and M. Fu, eds.

USING THE LEVELS OF CONCEPTUAL INTEROPERABILITY MODEL AND MODEL-
BASED DATA ENGINEERING TO DEVELOP A MODULAR INTEROPERABILITY

FRAMEWORK

Saikou Y. Diallo Andreas Tolk

Virginia Modeling Analysis & Simulation Center Engineering Management & Systems Engineering
Old Dominion University Old Dominion University
Suffolk, VA 23435, USA Norfolk, VA 23529, USA

Jason Graff
Anthony Barraco

GDIT

General Dynamics
Suffolk, VA 23435, USA

ABSTRACT

This paper describes how to use the Levels of Conceptual Interoperability (LCIM) as the theoretical
backbone for developing and implementing an interoperability framework that supports the exchange of
XML-based languages used by M&S systems across the web. The principles of Model-based Data Engi-
neering (MBDE) are integrated within the framework to support the interactions between systems across
the layers of the LCIM. We present a use case that shows how the framework supports the interoperability
of heterogeneous military systems.

1 INTRODUCTION

Interoperability is understood as “the ability of two or more systems or components to exchange informa-
tion and to use the information that has been exchanged” (IEEE 1990) and remains a great challenge in
Modeling and Simulation (M&S) and related fields such as Systems Engineering and Software Engineer-
ing. One of the main reasons for interoperability is to support the reuse of existing solutions. However,
M&S has the additional challenge of dealing with models which are simplifications of reality in order to
answer a modeling question and simulations which are the execution of the model using a simulator.
While the interoperability of simulators and simulations has been addressed to some extent, interopera-
bility at the modeling level is starting to garner more attention as the community realizes that ignoring the
problem might lead to the creation of a “Frankenstein model” made out of multiple models but without an
identity of its own. In order to support interoperability at the modeling level a methodology or approach is
needed to 1) understand to separation between model and simulation 2) distinguish between model and
valid model and 3) separate simulation from simulator. In the current state of the of art the distinction be-
tween the three is theoretical and is not reflected in current interoperability standards and frameworks.

In this paper, we will first distinguish between a model, a language, a simulation and a simulator and
show how a language can be used to support the interoperability of models and simulations. We will use
the language to derive requirements for an interoperability framework. The LCIM first introduced by
Tolk and Muguira (2003) was designed to measure or prescribe the level of interoperability between
models and simulation. Model-based Data Engineering (MBDE) (Tolk and Diallo 2003) is an engineering

2576978-1-4577-2109-0/11/$26.00 ©2011 IEEE

Diallo, Tolk, Graff and Barraco

methodology designed to make systems interoperable. We integrate the LCIM with MBDE to generate a
framework that meets the requirements identified earlier and describe an implementation of this frame-
work that supports the interoperability of XML-based languages.

2 MODEL, LANGUAGE, SIMULATION AND SIMULATOR

In order to differentiate between a model a language a simulation and a simulator, we need an apparatus
from which we can study these terms and show how they are different and/or related. Model Theory, a
branch of mathematics that is focused on the study of objects and their structures using logic provides a
unifying approach that can be used in M&S. The following definitions are taken from Weiss and D’Mello
(1997).

Definition 1 A language L is a set consisting of all the logical symbols with perhaps some constant,
function and/or relational symbols included

Definition 2: A model (or structure) U for a language L is an ordered pair <A, I> where A is a non-
empty set and I is an interpretation function with domain the set of all constant, function and relation
symbols of L such that a constant symbol is mapped to a constant, a function symbol is mapped to a func-
tion and a relation is mapped to a relation

Definition 3: A sentence is an assertion that can be assigned the Boolean value of true or false
Definition 4: If U is a model of L, the theory of U, denoted ThU, is defined to be the set of all sen-

tences of L which are true in U
Definition 5: A finite state machine is a triple {I, S,O} where I is the set of inputs, S is the set of

states and O is the set of outputs

While these definitions originate from model theory, they are useful in M&S in understanding the re-

lationship between model, simulator and simulation. We define these terms in M&S as follows:

Definition 6 A model in M&S is a language L
Definition 7 A simulator is a finite state machine
Definition 8 A simulation is the generation of a model by a simulator
Definition 9 A referent in M&S is a structure (model in model theory)
Definition 10 A model in M&S is valid if and only if it is a Theory of a referent. The model is said to

valid under the referent or valid with respect to the referent

There are several key observations that emerge from using Model theory as the basis for understand-

ing the relationships between a model, a language, a simulator and simulation:
• The language or model in M&S is the common denominator between all of the components

of interoperability. In that sense, we can truly say that everything in M&S is a model includ-
ing the referent (the model of the model). This is a very powerful observation because it al-
lows us to unify interoperability under the modeling umbrella and treat interoperability chal-
lenges as modeling challenges.

• The simulator is a model generator. Using Model Theory, we can separate the interoperability
of model generators from the interoperability of that which they generate i.e. the model and
provide a simple definition for the interoperability of simulators. Further, we can generalize
Definition 8 as follows:

Definition 11 A simulation is the generation of a model by one or more simulators.

The simulators can be acting in series, parallel or any configuration without affecting the defini-
tions provided. Finally, the definition not only provides a separation between the simulator and
the model it also clearly specifies what parts of the simulator are involved in the simulation i.e.
the simulator is the part that generates the sentences on the model. Consequently at the practical

2577

Diallo, Tolk, Graff and Barraco

level any configuration, software, hardware and operating system that is not directly generating
the simulation is not taken into consideration. This means that transport mechanisms, synchroni-
zation methods and translation tools are not part of the simulation unless they generate some part
of the model. The only thing that generates the model is the finite state machine realization of the
model or the finite state equivalent of the language if one exists. This is a very restrictive view of
a simulation but one that is formal and very useful in separating technical issues from modeling
issues cleanly. Otherwise stated, technical interoperability (the exchange of bits and bytes) is di-
vorced from M&S in the sense that it does not contribute in producing a model.

• Validity and satisfiability: One of the most challenging issues in building an interoperability
framework is distinguishing between models and valid models especially if one assumes that va-
lidated (in the traditional VV&A meaning) models will cohabitate with models that are not vali-
dated. The question is whether validated models become invalid during interoperability and more
interestingly whether models that are not validated are assumed to be valid especially when they
exhibit apparently valid behavior. This question is rarely answered and in fact federations of
models seldom go through the same validation process as individual models. This, of course, is
due to the lack of a formal definition of validity and ultimately the lack of a formal theory of va-
lidity that would explain this phenomenon. In our case, we assimilate validity with satisfiability
simply because it generalizes the idea of validity and formalizes it. It highlights the key aspect of
validity as being with respect to something (the referent in M&S) and captures the idea of partial
validity by stating that only the parts of the model which are true under that referent are valid. Fi-
nally, Definition 10 explains that reuse is the number of theories that a model can generate.

The distinction between model and simulation provided here align very well with the DEVS formal-

ism with the difference that DEVS only deals with finite state machines. Once we have separated the key
concepts and established interoperability as a modeling problem excluding the simulator parts as we de-
scribed earlier, we can safely state that fundamentally a language is necessary and sufficient to ensure in-
teroperability. We can rewrite the interoperability definition as the ability of systems to generate a lan-
guage. It is important to note that the language need not be valid. We will not delve into the Model
Theoretic aspects of this discussion in this paper, but we can use the definitions and findings of Model
Theory as applied to M&S to derive the requirements for an interoperability framework.

3 REQUIREMENTS OF AN INTEROPERABILITY FRAMEWORK

An interoperability framework as envisioned in this paper will require models to be developed in the fu-
ture with interoperability as a basic requirement. However, the framework should also be able to accom-
modate legacy models among other requirements. In this section we will focus on the specific require-
ments necessary to support the interoperability of models. Based on the definitions provided in the
previous section, it is apparent that in theory a referent can have an infinite number of models which can
be generated by an infinite number of simulators which in turn results in an infinite number of simula-
tions. In practice, the number of models of the same referent (combat models in general, tank models,
soldier models, etc.) is not quite infinite but still is very large. The same holds true for the number of im-
plementations of these models and the number of ways one can calibrate a given simulator to generate a
simulation. Since, this number is very large, any framework that supports particular cases of models will
lack the flexibility required to support a rapidly changing environment where doctrine, tactics and proce-
dures are constantly changing which means the number and type of models as well as the interoperability
requirements are continuously evolving and changing. This is especially true for standard frameworks
such as the Distributed Interactive Simulation (DIS) (IEEE 1998) and the High Level Architecture (HLA)
(IEEE 2000) which are now moving into supporting Live, Virtual, Constructive (LCV) requirements
(Henninger et al. 2008). By their very nature, these standards do not separate models, simulations, refe-
rents and languages. In order to be flexible and adaptive an interoperability framework should be able to:

2578

Diallo, Tolk, Graff and Barraco

• Separate referent from model
• Separate referent from valid model
• Separate referent from simulation
• Separate referent from simulator
• Separate model from valid model
• Separate model from simulation
• Separate model from simulator
• Separate simulation from simulator

In addition to these basis requirements, the interoperability framework should have the capability to
support the high level requirements shown in Table 1. Each requirements is motivated by a definition or
set of definition. The goal or desired feature of the framework is also described as it relates to the capabil-
ities enumerated in the list above. In the military context, the ultimate goal is to generate a framework that
can support multiple combat models implementing different aspects of the battlefield (logistics, artillery,
etc.) at multiple echelons. The framework should support multiple implementation platforms and message
formats including current military messages. The framework should support joint and coalition systems
and enable coalition interoperability at the strategic and tactical levels. It should have the flexibility to in-
tegrate and support new message types such as the exchange of orders, reports and requests. In terms of
interoperability, the proposed framework is network agnostic and therefore can be implemented at mul-
tiple levels of security

Table 1: Requirements for an interoperability framework

Requirements Origin Explanation Goal

Support multiple
referents

Definition 9 Allow multiple current and future models
and simulations to be interoperable

Model agnostic

Support multiple
models

Definition 6 Allow multiple languages/dialects to be
supported

Language agnos-
tic

Support multiple
valid models

Definitions 6,
9, 10

Allow multiple existing/legacy models to
be supported

Theory agnostic

Support multiple
simulations

Definitions
8,9,10

Allow multiple simulations to coexist in
series or parallel

Simulation
 agnostic

Support multiple
simulators

Definition 11 Allow multiple implementations to be in-
teroperable

Implementation
agnostic

Having described the requirements for the framework, we need further guidance on what elements are

needed to capture it. In order to accomplish this goal, we introduce a formal specification of the LCIM as
a guide for describing interoperability and MBDE as a guide on how to accomplish interoperability.

2579

Diallo, Tolk, Graff and Barraco

4 INTEGRATING THE LCIM AND MBDE INTO THE FRAMEWORK

The level of conceptual interoperability model (LCIM) was introduced by Tolk and Muguira (2003) in
order to establish the degree to which two or more systems interoperate. The latest version of the LCIM
as presented by Turnitsa (2005) has seven levels where:

• Level 0: The systems are not connected, no interoperability
• Level 1: The systems can exchange bits and bytes. A physical connection based on a communica-

tion protocol is established. The systems are on the level of technical interoperability.
• Level 2: The systems share a common data format and agree on a common syntax. At the level of

syntactic interoperability, the bit and bytes exchanged can be grouped to form symbols. At this
level, systems share a common reference physical data model instance.

• Level 3: The systems harmonize the meaning of the symbols they exchange. The level of seman-
tic interoperability implies agreement on the definition of terms through a process of disambigua-
tion. The systems share a common reference physical model.

• Level 4: The systems are aware of the context in which the symbols they exchange are used. At
this level the systems are aware of all the possible groupings of symbols and how they are related.
The level of pragmatic interoperability implies the awareness and sharing of a common reference
logical model.

• Level 5: The systems understand the processes that will use the symbols they exchange. At the
level of dynamic interoperability the assumptions and constraints of processes are described un-
ambiguously and the behavior of systems is predictable during interoperation.

• Level 6: The underlying concepts represented by the symbols are described unambiguously. The
level of conceptual interoperability implies the alignment of the models represented in systems.
The systems share a common reference conceptual model that captures the assumptions and con-
straints of the corresponding real or imaginary object.

Despite the LCIM being designed for establishing what interoperability is through a categorization, it
does not provide 'how' interoperability can be achieved. Considering Model Theory, the LCIM assists us
into establishing how to achieve interoperability:

• Level 1 by sharing theories under a well-defined and accepted computer model (see definition

10), for instance, TCP/IP or HTTP protocols;
• Level 2 by sharing common interpretation functions (see definition 2) on A (constants, functions

and relations);
• Level 3 by sharing structures (see definition 2), despite the potential of generating different lan-

guages;
• Level 4 by sharing theories in order to share contexts;
• Level 5 by sharing the same sentences (see definition 3) in the same order in order to fulfill syn-

chronicity; and
• Level 6 by the equivalence between models and languages.

 MBDE is an engineering process that focuses on capturing data exchange requirements in a federa-
tion including its availability, the agreed meaning, its groupings, and the consistency of the groupings
within a common reference model. To do so, it is required to know the purpose of the federation in order
to identify candidate systems that can be federated and fulfill that purpose. MBDE contains four
processes: data administration, data management, data alignment and data transformation.

2580

Diallo, Tolk, Graff and Barraco

• Data Administration focuses on the identification of data formats, location, and domain in order

to establish unambiguous definitions and classification of entities, properties, values, and metada-
ta.

• Data Management focuses on the identification of logical relations among entities, properties, and
values in order to establish the rules to form meaningful groupings. This step is important in that
seeks to capture the most mandated properties of all potentially associated entities in order to
have strong groupings.

• Data Alignment focuses on the identification of scope (number of unique groupings) and resolu-
tion of data (cardinality of the groupings). This is important in order to identify mismatches of
scope and resolution between two systems.

• Data Transformation focuses on establishing consistency by identifying and mapping functions
that generate valid sentences in a computable model. It is important because it serves as the basis
for an implementation.

MDBE helps us establish interoperability of systems and like the LCIM, we can use Model Theory to
better formulate that process:

• Data Administration focuses on the identification of the universe A;
• Data Management focuses on the identification of the interpretation function on A;
• Data Alignment focuses on the identification of structures;
• Data Transformation focuses on the identification of language, model and theories.

Unlike the LCIM, MBDE was designed to achieve interoperability but both are assuming that intero-

perability is engineered and neither makes the distinction between model, valid model, simulation and si-
mulator. The LCIM offers the framework a way to measure interoperability and MBDE provides an ap-
proach to achieve that level of the LCIM. MBDE has to be done for every system in order to generate a
common language from the bottom up. The idea is that we know in advance what systems we would like
to see integrated and we have a scenario and overall model we want to generate. MBDE is used to identi-
fy what each systems can produce and what it needs to know. The LCIM is then used to align the models
on all levels. A top-down approach is also possible by mandating a common language for all systems and
using MBDE as a filtering mechanism to identify the parts of the language that a system can understand.
In the next section will describe an implementation of this framework for XML based Languages involv-
ing military models that supports both approaches.

5 AN OVERVIEW OF CBMS

The Coalition Battle Management Service (CBMS) is a technical infrastructure that enables the exchange
of resources (orders, reports, and requests) between Command and Control (C2) systems, simulation sys-
tems and robotic forces. CBMS is a collection of composable web services that can be orchestrated to
support the needs of a particular federation. CBMS is currently implemented as a service oriented archi-
tecture with an interrupt mechanism, a filtering mechanism and a data distribution mechanism that can be
used to support the validation, storage, search and exchange of XML based languages. These languages
include but are not limited to the Coalition Battle Management Language (C-BML) (Blais, Galvin and
Hieb 2005) and the Military Scenario Definition Language (MSDL) (SISO 2008). CBMS is accessible via
any commercially available web browser and uses only next generation XML based technologies in its
implementation. In this case, in order to make XML based language standards interoperable, we focus on
what was said on a message and not on how it was said. Hence, CBMS can load a scenario using MSDL
and send messages to a simulation from a C2 system using C-BML.

 CBMS is architected to take advantage of web principles and technologies because the web as we use
it today is the most interoperable environment that replicates the M&S domain. Similarly to computer
systems and users on the web, M&S interoperability aims to connect users and systems from heterogene-

2581

Diallo, Tolk, Graff and Barraco

ous environments in a parallel and distributed fashion. CBMS is system and environment neutral and fol-
lows the principles of a Service Oriented Architecture (SOA) where CBMS provides basic common ser-
vices (transport, storage, search, filtering) and each system that connects to it becomes a service that is
available to any other user or system.

CBMS provides a paradigm shift in interoperability framework by taking the emphasis away from the
traditional interface design and alignment approach that often results in rigid solutions. Interface based in-
teroperability requires gateways and bridges to be built ad infinitum in order to foster reuse because the
interface is tied to a system or a federation of systems. CBMS places the emphasis on the language and
thus creates a document centric paradigm where systems exchange a self contained document that they
are free to mine based on their needs and capabilities. Going back to the example of the web, this is very
similar to many users accessing a web page where each user is free to read the content that they are inter-
ested in, navigate to the pages that they think are relevant all at the same time. Within this paradigm, it is
acceptable that some users will not understand the language of the web site (Urdu, English, Pashto), some
will understand the language and find the stories relevant and some will not think the stories relevant at
all. The same principles are at play within CBMS.

Figure 1 shows an overview of CBMS and its main components namely:

• A transport mechanism: The transport mechanism used in CBMS is the Hyper Text Transport

Protocol (HTTP) which is used to transport hypermedia in a distributed environment and colla-
borative environment. HTTP is ubiquitous across the web and thus provides us a solid and relia-
ble basis for technical interoperability;

• A storage mechanism: Instead of providing a Relational Database Management System
(RDBMS) as is traditionally the case, CBMS stores every document in its native XML format.
The only requirement is that the document be syntactically valid which respect to a schema. The
storage mechanism allows us to support syntactic interoperability between documents that share a
common structure. The storage mechanism is designed to support document searching and after
action review (AAR) in the case of military scenarios.

• An artificial intelligence component: This component is designed to facilitate the move towards
semantic interoperability by providing support for ontology, reasoning and the design of domain
specific languages. This component allows the specification of a common interpretation of terms
and structures of a language.

In terms of a bottom up approach CBMS can support the interoperability of systems that natively

speak language such as MSDL or C-BML. It can also support a language that is generated through
MBDE in order to support specific systems in a given federation. For instance , CBMS can support the
exchange of Link messages if they are expressed in XML and at the same time support the integration of
Google Maps to provide a common operational picture through the Keyhole Markup Language (KML).

In Figure 2, we show how CBMS further borrows from the principles of the web. CBMS uses the Re-
presentational State Transfer (REST) which constrains information exchange to the ability to get a mes-
sage, put a message, post a message and delete a message. The RESTful implementation allows CBMS to
be interface and content agnostic. In addition, CBMS uses Server Sent Events to allows systems and users
to predefine content of interest which is delivered as soon as it is available. In terms of military systems,
CBMS allows systems to filter out content that is not of interest (for instance events that occur outside the
area of operation that are not of immediate interest) and conversely to only share information that is rele-
vant to other users (this is a generalization of the publish subscribe paradigm). Because it uses HTTP,
CBMS can easily support web applications, browsers and any HTTP compatible device.
Table 2 shows how the CBMS architecture implements the interoperability framework described in this
paper in order to support C2 and simulation interoperability:

2582

Diallo, Tolk, Graff and Barraco

Figure 1: CBMS component integration

Figure 2: CBMS implementation overview

The CBMS framework focuses on the exchange of languages between systems. This language is con-
tained within the document that is being exchanged. Each system that is connected to CBMS represents a
referent (user) or a model that can generate and/or consume a language. If two or more systems are syn-
tactically interoperable it means that they speak the same language and CBMS can support the exchange
of this language. If a language if a theory of this model it is said to be valid for this model or the models
are semantically interoperable. A s simple example let us assume that there are several tank models that
want to exchange information about their respective positions. Each tank can broadcast its position is lati-
tude and longitude which makes them syntactically interoperable. If they, in addition agree on a common
reference system and the same definition for latitude and longitude, they share a common theory and we
can say that latitude and longitude are theories of positions for the tanks. CBMS can then be used to ex-
change the position information with the added capability of filtering the information to the position of a
tank of interest i.e. it is not necessary to get information on all tank positions. Further, if a tank wants to
get the position update only between two phase lines and at a given time or time interval CBMS the capa-
bility to support such an exchange.

2583

Diallo, Tolk, Graff and Barraco

Table 2: CBMS and the interoperability framework

Requirements CBMS
service

Explanation Goal

Support multiple re-
ferents

Transport me-
chanism,
subscription

Allows any referent to send receive or
communicate

Model agnostic

Support multiple
models

Syntactic valida-
tion,

Subscription

Allow multiple languages/dialects to
be supported

Language agnos-
tic

Support multiple va-
lid models

Transport me-
chanism

Allow multiple existing/legacy models
to be supported

Theory agnostic

Support multiple si-
mulations

Transport me-
chanism,
Storage

Allow multiple simulations to coexist
in series or parallel

Simulation
 agnostic

Support multiple si-
mulators

Subscription, Sto-
rage

Allow multiple implementations to be
interoperable

Implementation
agnostic

CBMS provides syntactic validity but does not take a position on the semantics of a language or the

validity of a model. In other words, CBMS abides by the eight rules formulated in section 3 which gives it
the ability to be flexible i.e. any model can connect to the framework and speak any language at any point
in time. It is also adaptive because it supports proprietary languages, standard languages and future lan-
guages regardless of the domain and application area. The only requirement is that the language is struc-
tured. Let us examine in details how CBMS deals with the high level requirements we expressed in sec-
tion 3:

• Separate referent from model: The model in CBMS is represented by the language and the refe-
rent is the object that the language refers to. For instance the string “tank” can be used to refer to
a tank. In CBMS, the tank model is a service that can use CBMS to talk about tanks;

• Separate referent from valid model. In CBMS, the language is not assumed to be intrinsically va-
lid. In keeping with our example, the sentences about tanks are neither true nor false. This evalua-
tion is done with respect to a referent;

• Separate referent from simulation: CBMS does not assume that a simulation is valid with respect
to a referent. In keeping with our example, if a tank receives an order to move, CBMS does not
assume that the tank will in fact move as intended or in a way consistent with the referent. The
role of CBMS is to make sure that the right tank received the order;

• Separate referent from simulator: CBMS does not assume a particular implementation and is not
interface driven. Staying with the tank example, a tank’ s movement can be generated by a ran-
dom number generator, a probability density function, a differential equation etc;

• Separate model from valid model: CBMS does not assume a given language is a theory of a refe-
rent. This is in keeping with rules 1) and 2). Simply stated, some sentences about tanks might not
be true in some models of tanks or some sentences about tanks have no meaning (neither true nor
false) in some models of tanks;

2584

Diallo, Tolk, Graff and Barraco

• Separate model from simulation: CBMS does not assume a simulation is generating a valid mod-

el. In other words, CBMS does not take position as to whether the position of a tank at given
moment is correct or is generated using a correct algorithm.

• Separate model from simulator: CBMS does not assume that a model can be generated by only
one simulator or a simulator can generate only one model. For instance, we do not assume that
because there are sentences about a tank there is only one algorithm that can can generate such a
tank;

• Separate simulation from simulator: Finally, CBMS does not assume that every model can be si-
mulated and every simulator can simulate a model. In other words, there are simulators that can-
not generate certain tank behaviors even though there exist a set of sentences describing that be-
havior.

6 CONCLUSION

In this paper we presented the need to separate the notions of model, simulation, valid model and simula-
tor in order to better understand how to make models interoperable. We provided definitions for these
terms using Model Theory and showed that interoperability is theory generation. We use these definitions
to define an interoperability framework and provide a brief description of CBMS which is an implementa-
tion of this framework in support of C2 to simulation interoperability. CBMS supports current messaging
formats such as USMTF (at least the parts that have an XML equivalent) or the link family of messages
as well as HLA and other existing standards. Emerging standards such as C-BML and MSDL are natively
XML based and this trend will continue in the future . In the future, models have to be developed to be in-
teroperable. Frameworks such as the one proposed in this paper will be extremely useful when models are
expressed in standard and/or proprietary languages and are actually fully expressive instead of providing
limited interfaces.

REFERENCES

Blais C., K. Galvin and M. Hieb. 2005. “Coalition Battle Management Language (C-BML) study group

report.” In Proceedings of the IEEE Fall Simulation Interoperability Workshop. IEEE CS Press.
Fielding, R., J. Gettys, J. Mogul, H. Nielsen, L. Masinter, P. Leach, and R. Berners-Lee. 1999. RFC

2616: Hypertext Transfer Protocol -- HTTP/1.1. http://tools.ietf.org/html/rfc2616.
Henninger, A., D. Cutts, M. Loper, R. Lutz, R. Richbourg, R. Saunders and S. Swensin. 2008. “Live Vir-

tual Constructive Architecture Roadmap (LVCAF) Final Report.” DoD Office of Security Review
(Case No. 09-S-2412)/ M&S CO Project No. 06OC-TR-001.

IEEE. 1990. “A Compilation of IEEE Standard Computer Glossaries”. New York: IEEE Press.
IEEE. 1998. “Standard for Distributed Interactive Simulation”. IEEE Std 1278-1998.
IEEE. 2000. “Standard for modeling and simulation (M&S) high level architecture (HLA)–framework

and rules.” IEEE Std 1516-2000.
SISO. 2008. “Simulation Interoperability Standards Organization (SISO) Standard for: Military Scenario

Definition Language” SISO-STD-007-2008.
Tolk A. and S. Diallo. 2005. “Model-based data engineering for web services.” IEEE Internet Computing.

9(4): 65–70
Tolk, A. and J. Muguira. 2003. “The Levels of Conceptual Interoperability Model (LCIM).” In Proceed-

ings of IEEE Fall Simulation Interoperability Workshop. IEEE CS Press
Turnitsa, C. 2005)\. “Extending the Levels of Conceptual Interoperability Model.” In Proceedings of

IEEE Summer Computer Simulation Conference. IEEE CS Press
Weiss, W. and C. D'Mello. 1997. Fundamentals of Model Theory. University of Toronto, Toronto, ON.

2585

Diallo, Tolk, Graff and Barraco

AUTHOR BIOGRAPHIES

SAIKOU Y. DIALLO is Research Assistant Professor at the Virginia Modeling, Analysis and Simula-
tion Center at Old Dominion University. He received his M.S and Ph.D. in Modeling and Simulation
from Old Dominion University. His email address is <sdiallo@odu.edu>.

ANDREAS TOLK is Professor of Engineering Management and Systems Engineering at Old Dominion
University. He is also affiliated with the Virginia Modeling Analysis and Simulation Center. He holds a
M.S. and Ph.D. in Computer Science from the University of the Federal Armed Forces in Munich, Ger-
many. His email address is <atolk@odu.edu>.

JASON GRAFF is an engineer with General Dynamics. He has worked as a technology consultant for
the past two decades in the defense, education, electronics, gaming, government, insurance, online retail
and gas/oil industries. Jason holds a B.S. in Management Information Systems from the University of
Wisconsin. His e-mail address is <jason.graff@gdit.com>.

ANTHONY BARRACO is a Software Engineer for General Dynamics currently responsible for the de-
sign, code and documentation of projects which include the Coalition Battle Management System
(CBMS) and the Network Effects Emulation System (NE2S). He has seven years professional experience,
specializing in object oriented programming. He received his B.S. in Computer Science from the Univer-
sity of Central Florida. His e-mail address is <anthony.barraco@gdit.com>.

2586

