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ABSTRACT 

In this paper, we present an approach for developing a simulation-tool-independent description for dis-
crete processes and for converting such a general model into simulation-tool-specific models. Our aim is 
to develop models by means of SysML and to build converters from SysML models to models of a large 
variety of simulation tools. We developed Translator-Plugins for Anylogic, Simcron, Factory Explorer 
and Flexsim. Based on this architecture, we develop a general model description for discrete processes 
which permits to create comprehensive scenarios. Modeling can be divided into a structural, a behavioral 
and a control part. Our main domain is production systems but we show which elements are not domain 
specific and can be generalized to an approach for a standard to model discrete production planning and 
control problems. We also test domains like hospitals, logistics and civil engineering. 

1 INTRODUCTION 

In many areas of science, like computer science or electrical engineering, modeling languages have been 
established. However, this is not the case in the field of discrete processes (Weilkiens 2006). There are 
two reasons which motivate such a development: 

 Modeling languages allow realizing projects by the principles of systems engineering. So one ob-
tains clearness even for large projects and reduces the discrepancy between model and reality.  

 Modeling languages are a central part of automatic code generation. 
 

 In this paper, we present an approach for developing a simulation-tool-independent description of 
production systems and how to convert such a general model into simulation-tool-specific models. In the 
field of software engineering automatic code generation of UML-Models by CASE-tools is very common 
and standardized (Fowler 2003). For modeling discrete processes there are many approaches called 
“Model Based Software Engineering” (MBSE) like Stateflow Coder, ASCET, or ADAGE, but none of 
them has been established as a standard. This could be due to the lack of an adequately powerful, non-
proprietary or general modeling language. However, in particular for modeling discrete processes in pro-
duction automatic code generation is useful, because there are many different tools such as simulators, 
optimizers or schedulers which cannot exchange their non-standardized models so far.  
 The Object Management Group (OMG) developed the Systems Modeling Language (SysML) to fa-
cilitate modeling of complex systems. SysML is a standard based on the standardized general-purpose 
Unified Modeling Language (UML). There have been many disputes about SysML during the short peri-
od of time since its publication. SysML is spreading very fast. Today many of the most prominent devel-
opers of modeling tools like ARTiSAN, Telelogic, I-Logix and Sparx Systems make use of SysML in 
their tools.  
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 This paper presents an approach for automatic model generation of discrete processes in organizations 
such as for hospitals, logistics or civil engineering. Our domain, however, is production systems. Our aim 
is to develop models by means of SysML and to build converts from SysML models to a large variety of 
simulation tools. At first we consider whether SysML is suitable for modeling discrete processes in pro-
duction. In order to understand the requirements of modeling production systems we interviewed experts, 
studied present literature and conducted a market analysis of simulation modeling tools. Based on this 
knowledge we intend to create a general meta model for discrete processes in production which permits to 
create comprehensive production scenarios. In addition, we tested whether SysML is appropriate to build 
our general model. After presenting theoretical concepts for building production models with SysML, we 
developed a practical approach for automated model generation for simulators based on SysML models. 

2 A PRACTICAL APPROACH FOR AUTOMATIC MODEL GENERATION 

We developed a software tool that automatically generates models for commercial simulation packages 
from given SysML models. To build an effective tool we use a multilayer architecture (Figure 1). At first 
we build the model with a SysML modeling tool. The modeling tool should provide a suitable data inter-
change format (XMI), contain all required SysML elements and has to be appropriate for building large 
models.  

  

Figure 1: System architecture 

 If the SysML model is available in a suitable exchange format, it can be transformed into an equiva-
lent model for a given simulation modeling tool. Since it should be possible to transform a SysML model 
into models of different simulation tools, a separate output must be generated for each package. Each 
simulation needs a suitable dedicated model in a specific input format. To simplify the software architec-
ture, the model generation is divided into two steps, which involve an additional “internal model” (Figure 
1). In the first step we use a parser that reads the SysML model file specified in the exchange format 
(XMI), filters out all non-relevant information, and writes the remaining significant parts into the internal 
model. In the second step, the translator plug-in prepares the data from the internal model for a specific 
simulation tool. More precisely, it takes all the relevant data and translates them into the input data format 
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of the simulation package, which is defined by a set of rules. Since each simulator has its own format, 
there has to be a separate translator plug-in for each simulation tool. So far, we developed translator plug-
ins for Anylogic, Simcron Modeler, Factory Explorer, and Flexsim. 
 The advantage of the proposed architecture compared to the application of a single step conversion 
from a SysML file into a model for a simulation program is that the first step (the parser) only needs to be 
executed once. However, the architecture assigns a special role to the internal model because it must be 
particularly suited to derive models for simulation tools. The internal model has to contain all information 
for the generation of production system models but has still to remain transparent. It is also possible to 
convert models from a simulation tool into SysML. The architecture in the reverse direction is very close 
to the one described above. Actually, we have already developed a translation from Flexsim models into 
SysML models. 

3 A GENERAL MODELING APPROACH 

In the following we present an approach for modeling discrete systems. The approach is based on the tra-
ditional way to model production systems (Schönherr and Rose 2009). The model can be divided into a 
structural, a behavioral and a control part. The structural part describes the static structure of a system, 
like the components and their relationships. The behavioral part describes the dynamic behavior of its 
components, for example the movement of an entity through the production facility. The control model 
describes the dispatching, scheduling and routing policies. While the structural and behavior model al-
ready belong to the concept of SysML (Figure 2), the control model is a conceptual extension.  

 

Figure 2: SysML structure 

3.1  The Structural Model 

In the structural model part, there are real objects, imaginary objects and auxiliary objects (Figure 3). The 
imaginary objects like Arrival or Departure Process, Queue and Process are necessary for the simulation. 
The flow object is the central element. In the domain of production systems it represents the job or piece 
which moves through the facility and which is processed by the elements of the tool set. All events in a 
model, except interruptions, are triggered by the flow object. The flow object enters the system through 
the arrival process and leaves it through the departure process. While it travels on specified routes, differ-
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ent processes execute actions on them, for which the processes may use resources (but they are not re-
quired to). Along their way the flow objects can be stored in queues or buffers. 
 While every discrete system has the same imaginary objects, the domain is specified in more detail by 
real and auxiliary objects. Real objects are flow objects which move through the system (entity, patient, 
etc.) and different kinds of resources (worker, room, machine, etc.). Auxiliary objects are not necessary 
but they simplify a model. Relationships between the objects can be simply reservations of objects but 
they can also have very complex attributes or terms. An example is a process which needs a resource only 
half of its time or two processes which need the same resource in sequence. 

 

 

Figure 3: Structural modeling 

 SysML provides four diagram types for describing the structure of a model (Figure 2). We use the 
block definition diagram and the internal block diagram. Figure 4 shows the meta model for production 
systems including the domain specific elements. 

 

 

Figure 4: Structural meta model as block definition diagram 
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3.2 The Behavioral Model 

We can describe the behavior in different levels of detail. If we have an open shop problem without prod-
uct routes, we use just the SysML block definition diagram. To model the behavior of dynamical re-
sources (or agents) we use state machines. For orders with a route or recipe we use activity diagrams.  
 The behavioral model can be classified into different levels of granularity. Pieper, Röttgers, and 
Gruhn (2006, p. 46 ff.) describe how to split the behavior of workflows into different levels of behavior. 
Störrle (2005, p. 194) suggest that activity diagrams can describe different levels of granularity. 
 Next, we present an example of a small production scenario and describe its behavior in different lev-
els of granularity. The first level, called “process level”, shows the sequence of the process steps. The ex-
ample in Figure 6 shows an entity which arrives in the system through the arrival process, then it will be 
processed, it cools down, and leaves the system through the departure process. For most simulation tools 
this level of detail is enough (Anylogic, Flexsim, Simcron, etc.) but some simulation tools need a more 
detailed description.  

 

Figure 5: Structure of behavioral modeling 

 Every process step on the process level is an imaginary object (Arrival or Departure Process, Queue 
or Process). In the next level of detail, called “behavior level”, we define a set of behavioral patterns for 
every process step of the process level. In the first step the example process acquires the needed re-
sources. In the next step the entity will be processed. At the end the process frees the resources (Figure 7).  

 

 

Figure 6: Example on process level 

 The detailed execution of the behavior patterns will be described on the “execution level”. For this 
very detailed description the OMG has defined about 40 actions which serve as a basis for a detailed de-
scription of behavior (Pieper, Röttgers, and Gruhn 2006, p. 47; Weilkiens and Oestereich 2006, p. 161). 
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In our example we model the acquisition of resources. At first we compare the number of needed workers 
with the number of existing workers. Then the workers will be reserved (Figure 8). 

 

 

Figure 7: Example on behavior level 

 

Figure 8: Example on execution level 

3.3 The Control Model 

We were not able to find a general approach for modeling the control of a production system in the litera-
ture. As a first step, we tried to classify the different controls by means of their complexity. Afterwards 
we analyzed the interfaces and elements of the control part of the complete model and which information 
flows are necessary and important. To this end we analyzed the control approaches of seven simulation 
tools. Furthermore, we classified different types of control. Figure 9 gives an overview of our findings, 
additional details can be found in Rehm (2010). The control model consists also of a structural and behav-
ioural part. As a consequence, we can describe it with SysML. 

Figure 10 shows the control model and its functions. The local decisions describe algorithms which 
do not need information from other elements. These elements only need the attribute algorithm and attrib-
utes for the local control. They are executed statically just by means of their values. The algorithmic deci-
sions may include the complete system state. All elements have an interface to the element monitor, from 
which they gain information and therefore know the complete state of the system. If a global decision in a 
queue, a router, a batch machine or a resource pool needs to be made, the controller obtains the infor-
mation from the monitor, executes the algorithm and returns the final decision to the corresponding ele-
ment. 

Furthermore, we work on a description of algorithmic models to map a high variety of control algo-
rithms to SysML. To achieve this goal we look at fundamental elements of different algorithms in order to 
use them like a construction kit to build other algorithms from these modules. We intend to use the mod-
ules as stereotyped actions in SysML activity diagrams (Figure 11). 
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Figure 9: Structure of control 

 

Figure 10: Elements of the control model 
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Figure 11: A first approach to describe control algorithms 

 As a first step we determined algorithms that we want to consider by performing a broad literature 
search in field of production control. The literature divides production control into the following task are-
as: order generation, order release, sequence planning and capacity control (Figure 12). In most approach-
es the order generation represents no task of production control. It can in fact be allocated in the produc-
tion planning layer and will therefore not be considered here (Figure 12). The capacity control is part of 
the production control layer but will not be examined in this work because it deals with short-term devia-
tion control in the context of capacity management and we focus on control methods for storage and utili-
zation of orders in work systems. Therefore we only investigate columns 2 and 3 closer. 
 Order release can be classified into three procedures: immediate order release, order release according 
to a fixed schedule and stock-controlled order release. Immediate order release frees an order immediately 
after its creation. Inventory, lead time and utilization of production cannot be directly influenced by this 
type of order release. In scheduled order releases the plan inflow affects the to-be inflow. Therefore the 
order will only be released when the planned start date was reached. Stock-controlled order releases can 
be divided into specific sub-classes (Figure 13). Other authors also use the stock-controlled order release 
as an independent procedure class and mean the mentioned procedures (Nyhuis 2008, p. 229; Dickmann 
2008, p. 178). 
 Sequence planning can be divided into exact methods (process-optimizing) and heuristic methods 
(non-optimizing procedures) which are mainly global methods. Linear optimization, complete enumera-
tion and decision trees are exact methods. Heuristic methods can be subdivided into initial algorithms, 
search and improvement algorithms, priority rules and methods of artificial intelligence (Zäpfel 2001, p. 
212; Majohr 2008, p. 34; Rehm 2010, p. 48; see Figure 14). 

4 VALIDATION AND VERIFICATION 

Model transformations are an active research field, in particular since the model-driven software devel-
opment gained importance. Part of the research is (apart from the development of approaches for describ-
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ing such transformations) the development of appropriate techniques for their validation and verification. 
These are necessary to validate the developed model transformations with respect to given criteria for cor-
rectness. 

 

 

Figure 12: Tasks of production control 

 

Figure 13: Classification of order release procedures (adapted from Lödding (2008, p. 311)) 

 Verification and validation are two common terms in literature, which are often used synonymously, 
although they pursue generally different goals (Schatten et al. 2010, p. 5). In the literature the terms are 
defined differently. Without going into detail of the many different definitions, we use the following defi-
nition in this paper: the validation of model transformations is a process, which evaluates whether the 
specification of the transformation is sufficient for the requirements of the transformation. The verifica-
tion of model transformations is a process, which evaluates whether the implementation of transformation 
satisfies the specification of transformation. 
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.  

Figure 14: Classification of sequence planning 

 We defined two requirements for our development of transformations. The transformation should 
map SysML models into simulation models and be syntactically, functionally and semantically correct. 
During validation a test will be performed whether the rules and algorithms satisfy the requirements. Dur-
ing verification, however, it is evaluated whether the implementation is correct according to the rules and 
algorithms. 
 The validation and verification of a model transformation is used to test their correctness. For this it is 
important which criteria will be assessed. The following correctness criteria can be found in the literature 
(Varro and Patariza 2003, Narayanan and Karsai 2008).  

 Syntactical correctness. The transformation produces a syntactically correct model or the trans-
formation is syntactically correct with respect to their language. 

 Syntactical completeness. The transformation includes all elements of the original model. 
 Termination. The transformation is completed after a finite time. 
 Confluency, uniqueness. The transformation produces always the same result/output independent-

ly from the order the transformation rules are applied. 
 Semantic correctness (dynamic consistency, preservation of behavior). In the transformation, the 

semantics of the original model or important semantic properties are preserved. 
 
 Model transformations can be described imperatively (as in our approach) or with graph-grammars 
(Huang, Ramamurthy, and McGinnis 2007, p.799). In a recent work, we intended to compare both ap-
proaches in our field of research. While V&V methods for model transformation using imperative meth-
odology are quite rare, there are several approaches for the model transformation with graph grammars. 
There are two fundamentally different approaches to formally verify model transformations (Leitner 
2006). On the one hand for certain specified criteria it can formally be proven that the source and target 
models are semantically equivalent. This equivalence is checked automatically at each transformation by 
a “checker.” This approach is called checker-approach (Leitner 2006) for formal model transformation 
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verification (Varro and Patariza 2003). In contrast, the rule-based approach (Leitner 2006) or meta model 
level verification (Varro and Patariza 2003) proves the general semantic correctness of a transformation 
for each input. In a recent work we considered the various approaches in more detail (Scharfe 2011). 

4.1 Verification by Structural Correspondences 

Now we show the method for verification of model transformations by structural correspondences (Nara-
yanan and Karsai 2008), which is comparable with the approach of correspondence graphs by Triple 
Graph Grammars (Ehrig et. al 2007). This approach was introduced for graph grammars, but can also be 
adapted in a way that it can be used for the imperative transformation approach.  
 The method of verification of the structural correspondences does not verify the translator in general, 
but only certifies the model instances as transformed correctly with respect to the transformation specifi-
cation. During the transformation, certain structures of the original model are assigned to related struc-
tures of the target model according to corresponding transformation rules. To test these structures after the 
transformation, we define for each pair of structures a set of correspondence rules. A structural corre-
spondence rule describes the specific relation of elements of the corresponding structures. So it defines 
how a description of a corresponding target element out of a source element needs to be done in detail.  
 In order not to make a complete traversal through both model instances, the elements of the meta 
model of the input and target description language are connected by cross links. For each pair of struc-
tures of the source model and the corresponding target model all rules of the particular amount of corre-
spondence rules are evaluated. Even if only one rule is not met, the target model will be considered as a 
defective transformed model. 
 The cross-links are defined at the meta model level and instantiated during the transformation. After 
the transformation the cross-links are available together with the source and target model. It is then suffi-
cient to go through the initial model instance and to identify its structures. If there is no cross-link existing 
for the structure, an error occurred during the transformation. However, if there is a cross-link, the struc-
ture of the target model and the correspondence rules are available for verification. 

4.2 Approaches for Validation and Verification 

The syntactical correctness as well as the syntactical completeness of the transformation from SysML 
models to simulation models can be proven by an informal descriptive analysis of the implementation 
(Scharfe 2011). Furthermore the syntactical correctness and completeness of a concrete model transfor-
mation can be checked by the described rules. 
 With respect to confluence, the termination of a plug-in can be proven by a descriptive analysis of the 
implementation. It must be demonstrated that the transformation is a monotonous decreasing function 
(Küster, Heckel, and Engels 2003). Again, the existing implementation of the translation can be analyzed 
to show that in the transformation only deterministic decisions are made. Therefore we were able to show 
in our V&V that non-deterministic data structures (Java Sets) create non-confluent translations. It is also 
possible to prove unity formally by proving that each pair of transformation rules is independent with re-
spect to their execution order (Küster, Heckel, and Engels 2003; Heckel, Kuster, and Taentzer 2002). 
 Unlike the other correctness criteria, the semantics is barely testable automatically. Since we defined 
the semantics in the initial SysML model ourselves, it is easy to validate the semantics of the target model 
by testing. If the correct semantics of each element is proven, the correct semantics of the whole translat-
ed model is shown. 

5 SUMMARY AND OUTLOOK 

We tried to identify and structure the significant properties of discrete processes especially for production 
systems to give them a theoretical basis (Section 3). Additionally, we evaluated whether SysML is suita-
ble to build models according to our concept. We split our models into a structural, a behavioral and a 
control part. It turned out that SysML is comprehensively usable for all three parts. Moreover, we devel-
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oped a practical approach for automated model generation of a few simulators based on SysML models. 
With this approach we are able to transform models from SysML into models of a few commercial simu-
lators and from one simulator into SysML. At first, we developed our approach for the domain of produc-
tion systems. Recently, we also modeled scenarios from the domains of logistics and civil engineering 
(Rehm, Schönherr, and Schmidt 2011). 
 Another part of the research is the development of appropriate techniques for the validation and veri-
fication of the model transformation. These are necessary to validate the developed model transformations 
with respect to established criteria for correctness. While V&V methods for model transformation using 
imperative methodology are quite rare there are several approaches for the model transformation with 
graph grammars. In this paper we gave an approach to validate the imperative model transformation. 
 A practical problem of using SysML for discrete systems is that no suitable modeling tools are avail-
able. Therefore we develop our own tool for modeling discrete systems with SysML especially suited for 
engineers (Schönherr and Rose 2010). 
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