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ABSTRACT 
 
Injection Molding is one of the most important processes for mass-producing plastic products. To help 
improve and facilitate the molding of plastic parts, advanced computer simulation tools have been devel-
oped. While modeling is complicated by itself, the difficulty of optimizing the injection molding process 
is that its performance measures usually show conflicting behaviors. Therefore, the best solution for one 
performance measure is usually not the best for other performance measures. This paper introduces a 
simulation optimization method that considers multiple performance measures and is able to find a set of 
efficient solutions without having to evaluate a large number of simulations. The main components of the 
method are metamodeling and design of experiments. The method is illustrated and detailed here using a 
simple test example. Furthermore, it is applied to a real injection molding case. The performance of the 
method using different design of experiments is also discussed.  

1 INTRODUCTION  

Polymers have been increasingly replacing metallic components in many applications such as the manu-
facture of automobiles, aircrafts, toys, appliances, office equipment, among others. This is because they 
are very versatile materials. Nowadays, many consumer products such as computer and automobile com-
ponents rely on the technology and production of polymer companies. Thus, it is important to design reli-
able processes to ensure low cost and high quality products.  
 In Injection Molding (IM), for instance, processing conditions such as melt temperature, mold tem-
perature, pack/hold pressure and duration, and cooling time have to be properly set to ensure the quality 
of the molded components. Often, these conditions are set by process engineers based on prior experi-
ence, resin supplier’s recommendations, and/or reference handbooks. These conditions are usually further 
adjusted by trial and error on the shop floor. This approach is highly dependent on the experience of 
molding operators and can be costly and time consuming, especially with new resins and/or new applica-
tions (Zhou and Turng 2007). However, with recent advances in numerical modeling and computer simu-
lation techniques, a large effort has been made in developing computer simulation tools to help improve 
and facilitate the modeling of plastic parts. 
 The use of simulation for selecting injection molding processing conditions has been the subject of 
much research in the past (Smith, Tortorelli, and Tucker 1998; Alam and Kamal 2005). Specialists usual-
ly generate a limited number of solutions from which one is finally selected. Nevertheless, this does not 
guarantee having found the optimal solution. Therefore, there is a lot of potential to be exploited in the 
adequate and efficient selection of optimization techniques for the design of manufacturing processes 
through computer simulations. Such potential explains the relatively recent and rapidly increasing interest 
in Simulation Optimization (SO) or Optimization via Simulation (OvS) as a field on its own. The objec-
tive of a SO method is to provide a structure to determine the values of the controllable variables that op-
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timize an objective function defined as a combination of the simulation model’s outputs (performance 
measures) (Swisher et al. 2000). An optimization routine uses the calculated values of the objective func-
tion along with previous evaluations to select a new set of input values; this is continued until a pre-
selected convergence criterion is satisfied (April et al. 2004).  
 Contributions in the area of OvS have primarily focused on discrete-event simulations and not on 
continuous or physics-based simulations like the ones used to model polymer processes. One reason is 
that the computational time required to run physics-based simulation models is usually very long. Conse-
quently, having an iterative algorithm that requires many simulation runs to find the processing conditions 
to optimize different performance measures simultaneously is not computationally practical. As a result, 
metamodeling-based techniques (Simpson et al. 2001) have played an important role on the analysis of 
physics-based simulation models. Metamodels are mathematical representations of real phenomena based 
on a limited number of measurements. These measurements can take the form of the outputs of a simula-
tion model, overcoming the need to run the simulation many times. The evaluation time of a metamodel is 
considered to be much shorter than that of the simulation software. In such cases, new solutions can be 
estimated rather inexpensively. 
 Common SO methodologies are mainly characterized by the use of one objective function represent-
ing a performance measure (PM), as the one our group presented earlier at the Winter Simulation Confer-
ence (Villarreal et al. 2008). However, in injection molding, we are typically interested in optimizing a set 
of performance measures as opposed to a single one. And, as previously mentioned, the controllable vari-
ables in general have conflicting effects on the performance measures. Therefore the best solution for one 
performance measure is usually not the best for some other performance measure. Thus it is not the best 
approach to obtain a single solution but rather a set of solutions corresponding to the best compromises 
(efficient solutions). The efficient solutions are the solutions for which none of the performance measures 
can be improved without deteriorating another. This last task falls into the emerging area of Optimization 
via Simulation with Multiple Performance Measures. 
 Recent contributions to the area of multicriteria optimization via simulation that used metamodeling 
are those of Dellino and Kleijnen (2009) and Zakerifar, Biles, and Evens (2009). Both works used Re-
sponse Surface Methodology and Kriging metamodels to represent multiple PMs in inventory problems. 
Ryu, Kim, and Wan (2009) used quadratic metamodels to characterize the PMs of a variety of multicrite-
ria simulation optimization problems, that is, problems with different forms of efficient frontier. 
 This manuscript presents a multicriteria optimization via simulation method which integrates design 
of experiments and metamodeling techniques to reduce the number of simulation runs needed to solve the 
multicriteria problem. The method is first introduced in section 2 and illustrated with a simple test case in 
section 3. Finally, in section 4, it is applied to a real injection molding case.   

2 PROPOSED METHOD 

In a previous work (Villarreal et al. 2008) our group introduced a single objective optimization via simu-
lation method whose objective was to find the best process conditions using a small number of simulation 
runs. The algorithm was tested using different global optimization test functions with satisfactory results. 
It was also tested using several small discrete event simulations as well as continuous simulation models. 
The method was applied to the simulation of an actual painting line operation, as well as several injection 
molding parts, such as an automobile bumper and a disposable camera. While the optimization algorithm 
was designed to solve single criteria optimization problems it was used to solve some multicriteria prob-
lems by combining different performance measures into a single objective function. Here, the method is 
extended to solve multicriteria optimization via simulation problems without the need to define a single 
objective function. The current method is similar to the previous approach in that it combines design of 
experiments and metamodeling techniques to reduce the number of simulation run required to obtain the 
best processing condition to minimize (maximize) a set of performance measures.  
 The Multicriteria Optimization via Simulation methodology proposed here is schematically shown in 
Figure 1. The method starts with an experimental design (DOE) from which a simulation run is performed 
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at each design point. Then, the set of best compromises between all performance measures is set as the in-
cumbent efficient frontier. At each iteration, a metamodel for each PM is constructed using all the availa-
ble information. Then, through these metamodels, feasible solutions are generated and a predicted effi-
cient frontier is found. The predicted efficient solutions are then simulated and compared against the 
incumbent efficient solutions for updating purposes. A series of stopping criteria are evaluated and, if 
none is met, the new points are added to the existing set of points and a new iteration begins. Otherwise, 
the method stops and the incumbent efficient frontier is reported.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Sketch of proposed Multicriteria Optimization via Simulation algorithm. 

 The decision to use design of experiments and metamodels to represent the outputs of the simulation 
model to reduce computational time follows from the large number of works related to simulation-based 
metamodels (Azadivar 1999; Swisher et al. 2000; Fu 2001; Ólafsson and Kim 2002; Fu, Glover, and 
April 2005), as well as previous work of our research group on the optimization of physical and chemical 
polymer processing phenomena (Cabrera-Ríos, Castro, and Mount-Campbell 2002; Cabrera-Ríos et al. 
2002; Castro et al. 2005, 2007; Villarreal et al. 2008).   
 There are several methods to approach multicriteria optimization problems such as simulated anneal-
ing and evolutionary algorithms; here Data Envelopment Analysis (DEA) (Charnes et al. 1993) is used. 
DEA has been previously used in our research group to solve multicriteria optimization problems in man-
ufacturing (Cabrera-Ríos, Castro, and Mount-Campbell 2002). The main motivations for using DEA to 
solve the multiple criteria optimization problems are: (1) DEA uses linear programming, which is the 
simplest optimization problem, (2) DEA can be carried out using easily available software, like MS Ex-
cel, and (3) once an efficient solution is identified by DEA, one can be sure that it is indeed an efficient 
solution.  
 The next section illustrates and details of the proposed multicriteria simulation optimization method-
ology using two global optimization test functions as performance measures.  

3 ILLUSTRATION OF PROPOSED METHOD  

In order to illustrate and detail the proposed methodology, two known global optimization test functions 
were used. The test functions are assumed to be the output of the simulation model. The test functions 
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used are the Rastrigin's function ( f1(x1,x2)= 20+x1
2+x2

2-10(cos2πx1+cos2πx2) ), and the Six-hump camel 
back function ( f2(x1,x2)= (4 - 2.1x1

2 + x1
4/3)x1

2 + x1x2 + (-4 + 4 x2
2) x2

2 ). The first function is to be mini-
mized and the second to be maximized. Two inputs (controllable variables) were chosen, x1 and x2, both 
with lower and upper limit of -1 and 1 respectively. The optimal solution(s) for each function are given in 
Table 1. From Table 1 one can see that the optimal solution for the Rastrigin's function (f1) does not cor-
respond to the optimal solution of the Six-hump camel back function (f2), implying a conflict between 
them. 
 Figure 2 shows the values of both functions for a set of 10,000 random values of x1 and x2 on the ex-
perimental region. An ideal (utopia) solution in this case will be on the North-West corner of the plot, but 
there is not a solution there. Then we need to identify the set of best compromises. The efficient solutions 
for this case are given in Table 2. 

 

        Table 1:Individual optimal solutions 

Function Optimal Solution(s) Optimal Value
f1 (0,0) 0.00 
f2 (-1,-1),(1,1) 3.23 

          Table 2: Real efficient solutions 

(x1,x2) f1(x) (min) f2(x) (max) 
(0,0) 0.00 0.00 
(-1,0) 1.00 2.23 
(1,0) 1.00 2.23 

(-1,-1) 2.00 3.23 
(1,1) 2.00 3.23 

Figure 2: Values of f1 and f2 for 10,000 random inputs 
 
The optimization problem for this illustrative example is mathematically defined as follows: 

 
Find            x = (x1, x2)   to 
Minimize         f1(x)  and            (1) 

       Maximize  f2(x) 
Subject to      -1 ≤ xi ≤  1  for i =1,2 

   
In order to solve problem (1), the described multicriteria optimization via simulation method was applied. 
Two different initial design of experiments were used: a Central Composite Design (CCD) and a Latin 
Hypercube Design (LHD). The metamodels used in both cases are saturated multi-linear regression mod-
els, that is, if n points were simulated, a regression model with n-1 parameters is estimated using the 
method of least squares. Terms are added to the model in a chronological order.  

3.1 Case 1: Optimization using a Central Composite Design  

Referring to Figure 1 the methodology is as follows:   
 
Initialization  

 

i. Initial DOE: The method begins with a Central Composite Design with 9 runs (a single center run). 
The values of the controllable variables (x1 and x2 in this case) as well as the values of both perfor-
mance measures are graphically shown in Figures 3 and 4 respectively.    

Efficient Solutions 
Utopia Solution 
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    Figure 3: Initial DOE                 Figure 4: Evaluation of initial DOE 

ii.  Select incumbent efficient frontier: First an iteration counter is initialized, k:=0. Considering the opti-
mization criteria detailed in formulation (1), the non-dominated solutions are found via DEA. These 
solutions are set as the current incumbent efficient frontier (Ρk-best), Ρ0-best={G, {F, H}}.  
 

Main Iteration 1 
 

1. Update iteration counter: k = k+1=1 
2. Obtain metamodels: Using the available points, build the k-th metamodel for each of the M PMs, 

݂
ሺ∙ሻ, (m=1,2,…,M), M=2 in this case. The proposed metamodels are multi-linear regression models 
of the highest possible order. Equations (2) and (3) show the resultant metamodels, the corresponding 
coefficients of determination (R2) are 18.8% and 95.6%. Notice that to avoid dimensionality effects 
the values of f1(x) and f2(x) were transformed to fall in the scale -1 to 1.  

 

ଵ݂
 ሺ࢞ሻଵ ൌ 35.56  ଵݔ0.00  ଶݔ0.00	 െ ଵଶݔ25.67 െ ଶଶݔ25.67 	 ଶݔଵݔ0.00	  ଵଷݔ0.00	 	  (2)	 ଶଷݔ0.00	

 

ଶ݂
 ሺ࢞ሻଵ ൌ െ0.39  ଵݔ0.00  ଶݔ0.00	  ଵଶݔ2.52  ଶଶݔ0.29	 	 ଶݔଵݔ1.00	 	 ଵଷݔ0.00	 	  ଶଷ    (3)ݔ0.00	

 

3. Optimization: Using the metamodel of each performance measure, a set of solutions are randomly 
generated. Then, DEA is applied to find the efficient frontier (set of efficient solutions) of the gener-
ated points, called here predicted efficient frontierሺ ܲି௦௧ሻ. Figure 5 shows the generated solutions 
and the predicted efficient solutions ሺ ܲଵି௦௧ሻ.  

4. Simulate the new points: Estimate, using the simulation software (in this case using the test func-

tions), the values of fm(.) for each point on the efficient frontier found on 3 ( ܲଵି௦௧ሻ. Figure 6 shows 
the evaluation of these solutions along with the solutions of the initial DOE.  

5. Update the incumbent efficient frontier: Using the current incumbent efficient solutions (Ρ(k-1)-best:=Ρ0-

best) and the new simulated solutions (step 4), update the incumbent efficient frontier (Ρk-best:=Ρ1-best), 
that is, find the efficient solutions among these. Figure 7 shows the new efficient frontier (Ρ1-best) and 
the previous (Ρ0-best) . 

     
 
 
 
 
 
 
 
 

 
Figure 5: Iteration 1, predicted solutions (diamonds) and efficient solutions (solid squares) 
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6. Evaluate stopping criteria: The following stopping criteria were considered: stop if (1) the incumbent 

efficient frontier does not change (no new efficient solutions are added) through a determined number 
of iterations; (2) if the coefficient of determination R2 ≥ 1-ε (ε is a small number, smaller than 1) for 
all the metamodels; (3) a maximum number of simulation evaluations has been reached. For illustra-
tion purposes we assume that none of the stopping conditions was met. 
 

Because none of the stopping criteria were met, the simulated solutions (squared points in Figure 6) are 
added to the set of available points to build a new metamodel for each PM, and the main iteration is re-
peated.  

 
Iteration k:=2 

 

 After constructing the new metamodels, a new set of random solutions is generated, and the values of 
the performance measures are estimated using these metamodels ( ଵ݂

 ሺ࢞ሻଶ and ଶ݂
 ሺ࢞ሻଶ). The new metamod-

els include an additional regression coefficient per added solution to the set of existing points. Via DEA 
the predicted efficient frontier ( ܲଶି௦௧) is obtained. The predicted efficient solutions are then simulated 
and compared with the last incumbent efficient solutions (Ρ1-best). Figure 8 shows the change of the in-
cumbent efficient frontier after 4 iterations. The algorithm was stopped because the R2 of both metamod-
els exited the set value (ε=0.05), the R2 of f1(x)4 equaled 99.1% and the R2 of f2(x)4 equaled 100%. The fi-
nal efficient frontier consists of 4 solutions which are shown in Table 3. 

       
    

Table 3: Final Efficient Solutions Case 1 
 

 
 
 
 
     
     

 

Figure 8: Change of incumbent efficient frontier 

3.2 Case 2: Optimization using a Latin Hypercube Design   

The optimization process was repeated starting with a space filling Latin Hypercube Design. The LHD 
consists of 9 points (same number of points that the CCD) which are shown in Figure 9. Figure 10 shows 
the values of the performance measures (f1 and f2) at each design point. 
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 Figure 9: Initial DOE (LHD)    Figure 10: Evaluation of initial DOE 

 The optimization proceeded as in the previous case (Section 3.1). Figure 11 shows the incumbent ef-
ficient frontier at each iteration of the method. The method stopped at iteration 3 because the R2 of both 
metamodels was 100%. The final efficient solutions are shown in Table 4. 

 
 

 
        Table 4: Final Efficient Solutions Case 2 

 
 
 
 
 

 
 
 

   Figure 11: Incumbent Efficient Frontiers 
 

A comparison of the real efficient solutions and the efficient solutions found by the optimization algo-
rithm on both cases is given in Figure 12, the actual values are given in Tables 2 to 4. As we can see when 
we run the optimization algorithm using a CCD as initial DOE, the method was able to find almost all the 
real efficient solutions (3 are equal and one is very close). On the other hand, when using a LHD the 
method identified closely only one solution. Therefore, the initial DOE plays an important role on the 
course of the optimization. Regarding the total number of simulations required by the method, both cases 
used the same number of simulations, 18.   
  

 

Figure 12: Comparison of efficient solutions found by the optimization method vs. real efficient solutions. 
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 While space filling designs, such as the LHD used here, are commonly used on the analysis of deter-
ministic computer experiments (Simpson et al. 2001), we believe CCDs do also a good job in combina-
tion with regression models for the optimization of deterministic simulation models. In the future we will 
analyze the performance of both DOEs in combination with Gaussian models. The goal is to have a pre-
cise idea of which combination of experimental design and metamodel works best to identify the efficient 
solutions of multicriteria injection molding problems with the minimum number of simulation runs. 

Next section presents the optimization of a real injection molding part. 

4 INJECTION MOLDING APPLICATION 

To further illustrate the application of the proposed methodology, we analyze the molding of a disposable 
camera. Two scenarios are discussed, the first one involves two performance measures and the second 
one, three. In both cases we ran the optimization method using two initial DOEs, a CCD and a LHD. Two 
controllable variables are used in all cases. 
 Here, it is desirable that the molded part preserves the designed symmetry and dimensions. The part 
to be analyzed is the front plate of the camera shown in Figure 13. 
 We assume it is desired to keep the shape of the biggest rectangular window (upper right corner) after 
shrinkage. The performance measure of interest is the difference between the diagonal’s shrinkage (|Δa3 – 
Δb3|). For the purposes of the example, we will also assume that it is desired to minimize the  shrinkages 
of the diagonals a3 and b3 (Δa3, Δb3), see Figure 14 for a better representation. As mentioned above, two 
cases are analyzed, the first one focuses only on the minimization of Δa3 and |Δa3 – Δb3|; and the second 
case on the minimization of the three performance measures (|Δa3|  , |Δb3| and |Δa3 – Δb3|). 

 

        

         Figure 13: Disposable camera under study                Figure 14: Mesh of disposable camera 

 The camera studied here is simulated to be injection molded using Poly-Styrene made by Dow Chem-
ical USA (trade name Styron 685D). Packing pressure and melt temperature were held constant at 50 
MPa and 200oC respectively. The fill time was kept constant at 1s; and the cooling time was set automati-
cally. An automatic cooling time is the time required to achieve a target average mold temperature (set 
here at 108 ºC) and the specified percentage of the part that needs to be frozen (set here at 100%). Mold 
temperature (Tmold) and packing time (tpack) were considered as controllable variables and are varied in the 
ranges of  [20,70]oC and [1,10]s respectively. MoldFlowTM is the simulation software used to analyze this 
process.  

The optimization problems for this application are mathematically defined as follows: 
 

Find            Tmold, tpack   to      Find            Tmold, tpack   to 
Minimize        f1(x) := |Δa3|  and      Minimize        f1(x) := |Δa3|  ,  f2(x) := |Δb3|  and 
                  f2(x) := |Δa3 - Δb3|           (4)                       f3(x) := |Δa3 - Δb3|                        (5)         
Subject to      20oC ≤ Tmold ≤ 70oC     Subject to      20oC ≤ Tmold ≤ 70oC 
                       1s ≤ tpack ≤ 10s                             1s ≤ tpack ≤ 10s 
  

In optimization problems (4) and (5), the values of shrinkage (Δa3) and (Δb3) are estimated via Mold-
FlowTM. The constraints represent the experimental region of the controllable variables: mold temperature 
and packing time.  

a3         b3
a2 b2

a1    b1 
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4.1 Case 1: Optimization Problem with two performance measures (4)      

To solve problem (4), the proposed multicriteria optimization via simulation method was applied. Two 
initial DOEs were used, a Central Composite Design shown in Figure 15 and a Latin Hypercube Design 
shown in Figure 16. The evaluation of both performance measures ( f1(x):=|Δa3|  and  f2(x):=|Δa3 - Δb3|) at 
each design point are graphically shown in Figures 17 and 18.    
 

    
      Figure 15: Initial CCD (Controllable Variables)     Figure 16: Initial LHD (Controllable Variables) 

 

    
                Figure 17: PM values of CCD runs       Figure 18: PM values of LHD runs 

 
Figures 19 and 20 show the incumbent efficient frontier at each iteration of the optimization algorithm 
when starting with the CCD and the LHD respectively. In both cases saturated multi-linear regression 
models, as the ones used on Section 3, were used as metamodels. Data Envelopment Analysis was used to 
find the efficient solutions. A comparison of the final efficient frontiers is presented in Figure 21. In Fig-
ure 21 we can see that the final solution of the algorithm is improved when the algorithm is started with 
the CCD than with the LHD. Tables 5 shows the values of the final efficient solutions.   

 

    
Figure 19: Incumbent Efficient Frontiers using CCD  Figure 20: Incumbent Efficient Frontiers using LHD 
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                                Table 5: Final Efficient Solutions 

Initial 
DOE 

tpack 
(s) 

Tmold 
(oC) 

|∆a3| 
(mm) 

|∆a3-∆b3| 
(mm) 

CCD 5 45 0.00 0.17 
CCD 6 51 0.02 0.11 
CCD 6 46 0.03 0.08 
CCD 6 40 0.04 0.05 
CCD 6 41 0.04 0.05 
CCD 6 39 0.05 0.04 
LHD 4 20 0.01 0.18 
LHD 6 70 0.01 0.18 
LHD 6 51 0.02 0.11 
LHD 8 70 0.05 0.05 

Figure 21: Comparison of final efficient frontiers 

4.2 Case 2: Optimization Problem with Three performance measures (5)      

In order to optimize problem (5) we ran the optimization algorithm with the same DOEs as in problem (4) 
(see Figures 15 and 16 as reference). Figure 22 shows the evaluation of the PMs at each design point. 
Figures 23a and 23b show the incumbent efficient frontier at each iteration of the algorithm, when a CCD 
and a LHD were used. Figure 24 shows the final efficient solutions of both cases. Table 6 gives the values 
of the final efficient solutions. Once again the final efficient solutions when using a CCD outperformed 
the ones obtained when using an LHD. Regarding the number of simulations, the algorithm required 33 
runs when started with the CCD and  37 runs with the LHD. In this case each simulation run takes 70 se-
conds + setup time. Simulations of bigger and more complex parts can take hours or days to evaluate a 
single run.   

 
Figure 22: Evaluation of initial design of experiments, CCD (circles) and LHD (squares). 

   
(a) Initial DOE: CCD          (b) Initial DOE: LHD 

Figure 23: Change of Incumbent Efficient Frontier 
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Figure 24: Final efficient solutions 

 
Table 6: Efficient solutions 

 

 From the set of efficient solutions the decision maker can select the best alternative  depending on the 
particular application. 

5 CONCLUSIONS AND FUTURE WORK  

This paper introduced an optimization via simulation methodology for multicriteria problems. The meth-
odology combines design of experiments and metamodeling techniques to reduce the number of simula-
tion evaluations. This makes it attractive for cases where simulations take long time to run, like the ones 
used to analyze the injection molding process.  
 An example using global optimization test functions was used to illustrate the methodology. To ob-
serve how the final efficient frontier is affected by the selection of the initial design of experiments, two 
different initial DOEs were evaluated, a CCD and a LHD. An application to  injection molding is also 
presented. Two variations of this case were presented; one involving 2 PMs and a one with 3 PM. Two 
different initial DOEs were also applied in these cases. In all the cases DEA was used to find the efficient 
solutions. 
 Our group is  in the process of comparing the results with actual experiments as well as investigating 
the use of different metamodeling techniques. In addition, we are evaluating how to map the efficient 
frontier into process windows, which can be used by engineers to better interpret the efficient solutions.   

REFERENCES  

Alam, K., and M. R. Kamal. 2005. “A Robust Optimization of Injection Molding Runner Balancing.” 
Computer Applications in Chemical Engineering 29(9):1934-1944. 

Initial 
Design 

Tmold 
(oC) 

tpack 
(s) 

|∆a3| 
(mm) 

|∆b3| 
(mm) 

|∆a3-∆b3| 
(mm) 

Initial 
Design 

Tmold 
(oC) 

tpack 
(s) 

|∆a3| 
(mm) 

|∆b3| 
(mm) 

|∆a3-∆b3| 
(mm) 

CCD 45.0 4.6 0.00 0.19 0.19 LHD 70.0 8.2 0.05 0.09 0.04 

CCD 25.0 6.4 0.01 0.03 0.04 LHD 70.0 9.1 0.08 0.05 0.03 

CCD 40.0 6.4 0.06 0.07 0.01 LHD 70.0 4.6 0.08 0.08 0.00 

CCD 50.0 7.3 0.07 0.06 0.01 LHD 38.8 6.6 0.12 0.02 0.14 

CCD 62.8 8.7 0.11 0.01 0.10 LHD 60.0 10.0 0.13 0.02 0.15 

LHD 30.0 4.6 0.00 0.16 0.16 LHD 65.0 10.0 0.13 0.02 0.15 

LHD  35.0 3.7 0.00 0.21 0.21 LHD 70.0 10.0 0.13 0.02 0.15 

LHD  51.3 5.5 0.02 0.13 0.11 LHD 57.5 8.9 0.13 0.02 0.15 

Ideal solution

2405



Villarreal-Marroquín, Cabrera-Ríos, and Castro 
 

April, J., M. Better, F. Glover, and J. Kelly. 2004. “New Advances and Applications for Marrying Simu-
lation and Optimization.” In Proceedings of the 2004 Winter Simulation Conference, edited by R .G. 
Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, 80-86. Piscataway, New Jersey: Institute of 
Electrical and Electronics Engineers, Inc. 

Azadivar F. 1999. “Simulation Optimization Methodologies.” In Proceedings of the 1999 Winter Simula-
tion Conference, edited by P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, 93-
100. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Cabrera-Ríos, M., J. M. Castro, and C. A. Mount-Campbell. 2002. “Multiple Quality Criteria Optimiza-
tion in In-Mold Coating (IMC) with a Data Envelopment Analysis Approach.” Journal of Polymer 
Engineering 22(5):305-340.  

Cabrera-Ríos, M., K. S. Zuyev, X. Chen, J. M. Castro, and E. J. Straus. 2002. “Optimizing Injection Gate 
Location and Cycle Time for the In-Mold Coating (IMC) Process.” Polymer Composites 23(5):723-
738. 

Castro, C. E., M. Cabrera-Ríos, B. Lilly and J. M. Castro. 2005. “Simultaneous Optimization of Mold De-
sign and Processing Conditions in Injection Molding.” Journal of Polymer Engineering 25(6):459-
486.  

Castro, C. E., M. Cabrera-Ríos, B. Lilly, and J.M. Castro. 2007. “Optimization and Analysis of Variabil-
ity in Injection Molding.” Journal of Polymer Engineering and Science 47(4):400-409.  

Charnes, A., W. W. Cooper, A. Y. Lewin, and L. M. Seiford. 1993. Data Envelopment Analysis: Theory, 
Methodology, and Applications. Boston: Kluwer Academic Publishers. 

Dellino, G., and J. P. C. Kleijnen. 2009. “Robust Simulation-Optimization Using Metamodels.” In Pro-
ceedings of the 2009 Winter Simulation, Conference, edited by M. D. Rossetti, R. R. Hill, B. Johans-
son, A. Dunkin and R. G. Ingalls, 540-550. Piscataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc. 

Fu, M. C. 2001. “Simulation Optimization.” In Proceedings of the 2001 Winter Simulation Conference, 
edited by B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, 53-61. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers, Inc. 

Fu, M. C., F. Glover, and J. April. 2005. “Simulation Optimization: A Review, New Developments, and 
Application.” In Proceedings of the 2005 Winter Simulation Conference, edited by  M. E. Kuhl, N. 
M. Steiger, F. B. Armstrong, and J. A. Joines, 83-95. Piscataway, New Jersey: Institute of Electrical 
and Electronics Engineers, Inc. 

Ólafsson, S., and J. Kim. 2002. “Simulation Optimization.” In Proceedings of the 2002 Winter Simulation 
Conference, edited by E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, 79-84. Piscataway, 
New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Ryu, J.-H., S. Kim, and H. Wan. 2009. “Pareto Front Approximation with Adaptive Weighted Sum 
Method in Multiobjective Simulation Optimization.” In Proceedings of the 2009 Winter Simulation 
Conference, edited by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, 623-
633. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc. 

Simpson, T. W., J. D. Poplinski, P. N. Koch, and J. K. Allen. 2001. “Metamodels for Computer-based 
Engineering Design: Survey and recommendations.”  Engineering with Computers 17(12):129-150.  

Smith, D. E., D. A. Tortorelli, and C. L. Tucker. 1998. “Analysis and Sensitivity Analysis for Polymer In-
jection and Compression Molding.” Computer Methods in Applied Mechanics and Engineering 
167(3/4):325-344. 

Swisher, J. R., P. D. Hyden, S. H. Jacobson, and L. E. Schruben. 2000. “A survey of simulation optimiza-
tion techniques and procedures.” In Proceedings of the 2000 Winter Simulation Conference, edited by 
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 119-128. Piscataway, New Jersey: Institute 
of Electrical and Electronics Engineers, Inc.  

Villarreal, M. G., M. Mulyana, J. M. Castro, and M. Cabrera-Ríos. 2008. “Simulation Optimization Ap-
plied to Injection Molding.” In Proceedings of the 2008 Winter Simulation Conference, edited by S. J. 

2406



Villarreal-Marroquín, Cabrera-Ríos, and Castro 
 
Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, 1995-2003. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers, Inc. 

Zakerifar, M., W. E. Biles, and G. V. Evens. 2009. “Kriging Metamodeling in Multi-Objective Simula-
tion Optimization.” In Proceedings of the 2009 Winter Simulation Conference, edited by M. D. Ros-
setti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, 2115-2122. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers, Inc. 

Zhou, J., and L. S. Turng. 2007. “Process Optimization of Injection Molding Using an Adaptive Surro-
gate Model with Gaussian Process Approach.” Polymer Engineering and Science 47(5):684-694.  

AUTHOR BIOGRAPHIES  

MARÍA G. VILLARREAL-MARROQUÍN is a PhD candidate in Industrial & Systems Engineering at 
The Ohio State University. She obtained her B.S. in Mathematics (2005) and M.S. in Systems Engineer-
ing (2007) from Universidad Autónoma de Nuevo León, México. Her research interests include Simula-
tion Optimization, and applied optimization in manufacturing. Her e-mail address is villarreal-
marroquin.1@osu.edu. 
 
JOSE M CASTRO is currently professor in the Department of Integrated Systems Engineering and Di-
rector of the Center for Advanced Polymer and Composite Engineering at The Ohio State University. Af-
ter obtaining his PhD in Chemical Engineering from the University of Minnesota in 1980, he was a facul-
ty at the University of the South in Bahia Blanca Argentina for 4 years. He then worked at the Gen Corp 
corporate technology center for 12 years as chief technologist. After GenCorp he worked for 3 years as 
Manager of the New Process technology group in Allied Signal Electronic Materials. He joined Ohio 
State in September 1998. He has published more than 70 peer reviewed journal papers and given numer-
ous invited talks. His area of research is polymer processing and composites manufacturing modeling and 
optimization. His e-mail address is castro.38@osu.edu. 
 
MAURICIO CABRERA-RIOS is an Assistant Professor in the Industrial Engineering Department at 
University of Puerto Rico-Mayagüez. He obtained his B.S. degree in Industrial & Systems Engineering 
from Monterrey Institute of Technology (ITESM), in Monterrey, México in 1996. He obtained an M.S. 
and Ph.D. degrees in the same field from The Ohio State University in 1999 and 2002 respectively. He 
was an Associate Professor at the Graduate Program in Systems Engineering at UANL, México from 
2003 to 2008. Prof. Cabrera-Ríos is a member of INFORMS, IIE and the American Association of Cancer 
Researchers. His research work currently relates to biological data analysis and to applied optimization in 
manufacturing. His e-mail address is mauricio.cabrera1@upr.edu. 

2407


