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ABSTRACT 

Despite simulation offers tremendous promise for designing and analyzing complex production systems, 

manufacturing industry has been less successful in using it as a decision support tool, especially in the 

early conceptual phase of factory flow design. If simulation is used today for system design, it is more of-

ten used in later phases when important design decisions have already been made and costs are locked. 

With an aim to advocate the use of simulation in early phases of factory design and analysis, this paper 

introduces FACTS Analyzer, a toolset developed based on the concept of integrating model abstraction, 

automatic model generation and simulation-based optimization under an innovative Internet-based plat-

form. Specifically, it addresses a novel model aggregation and generation method, which when combined 

together with other system components, like optimization engines, can synthetically enable simulation to 

become much easier to use and speed up the time-consuming model building, experimentation and opti-

mization processes, in order to support optimal decision making. 

1 INTRODUCTION 

Real-world systems in manufacturing, supply chains and public services are too complex to be modeled 

by analytical techniques. Therefore, discrete event simulation (DES) are very useful for performing mod-

eling and analysis on these systems. However, DES models are by nature evaluative – instead of suggest-

ing any optimal solutions, a DES model evaluates a given set of design variables and generates the re-

quired performance measures. For a decision maker, the process of finding a sufficiently good design 

setting could be too time-consuming and in many cases impossible if the search space is huge. Simula-

tion-based optimization (SBO) is a relatively new technique applied to seek the “optimal” setting for a 

complex system based on one or multiple performance measures generated from simulation by using var-

ious searching methodologies. SBO is a technology that offers huge potentials to solve real-world prob-

lems and have been successfully applied in many different domains (April et al. 2004). Nevertheless, until 

now, virtually all of today’s commercial SBO packages still possess several major limitations: (1) they 

work in a deterministic mode, without taking into account the stochastic outputs from DES; (2) they do 

not explicitly address multi-objective problems, and (3) similar to most of the DES packages, the majority 

of SBO tools available is traditional software that need to be installed and run locally on the users’ com-

puters. With the vision that Internet and Web technologies could enable the explosive growth in research 

and commercial opportunities (Fu et al. 2000; Boesel et al. 2001; Miller et al. 2001), many efforts have 

been paid on Web-based simulation (WBS) since the 1990s. However, as summarized recently by Byrne 
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et al. (2010), the number of real applications and efficient tools for WBS is still very small. As will be 

discussed with more details in Section 2, an Internet-based SBO system for real-world applications is yet 

to be seen. 

This paper introduces an Internet-based DES and SBO software system, called FACTS (Factory 

Analyses in ConcepTual phase using Simulation) Analyzer, which is specifically developed for 

supporting the design, analysis and improvement of production systems within a truly multi-objective 

context. Implemented as a client-server system over the Internet, FACTS Analyzer (or hereafter FACTS) 

is a parallel and distributed SBO software which supports multiple DES experiments and SBO processes 

to run concurrently. In the FACTS server, various optimization algorithms, artificial neural network 

(ANN) based metamodels, stochastic simulation systems and a SQL database management system are 

integrated and made available to multiple users to access through the Web Services technology.  

In addition to covering the system architecture of FACTS Analyzer (Section 3), this paper will also 

present the unique capabilities provided by FACTS Analyzer that are beyond those found in conventional 

DES packages, for example, the automatic generation of complicated models based on optimization 

parameters (Section 4). Through a simple case study, this paper will also briefly introduce how FACTS 

Analyser can support the generation of Pareto-optimal (best trade-off) solutions for the decision making 

in the improvement of production systems (Section 5). 

2 LITERATURE REVIEW 

Parallel and distributed simulation (PADS) represents the computing technology that enables a simulation 

program to execute on a computing platform containing multiple processors, interconnected by a 

communication network. It can be used to reduce execution time and/or addressing problems like 

geographical distribution (e.g. multiple participants), heterogeneous simulators from different 

manufacturers and fault tolerance (Fujimoto 2000). In recent years, the ability to connect multiple 

distributed simulation models/sub-models into a larger, complex simulation has gained more attention 

from domains like military, telecommunication and education. Nevertheless, in many simulation 

applications, the primary benefit offered by PADS is the execution speedup of running many replications 

on parallel processors. Early work can be found in Biles et al. (1985) in which different computer 

architectures for carrying out a large number of simulation replications in a parallel computing 

environment were examined. Subsequent work was done by Heidelberger (1988), who proposed a parallel 

replications environment equipped with more advanced statistical methods for supporting replication 

analysis. In this approach, several replications of a sequential simulation are run to completion 

independently on different processors. In the jargon of parallel computing, this kind of applications 

belong to the so-called embarrassingly parallel problem because no particular effort is needed to segment 

the problem into a number of parallel tasks, and requires no essential communication between those 

parallel tasks. Embarrassingly parallel problems are ideally suited to large-scale problems over the 

Internet. Public applications include climatepredication.net (Stainforth et al. 2002), BOINC (Berkley 

Online Internet Computing) and probably the most well-known SETI@home project in which 3 millions 

PCs distributed all over the world are donating their unused computing power for searching extra-

terrestrial intelligence. 

With the advent of Internet technologies, many efforts in PADS have been made for developing 

simulation languages and building model libraries that can be assembled and executed over the Internet 

(Yoo et al. 2006). In this sense, Web-based parallel and distributed simulation (WPADS) is understood as 

the research area where PADS methodologies and Web-based technologies are conjoined. As noticed by 

zu Eissen and Stein (2006), the term WBS is used collectively for describing various applications and 

may have very different meanings. However, in general, it refers to the use of Web-based technologies 

that enable users to remotely access and execute simulation languages and simulation programs over the 

Web. 

With the vision that the Internet and Web technologies can facilitate numerous research and 

commercial opportunities for cost-effective distributed simulations, many efforts have been made in WBS 
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since late 1990s. A Java-based Simulation Manager (SimManager) is described in (Marr et al. 2000; Biles 

and Kleijnen 2005) which is essentially a parallel-replication approach in which the SimManager 

identifies and controls a number of slave processors (simulation engines) that run the actual simulation 

trials. Through the concept of Alliance, computer owners can make their processors “available” to the 

SimManager by entering into an agreement to participate in a simulation consortium dynamically. A 

simulation engine is run as a low-priority “background” task if the slave processor is used for some other 

application in the front end. This bears similarity with other public WPADS system such as 

climateprediction.net. Later, their work has extended to integrate commercial simulation packages such as 

Arena, applied to compare alternative material handling configurations for automated manufacturing 

(Biles and Casebier 2004). 

Kumara et al. (2002) depicted a Web-based three-tier client/server framework for allowing multiple 

users to access a simulation program for evaluating and predicting Order-to-Delivery systems. The 

simulation program, developed in GM Enterprise Systems Laboratory (GMESL), was originally designed 

as a standalone program accessed in a single-user mode. The framework separates the functions of 

presentation, data management and analysis into three tiers: (1) Web client; (2) relational database server, 

and (3) multi-agent based virtual executor server. Focus of their work was on the scalability and user 

responsiveness of the system, enabled by the information model in the database server and the multi-agent 

execution model. 

With Web Services as the enabling Internet technology, WPADS is now seen as a more viable 

simulation option than ever before and many researchers are aware of the benefits it can offer. There are 

many answers to the question “What is a Web Service?”. Within the context of this paper, a Web Service 

is defined as a remotely accessible application component that listens and reacts for certain requests made 

over HTTP. When compared to the other standard object architecture for distributed applications (i.e. 

DCOM, Java and CORBA), Web Services technology is the only one that truly enables heterogeneous 

platform interoperability. Different realization alternatives for WBS services are explained and discussed 

with respect to their advantages and disadvantages in Eissen and Stein (2006). The authors also 

implemented a prototype Web Service which allows the analysis and execution of technical models for 

DES, continuous time or hybrid simulation described in the modeling language Modelica. Their focus 

was on fast model building and quick experimentation using Modelica model libraries. Gyimesi (2008) 

proposed a Web Services based framework for generic DES. More recently, using Web Services based 

SBO through the distribution of simulation replications across different servers was presented by Yoo et 

al. (2009). Their focus was on using an Optimal Computing Budget Allocation (OCBA) to allocate 

different number of simulation replications to different servers to improve the overall execution 

efficiency.  

Byrne et al. (2010) reported that research on WBS is still in its infancy and that the cases that have 

been tried have not been carried out against any real customers, but only as test scenarios. For WBS tool 

to have a greater impact in solving real-world problems, it requires significant work to be put into finding 

out how these tools can be designed to not only support simulation, but also optimization, in a truly 

distributed and multi-user environment. As a short conclusion, based on the huge potential of Internet-

based solutions but lack of research on how these solutions can be used for SBO, the ultimate goal of this 

work is to explore the opportunities of Internet-enabled SBO through the design and implementation of 

FACTS Analyzer for solving real-world industrial-scale problems. 

3 FACTS ANALYZER 

3.1 System Architecture 

The major system components and communication protocols in the system architecture of FACTS 

Analyzer, which can support multiple users on the Internet, are schematically illustrated in Figure 1. At 

the heart of this system architecture is the server-side components which spread across four distributed 
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sub-systems: (1) Web server; (2) optimization server; (3) database server, and (4) simulation clusters. For 

a SBO process running with FACTS, the optimization engine (OptEngine) in the optimization server is 

the most important component because it provides the core functionality for major algorithmic processing 

and acts as the hub for coordinating other functions, including interacting with the user, sending 

simulation and optimization data to the simulation clusters and database server as well as metamodeling. 

In principle, the server components can be accessed by any client applications through the Web Services 

hosted by the Web server. In the current implementation, FACTS Analyzer client (or FACTS client) is the 

main client-side application that consumes the FACTS server functionalities by sending XML requests 

and model specifications in form of XML files, launching/controlling SBO processes (through 

OptManager) and retrieving optimization data from the optimization database (OptDB). 
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Figure 1: System architecture of FACTS Analyzer in a multi-user environment. 

The optimization manager (OptManager) is a Windows service that listens to the request from the 

Web server to launch different OptEngines according to the preferences and parameters specified by the 

users through the FACTS Client application. Data that are required to start a SBO procedure may include: 

(1) simulation settings such as warm-up time, simulation time and number of replications; (2) multiple 

objective functions; (3) list of input variables; (4) list of output variables; (5) constraints; (6) which 

optimization algorithm, and (7) optimization parameters, e.g. population size, crossover rate if an 

evolutionary algorithm (EA) is selected. The last two options are particularly useful for SBO researchers 

to select and compare the performance of different algorithms or different optimization parameters. 

Currently, the FACTS server supports several versions of metamodel-assisted EA but new algorithms can 

be added easily by compiling the modified algorithm core into the platform with the object-oriented (OO) 

libraries developed.  

By allowing all active OptEngines to save their optimization trajectories and other experiment results 

into a central database, i.e. OptDB, FACTS supports the following advanced features: 

 The quality and diversity of the initial solutions play a crucial role in the performance of an opti-

mization process, especially when a population-based search method is used. By saving all exper-
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imental results into OptDB, FACTS enables the user to choose the set of initial solutions from 

previous experimental records when starting a new optimization process. This is usually used in 

combination with the Design of Experiments (DoE) functions provided in the FACTS client. 

 Dynamically changing the metaheuristic algorithms in an optimization process. This is especially 

useful when a global search method like EA is used for exploration first and then followed by a 

local search method like Hill Climbing for exploitation to further improve the optimization result. 

 Fault tolerance – while faults in a simulation can be easily detected and recovered by re-starting 

the run by a SimAgent, software faults occurred in an OptEngine may cause a single point of fail-

ure and waste the time spent for all previous simulation runs if the optimization data are not 

stored. The FACTS system architecture indirectly facilitates error-recovery by allowing the user 

to start a new OptEngine and re-load the previous SBO records saved in OptDB as the initial so-

lutions and training data set for the metamodel when the search process is re-started. 

3.2 Simulation components  

Simulation components are decoupled from the core server components because they can be highly 

distributed in the computer clusters to support parallel runs of the computationally expensive simulations 

to speed up the optimization processes. The design of the platform can actually support various types of 

simulations to connect to OptEngine through the SimAgent technology, which faciltates heterogeneous 

simulation systems to be connected to SimManager in an unified protocol using Microsoft Message 

Queues (MSMQ), as illustrated in Figure 1. Depending on the application interfacing methods supported 

by the target simulation system, SimAgent can start the corresponding BackEnd object to launch, interact 

and control the simulation software. In the current implementation, FACTS supports two types of model 

generation: (1) DES models generated in commercial software, using some customized model generators, 

or (2) binary models compiled with dynamic linked libraries. The former option allows a DES model to 

be generated based on the FACTS model specification and subsequently be modified to include some 

specific logic or details. For the latter option, optimal running speed is the major concern of the user. For 

the former case, a BackEnd object to communicate with the target DES software, e.g., through DCOM. 

The output data from the simulation evaluations are then “assembled” and sent back in a standard format, 

in form of MSMQ, via SimManager, and returned to the corresponding OptEngine for further processing 

and data logging.  

More than one single SimInstance, which consists of a SimAgent controlling a single simulation run, 

can be started on a single node with multi-core processors in the simulation cluster. When a SimAgent is 

launched, it will register to the SimManager to announce its existence. By knowing the number of 

available SimAgents, the SimManager can dispatch multiple jobs received from the OptEngines to 

multiple simulations running in parallel.  

3.3 FACTS Analyzer Client 

To enable rapid modeling of production systems, especially in the conceptual design phase, FACTS Ana-

lyzer supplies a limited number of standard DES objects, combined with a list of objects dealing with 

production control mechanisms (PCMs), as listed in Table 1. The PCM objects have all been developed 

based on modelling experiences in industrial case studies and their functionalities have been made as 

generic as possible without losing their ease of use. 
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Table 1: The standard DES objects (left-hand side) and PCM objects (right-hand side) in FACTS. 

Icon Name Description Icon Name Description 

 
Source 

For controlling how materials 

enter the model. 

 
Timetable 

For modeling shifts, i.e. for controlling when 

production is allowed in parts of or the entire 
production flow. 

 
Sink 

For controlling how materials 

exit the model. 
 

Takt 
Synchronizes production of a serial line; can 

be used for parts or the entire serial flow. 

 
Operation 

Operation for standard pro-
cessing of material. 

 
Demand 

For modeling demand. The demand could be 
applied/satisfied at one or more locations in a 

flow. Important statistics include backlog and 

tardiness. 

 
Assembly 

Operation in which two or more 

parts are joined together, ac-

cording to an assembly descrip-

tion.  
Batch 

For grouping variants together at selected op-

erations in the production flow; limits the 

number of setups required. Sizes and sequence 

of batches could be based on safety stock lev-

els of desired buffers and stores in the model. 

 
Disassembly 

Operation in which two or more 

parts are split. 

 
Kanban 

Pull mechanism that authorizes production at 

an operation based on the Kanban cards re-
ceived in the succeeding buffer/operation. 

 
Buffer 

Place that holds one or more 

parts for a minimum time, se-
quence of parts are preserved.  

MaxWIP 
Mechanism that limits the total amount of 

work in process (WIP) in a part of or the entire 
production flow. 

 
Store 

Same as buffer, but sequence of 

parts is allowed to change. 

 
CriticalWIP 

Mechanism that limits the amount of WIP in a 

part of or the entire production flow based on 

the inventory level of a certain buffer or store. 

 
Component 

Object that allows the modeling 

of custom components that 

could be used in one or more 
locations in the production 

flow. 
 

Selection 

Selection provides an easy way to model de-

sign alternatives in which different production 

settings could be compared and evaluated 
against each other. 

 

 

 

Figure 2: Using FACTS Analyzer objects to model an automotive machining line. 
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The PCM objects allow the modeling of complex production flows commonly found in industry 

today without the need of customized programming. As an example, Figure 2 shows the use of FACTS 

DES and PCM objects to model a real-world automotive engines machining line. FACTS supports a 

novel product variants handling for modeling the flows of material for different variants or groups of var-

iants. These material flows are created similarly to how standard production flows traditionally are creat-

ed in DES software, i.e. by connecting objects in the model with connectors/arrows. However, the major 

difference is that FACTS allows the creation of multiple flows collected in a tree structure (see right-hand 

side of Figure 2). Within this tree structure, there is also the possibility to have selections similar to the 

PCM object selection but for material flows instead of for the standard DES objects. The concept of the 

selection object is a novel concept to support the user to use the optimization to automatically evaluate 

different design alternatives, which will be illustrated with an example in the coming section. 

4 MODEL GENERATION BASED ON OPTIMIZATION PARAMETERS: AN EXAMPLE 

In the conceptual design phase of a production system, it is very common that there exist multiple scenar-

ios of how to configure the production system. Having one model per scenario and hence one analysis per 

scenario will easily limit the amount of scenarios that could be evaluated with respect to the limited time 

for decision making in industry. It would be ideal to be able to analyze all scenarios, representing differ-

ent design alternatives, in an efficient way. These types of scenarios are likely to have the same produc-

tion flow but only differ at some locations. Selection (both selection object and flow selection) can enable 

these design alternatives to be built into a FACTS model and then switched in the simulation evaluation 

based on the values of the corresponding decision variables. The analysis of such a model could then be 

made in an efficient way by letting the optimization algorithm to seek the “best” combination of design 

alternatives with their optimal settings together with the optimal values of other decision variables in a 

single SBO run. 

Figure 3 is an illustration of how alternative designs can be easily built in FACTS with both a 

selection object as well as a flow selection object. The selection object, OPSelection, constitutes a choice 

of having one fast machine instead of two slow machines in parallel, which is a common decision-making 

problem faced in industry when considering the replacement of old slow machines with new fast 

machines. For the three operations, OP1, OP2 and OP3, which are connected to Buffer2, there is a flow 

selection in which two alternatives are being evaluated. The first one being an option in which all three 

product variants (VarA, VarB and VarC) have their own flow (denoted in color red, green and blue) and 

in the second one the three variants are allowed to be flexibly processed in any of the three machines but 

with the cost in increasing setup times during variant switch. Therefore, apart from the decision on 

whether to replace the old machine in the first stage, the decision maker also needs to evaluate whether it 

is cost-effective to invest flexible machines in the second stage. 

The basic model in Figure 3 will be used to illustrate the need and usefulness of applying optimiza-

tion with the selection modeling. The original settings of this model can be found on the left-hand side of 

Table 2. The alternative selections along with some possible additional improvements are all modeled as 

investments with associated costs, shown on the right-hand side of Table 2. 
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Figure 3: Illustration of selection object and flow selection in FACTS Analyzer. 

Table 2: Initial setup (left-hand side) and investment costs (right-hand side) of the basic model. 

Objects Settings Objects Investments and costs 

Model The model is run with continuous production (without 

shifts) for 31 days of which one is used as warm-up peri-
od and with 15 replications to deal with the stochastic el-

ements in the model.  

Buffer1, 

Store1 

Possibility of buying 1 to 5 extra places 

each costs $10,000. 

Source1 Infinite random supply of the three variants (VarA – 40 

%, VarB – 30 %,  
VarC – 30 %). 

OPSelection Investment in new machine (FastOP) 

costs $100,000. 

Buffer1, 

Store1, 

Buffer2 

Transportation time of 60 seconds and a capacity of 5 var-

iants. 
SlowOP1,  

SlowOP2, 

OP1, OP2, 

OP3 

Improvement of availability from 90 % to 

95% in steps of 1%. Cost $10,000 per 
step. 

SlowOP1, 

SlowOP2 

Constant processing time of 7,000 seconds with an avail-

ability of 90% and a mean time to repair (MTTR) of 5 

minutes.  

SlowOP1,  

SlowOP2, 

OP1, OP2, 

OP3 

Improvement of MTTR from 5 minutes to 

3 minutes in steps of 1 minute. Cost 

$10,000 per minute. 

FastOP Constant processing time of 3,600 seconds with an avail-
ability of 95 % and a MTTR of 3 minutes. 

Selection1 

(Flow selec-

tion) 

Improve machines to multi-
purpose/flexible  machines that can pro-

cess all variants. Cost $90,000. 

OP1, 

OP2, OP3 

Constant processing time of 9,000 seconds for VarA and 

1,2000 seconds for VarB and VarC and with an availabil-
ity of 90 % and a MTTR of 5 minutes. Setup time of 10 

minutes for moving to/or leaving production of VarC. 

  

Sink1 Infinite demand.   

 

As mentioned, models built using FACTS Analyzer are stored and sent to the server using XML. 

These models (XML files) could then be interpreted by a model generator (see Figure 1) in each SimIn-

2188



Ng, Bernedixen, Urenda and Jägstam 

 

stance in the distributed simulation cluster. However, before the model is sent directly to the model gen-

erators, it is first processed by the OptEngine which sets the values of the decision variables. Each model 

generator then interprets the XML file and generates the model according to the decision vector set by the 

optimization algorithm. The highlighted sections in Figure 4 and Figure 5 have illustrated how selections 

are denoted in a FACTS XML file. For selection objects and flow selections a selection element encircles 

all available options (objects/flows), with an ActiveID attribute referencing the currently selected ob-

ject/flow. Modeling and storing selections in this way provides an easy way of switching between the 

possible selection alternatives, which is a key aspect when incorporating selections into a SBO process. 

 

 

Figure 4: A snippet of the XML file with the feature of selection object highlighted. 

 

Figure 5: Another snippet of the XML file with the feature of flow selection highlighted. 
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5 MULTI-OBJECTIVE OPTIMIZATION 

Multi-objective optimizations (MOO) for the hypothetical case study described in Section 4 have been 

run. The Pareto Frontier generated, in this case using a variant of NSGA-II (Deb et al. 2002), can help the 

decision maker to select one of the best Investment-Throughput trade-off solutions. FACTS Analyzer 

provides the functions for users to plot the best/medium/worst attainment surface (Knowles 2005) of the 

Pareto-optimal solutions generated from several MOO runs. The snapshots in Figure 6 illustrate how the 

user can group the results from 3 SBO replications to plot the best attainment surface for the example 

problem (the left-hand path). For a particular SBO run, the user can browse the optimization results and 

select any solution for checking the performance measures and their statistics in details (the right-hand 

path in Figure 6). For this example, the highlighted Pareto-optimal solutions at investment $90,000 has 

shown a sudden “leap” of the throughput (8.6% improvement) and can be regarded as a “knee” point in 

MOO literature. It represents the best trade-off solution because significant improvement of throughput 

can be achieved with an additional investment of $10,000, which cannot be achieved with any other Pare-

to-optimal solutions. The Pareto-optimal solution with investment $90,000 is solely attributed to the in-

vestment of the flexible machines, without making any other changes in the original model. Further im-

provement of the throughput can be made with some minor additional changes but not by replacing the 

old/slow machine with a new/fast one. Subject to the budget on hand, these are valuable information for 

the decision maker in the improvement of the production line. For this simple problem, it is easy to com-

pare the attributes of the Pareto-optimal solutions. But for a complex problem which involves tens or even 

hundreds of decision variables with their complex correlations, finding the attributes of the decision vec-

tors that constituent the Pareto-optimal solutions is a very challenging task. To implement efficient meth-

ods for such kind of so-called post-optimality analysis is a very important and interesting research now 

underway in the development of the next generation of FACTS Analyzer.  

6 SUMMARY AND OUTLOOK 

Up to now, there are only very few real-world applications and efficient tools for running simulation and 

optimization on the Internet. This paper has depicted an Internet-based DES and SBO system called 

FACTS Analyzer, which is specifically developed for general conceptual factory flow design, analysis 

and optimization. Using FACTS Analyzer, parallel and distributed simulation experiments and SBO can 

be run and controlled remotely by multiple users anytime anywhere via the Internet. FACTS Analyzer al-

so inherently supports MOO so that Pareto-optimal solutions can be generated efficiently for the decision 

maker to choose a configuration that is the “best” trade-off among the conflicting performance objectives 

in designing/improving a production system. It is currently the key focus of our work in extending 

FACTS with post-optimality analysis techniques for discovering the important attributes of the Pareto-

optimal solutions to support decision making in real-world production systems design.  
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Figure 6: Snapshots of using FACTS tools to browse and analyze MOO results.  
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