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ABSTRACT

The application of discrete event simulation in the process industries is commonly used for the analysis of
reliability and maintenance improvements. However there have been increasing applications that go
beyond this traditional area of application to include evaluations for chemical plant expansions, capital
investment options, cycle time reduction and safety, in presence of failure prone components. This paper
will present three case studies to demonstrate the use of discrete event simulation for such applications.
The first case study demonstrates the use of discrete event simulation to identify critical failure modes for
a plant characterized by discrete and continuous product flow. The second study involves the evaluation
of capital expansion decisions in presence of different failures and identification of critical components
affecting plant throughput. The third case study shows the use of simulation of verify the designed pro-
duction capacity of a subsystem in presence of different failures and operational constraints. The goal of
this paper is to show the potential of discrete event simulation for such problems, and to present examples
of best practices for the scoping and execution of simulation projects in the process industries.

1 INTRODUCTION

The reliable operation of a chemical plant plays a critical role in its ability to meet the target production.
For plants running at a “sold-out” condition, downtimes resulting from unplanned shutdowns can cause
lost sales and unmet demand, translating directly to a decreased profit. These downtimes can affect the
plant wide operations (for example, failure of steam supply causing entire plant to stop functioning), op-
erations of a subsystem (for example, failure of material handling system affecting the raw material load-
ing in a subsystem) or operations of a single unit (for example, a pump failure affecting a reactor opera-
tion). In order to ensure reliable operations, improvement efforts are usually carried out in order to
identify critical components that can significantly affect plant production and devise change policies for
the critical components. Such change policies include: effective inventory management of spares, preven-
tive maintenance policies. Besides these reliability related improvement efforts, the reliability of different
components must be taken into account during other application areas such as: evaluating the impact of
capital investment or new system design decision and cycle time reduction projects as ignoring such in-
formation can lead to over-estimation of the production capacity because “new” and “improved” does not
always translate into improved reliability.

The identification of critical reliability components and evaluating the performance of manufacturing
system in presence of failure prone components is a non trivial task because:

e The complex system interactions and product flows in chemical plants make it difficult to
access the direct impact of reliability of different components on plant production. The opera-
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tional complexity is further compounded by discrete and continuous product flows at differ-
ent production steps, batching/un-batching of product streams at different processing stages,
and variability associated with different processing steps (excluding reliability).

o Different failures can have different impacts on plant production. The failures can either re-
duce the production capability of the unit or allow running the unit at reduced production ca-
pacity. In addition, the startup and shutdown protocols before and after repair are different.

e Lack of historical data for certain types of failures makes it difficult to model in the simula-
tion (for example, rare events, reliability data for new components).

Selecting the right level of detail required for modeling (for example, selecting different failure
types), type of failures (for example, component failures only, safety trips, operating discipline issues) is a
learned art but in general it is related to the data that is required to answer specific questions and make
decisions. Reliability analysis for large scale manufacturing systems take considerable amount of time,
and such efforts are typically carried out as a part of Six Sigma improvement initiatives (Owen et al.
2006, 2006a). The Winter Simulation Proceedings are a rich source of information addressing how to
have a successful simulation project, usually found in the introductory tutorial papers, for example, “In-
troduction to Simulation” by White and Ingalls (2009). Of the many quality success papers available in
the past proceedings, the paper by Sadowski and Grabau (2003) has the clearest statement about getting
the right data (information) from the model and the right time to make the right decision. Identifying the
data required to make a decision, the quality of the data required and the consequences of a correct or in-
correct decision is a more difficult task for stakeholders than specifying a problem. Asking about the data
required to make the decision will often lead the stakeholders to greater clarity about what is the success-
ful outcome of the project.

Discrete event simulation based analysis is widely considered a best practice for reliability and per-
formance analysis of manufacturing system due to its ability to model such complex system dynamics
with relative ease. The simulation models mimic the operational dynamics of a system, and can be leve-
raged to other improvement projects with little or no customization.

In this paper, we discuss three case studies on use of discrete event simulation for reliability and per-
formance analysis of manufacturing systems. The first case study discusses the use of simulation for re-
liability analysis of a chemical plant and provides a methodology for identifying critical components. This
case study is based on our earlier work (Sharda and Bury 2008). The second case study demonstrates the
use of simulation to evaluate the impact of capital improvement opportunities and to identify critical
components contributing towards plant downtimes. The third case study shows the use of simulation to
verify the designed production capacity of a subsystem in presence of different failures and operational
constraints.

2 CASE STUDY 1: IDENTIFICATION OF CRITICAL RELIABILITY COMPONENTS
CONTRIBUTING TOWARD THE PRODUCTION LOSSES IN A CHEMICAL PLANT

The objective of this case study was to identify critical components whose failures contribute towards the
production losses in a chemical plant at The Dow Chemical Company. The chemical plant considered
here produces more than 15 different types of products, consists of ~40 different subsystems (such as
reactors, wash tanks, refining system) and there are more than 250 different types of component failures,
which occur in different subsystems. Based on historical data, 36% of the production losses were due to
equipment failures. The production operations at this plant were characterized by production of multiple
products, batching/ un-batching of product stream, discrete and continuous material flow and uncertain-
ties associated with production processes. The work discussed here is based on our earlier work (Sharda
and Bury, 2008). However, in this paper, we provide a modified approach for reliability analysis and pro-
vide an overview of key challenges encountered during this project

The operations of the chemical plant being considered here can be subdivided into following main
steps. Note the combination of batch and continuous processing steps.
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Figure 1: DES model for the chemical plant developed using ExtendSim (Sharda and Bury, 2008)

Figure 1 shows a snapshot of the DES model developed for the chemical plant using Imagine That,
Inc.’s ExtendSim simulation software . The ExtendSim simulation tool allows for hierarchical modeling
that promotes a clean and organized model structure that enhances understanding by the non-model de-
velopers. The data required for building the simulation model was readily available from on line systems.
SAS’s statistical software JMP and Averill M. Law & Associates’ ExpertFit were used to generate distri-
butions for different processing steps. The reliability data (distributions for time between failure (TBF)
and Time to repair (TTR) of different failure components) was provided by the maintenance team.

Integrated databases within ExtendSim were used to store the information required for running the
simulation model, information required for executing simulation logic and to store different statistics gen-
erated by the simulation model. These databases can be easily imported/exported from Microsoft Excel.
We have found these databases greatly simplified the verification of the actual simulation logic and com-
munication with the end users.

The user interface for the simulation model provided the following options for reliability analysis:

o Evaluating the impact of all the failure modes on plant throughput
o Evaluating the impact of failure of a certain subsystem (s) on plant throughput
o Evaluating the impact of failure of a certain component (s) on plant throughput

We created custom ExtendSim blocks to simulate the failure and repair of different components. In
addition, we also created custom blocks to simulate the effect of change of inventory control policies of
failure-prone components such as re-order point, stock level and time to reorder (see Sharda and Bury,
2008 for more details). These blocks simulated the process of tracking the spare part inventory for differ-
ent component, ordering new spare parts at reorder point, and updating the spare inventory when the new
spare parts arrive. If the component’s spares were not available, the time to repair was adjusted to account
for time to acquire additional spares.

The following approach was used to identify critical failure components:
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e Evaluate the baseline production capability of the production plant considering all the failure
modes. The baseline production capability represented the existing production capability of
the plant.

e For each failure mode, evaluate the production capability of the production plant without
considering the failure mode. This analysis provided the impact of removal of a given failure
mode on the production capability of the plant.

o Identify critical failure modes using statistical analysis. We used t-test to compare the produc-
tion level obtained by excluding certain failure with baseline production capability. A Pareto
analysis for statistically different failure modes can be generated to provide guidelines for
prioritizing improvement efforts.

The model predictions were validated against the data for daily production levels and average uptime
rates for different products.

A significant barrier to successful execution of this study was scenario overload, or now that a simu-
lation exists there are too many parameters to investigate. To efficiently execute the key task of identify-
ing the critical components, we designed a systematic approach that first establishes the baseline produc-
tion capability of the plant. The impact of each failure mode was then evaluated by running the simulation
model by excluding that failure mode. Using Pareto analysis, the critical failures that have significant im-
pact on production can then be identified. This reduces the number of possible simulation scenarios and
generates data that are easier to understand and evaluate. The simulation modeling effort for this project
also demonstrated the capability to conduct reliability analysis for systems with discrete and continuous
product flow. The customized blocks developed for reliability analysis can also be used for other simula-
tion projects. One of such example is provided next.

3 CASE STUDY 2: EVALUATING PRODUCTION IMPROVEMENT OPPORTUNITIES
AND RELIABILITY ANALYSIS OF A CHEMICAL PLANT

In the previous case study, we provided an example of use of discrete event simulation to identify critical
failure affecting plant throughput. In this study, we present a case study on the use of discrete event simu-
lation to evaluate the proposed capacity expansion and reliability improvement opportunities at a chemi-
cal plant of The Dow Chemical Company. Similar to the previous case study, this case study also in-
volved reliability analysis to identify critical failure modes affecting plant throughput. In addition, the
impact of failure of different components was considered during the evaluation of different improvement
opportunities. We leveraged the customized blocks and the analysis approach developed in previous case
study to simulate the failure and repair of different components. A detailed discussion of this case study is
in press (Sharda and Bury 2011).

Figure 2 outlines the high level overview of the production process. The entire production process can
be divided into 5 major operations: raw material loading (continuous operation), material transfer (conti-
nuous operation), Operation 1 (batch operation), Operation 2 (batch operation) and final packaging (con-
tinuous operation). Operation 1 and Operation 2 involve completion of several sub steps. The plant pro-
duces 10 different types of products that are packaged in 5 different sizes. The processing time and
transfer rates varied according to product type, and there was significant variation in processing
times/rates within each product. When transitioning from one product type to next, a flush batch is sent to
clean the entire production line. The raw product is first manually loaded into a Dump Station. From the
Dump Station, a product batch is loaded into the Storage 1, where it is kept until the downstream equip-
ment is available for the next operation. When the downstream equipment is available for the next opera-
tion, the batch is transferred for Operation 1. After Operation 1, the batch is transferred to immediate Sto-
rage 2 for storage. Storage 2 can hold multiple batches of product. The Operation 2 listed in Figure 2 is a
batch operation and the equipment used to carry out the operation is used for both storage and processing.
Different batches of the same product are stored in the Operation 2 equipment until (a) the equipment is
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full or (b) the production order is complete. If Operation 2 is being carried out, the intermediate batches
are stored in Storage 2. After completion of Operation 2, final packaging is carried out which is also ac-
companied by quality control tests. The chemical plant operations were subjected to shutdowns (100-150
different shutdown events). The shutdowns occurred due to equipment failures, and other events such
equipment cleaning, inspection, and quality control. Some failure events affected individual operations,
whereas some failure events affected the entire plant operations. For each subsystem (for example, a
Dump Station), there were multiple sources of failures (for example, failure of pump or gear box).

Load Raw materials in Dump ,| Transfer Batch for Intermediate
Station Storage 2

A

Transfer Batch from Dump
Station to Storage 1

Storage 2

Storage 1 '
| Transfer Batch for Operation 2 |

A A4

| Transfer Batch for Operation 1 | | Operation 2 |

A4

| Operation 1 l— | Final Packaging |

Figure 2: High level overview of the production process (Sharda and Bury 2011)

The main objectives for this study are outlined below:

- Evaluate the impact of different improvement opportunities including:
o Variation in production batch size used for Operation 1
o Evaluate the impact of automated transfer of batch from Dump Station to Storage 1
- Identify critical failures affecting the plant throughput and discuss change policies for critical
components

The simulation model for the process was developed using ExtendSim®. We leveraged the custom
blocks used for reliability analysis in the previous case study for this work. Most of the process data (such
as transfer rates, cycle times) needed for model development was readily available from the automation
systems. Additional information required for simulation model development (such as storage unit capaci-
ties, batch sizes) was provided by the subject matter experts. For failure and repair information of differ-
ent shutdowns in the system, the previous 3 years of data was collected from different reports and Time
between failure (TBF), and Time to repair distributions (TTR) were generated. The failure components
were classified into different subsystems that correspond to individual equipment areas (for example, Op-
eration 2 equipment failures). In addition to the failure modes, we also included other shutdowns (for ex-
ample, downtimes associated with operating discipline issues, quality control tests) in our analysis. These
downtimes were also a major contributing factor towards the plant downtime and the business team was
interested in evaluating their impact on plant production.
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We used JMP statistical software and ExpertFit distribution fitting software for data analysis and dis-
tribution fitting. JM® software was used to conduct preliminary data analysis in order to identify process
shifts in the data, and identify significant outliers. Run charts are a useful tool to identify process shifts in
the data. After checking the correctness of data with subject matter experts, the data was then imported in
ExpertFit distribution fitting software for additional analysis (such as checking data independence) and
distribution fitting.

After model development, the model logic was first verified with the subject matter experts. We used
the following settings for running the simulation model:

- Simulation run length: 10 years
- Number of simulation runs: 25
- Warm up period: 30 day

These settings showed good model convergence. Law and Kelton (2000) and Banks et al. (2005) are
good sources for on model convergence and efficiency. Different statistics such as operating times, trans-
fer rates, daily production level, time between failure and time to repair of different components were ve-
rified against historical data and were found to be statistically consistent with actual data. Besides verify-
ing these parameters, other key variables identified for validating simulation model output were average
daily production rate of Operation 1 (for each product) and annual production. The analysis showed that
the daily production rates of Operation 1 for different products were statistically indifferent from histori-
cal data.

To evaluate the impact of different improvement opportunities, the following scenarios were defined:

- Scenario I: Base case representing existing system

- Scenario II: Base case with addition of automated transfer of batch from Dump Station to Storage
1

- Scenario III: Base case with change in production batch size used for Operation 1 from X to Y Ibs

- Scenario IV: Base case with change in production batch size used for Operation 1 from X to Z
Ibs, where Z>Y lbs

- Scenario V: Base case with change in production batch size used for Operation 1 from X to Z Ibs
and automated transfer of batch.

Figure 3 shows the Tukey’s Honestly Significant Difference (HSD) test comparison of normalized
annual production (Ibs/year) for different scenarios. It can be clearly seen that increasing the batch size
from X to Z Ibs results in ~6% production increase. However, we can see that automating the transfer
process from Dump Station to Operation 1 didn’t have a significant impact on the production increase.
This can be easily seen by comparing Base Case (I) with Scenario II, and Scenario IV with Scenario V.

After evaluating the different improvement opportunities, it was decided to use the parameters of
Scenario IV for further analysis. The primary focus of reliability analysis was to identify the critical com-
ponents that are significant contributors towards the production loss. The components identified from the
analysis will be evaluated to identify “change policies” such as increase in spares, better preventive main-
tenance policies and/or new components.

We used the analysis methodology from the previous case study (discussed in Section 3) to identify
critical failure components. After discussions with project team, it was decided to consider only certain
failure components, instead of all the failure components. This decision was based on looking at multiple
factors such as: the component area where a failure occurs, the duration/frequency of TBF and TTR.
There were also certain failures that occur very infrequently, but can cause a significant production down-
time and these were also included in the analysis. The main motive for considering specific failure modes
was to reduce the scenario overload.
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Figure 3: Comparison of annual production (Ibs/year) obtained under different scenarios (Sharda and
Bury 2011)

Figure 4 shows the normalized annual production (Ibs/year) Dunnett’s test comparison of different
failures. We found that failure ID’s 87 and 10 were statistically significant from other failures. The pro-
duction gain of >1 % was significant for this plant, given the fact that the plant is running at a “sold out”
capacity and producing high-margin products. Eliminating these failures would significantly improve the
plant profitability.

The findings were discussed with a team of subject matter experts and production management. Solu-
tions for the critical failures were developed in brainstorming sessions. These solutions were further eva-
luated for their cost effectiveness. One of the key contributions of this analysis was to quantify the pro-
duction losses that will be accrued if the high impact failures are not eliminated. This provided the
management with useful directions to improve the plant reliability.

4 CASE STUDY 3: EVALUATING THE DESIGNED PRODUCTION CAPACITY OF A
MANUFACTURING SYSTEM IN PRESENCE OF DIFFERENT FAILURE MODES

In this case study, we present an example of use of discrete event simulation for evaluating the designed
production capacity of a subsystem within a chemical plant. The key variables affecting the designed pro-
duction capacity were different failure modes and operational constraints involving interlocks and restric-
tions on material flow. The objective of this study was to evaluate if the addition of a new production unit
in the subsystem will achieve the desired production capability, and the subsystem production capacity
would not limit the overall production capability of the plant.

Figure 5 shows the process overview of the section within a chemical plant. In the proposed system, a
new unit (highlighted below) will be added to the existing 3 units. The production system receives a batch
of raw product from upstream operations, and stores it in one of the two storage tanks (Storage 1-2). Each
storage tank can hold one production batch required for running unit 1-4 operations. At any given time,
there can be only 1 ongoing transfer from the storage tanks to the production units, and the transfer can
only start if the storage unit’s level is above a specific limit. If during the product transfer, the storage unit
becomes empty, then the other storage unit is selected if its level is >O0.
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Figure 4: Normalized average annual production by eliminating a failure ID (Sharda and Bury, 2011)

Units 1-4 are batch processes and are composed of several sub-steps. At the end of the batch process,
the product is transferred to downstream operations. The safe operating rules limit the concurrent states of
the plant; the units 1, 2 and units 3, 4 cannot be in specific batch steps at the same time. In addition, unit
1 (or unit 2) can start its operation only when unit 2 (or unit 1) is in certain step or higher. Similar rules
also hold true for operations of unit 3 and unit 4. The production capability of each unit is affected by dif-
ferent failures. The distribution of these failure modes was provided by the reliability team involved in the

project.

Finished product
to downstream
operations

Flow from
upstream

operations

Storage 2

Storage 1

Figure 5: High level overview of the production process

Since the primary focus of this study was to evaluate the production capacity of the proposed system,
we made the following simplifying assumptions:

The product is always available in the storage units 1-2. This assumption implies that there is no
starving from a bottleneck at the upstream operations and the product can always be transferred to

the storage units at an adequate rate.

2327



Sharda and Bury

- The product can always be transferred from units 1-4 to downstream operations. This assumption
implies that there is no blocking from a bottleneck at downstream operations.

The simulation model for the proposed system was developed using Extend® simulation software. We
used the following simulation settings to evaluate the production capacity of the proposed system. These
simulation settings showed good model convergence and a steady state behavior.

- Total simulation length: 10 year
- Warmup period: 1 month
- Number of simulation replications :10

The simulation results revealed that with the addition of new production unit (unit 4), the production
capability of the new system will be higher than upstream and downstream operations. This was observed
by significant wait times of units 1-4 for starting a new operation (indicating starving), and significant
wait time for units 1-4 for unloading the finished product (indicating blocking). We evaluated the true
production capacity of the new system by setting high upstream and downstream production rates. Our
results show that the new system had ~7% higher production capacity than the upstream and downstream
operations. These findings validate the hypothesis that the proposed system will not limit the production
capability of the plant.

5 SUMMARY

The application of discrete event simulation in the process industries is commonly used for the analysis of
reliability and maintenance improvements. However there have been increasing applications that go
beyond this traditional area of application to include evaluations for chemical plant expansions, capital
investment options, cycle time reduction and safety, in presence of failure prone components.

This paper presents three case studies to demonstrate the use of discrete event simulation for reliabili-
ty analysis, evaluation of improvement efforts and to validate the design production capacity of a pro-
posed system with addition of a new production unit. The first case study demonstrates the use of discrete
event simulation to identify critical failure modes for a plant characterized by discrete and continuous
product flow. The second study involves the evaluation of capital expansion decisions in presence of dif-
ferent failures and identification of critical components affecting plant throughput. The third case study
shows the use of simulation of verify the designed production capacity of a subsystem in presence of dif-
ferent failures and operational constraints.
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