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ABSTRACT

A symbiotic simulation-based problem solver agent is proposed that can be used to automatically solve
decision making problems regarding the operations of the various tools of an entire semiconductor manufac-
turing plant (fab). In comparison with common practice decision making, performed by human operators,
the advantage of the symbiotic simulation-based approach is its ability to simulate how decisions will affect
operations in different parts of the fab. Previous work has been concerned with the optimization of a single
tool group. Here, we show that our approach can also be applied to control an entire fab which typically
involves several hundred tools. Unlike other approaches, ours is not limited to a set of pre-defined decision
making policies. Instead, the problem solver agent can directly schedule setup changes for an arbitrary
number of tools. Experiments show that higher throughput can be achieved by using our approach as
compared to common practice decision making.

1 INTRODUCTION

Semiconductor manufacturing is a highly complex and asset intensive process. In order to stay competitive,
manufacturers are required to continuously improve their manufacturing process and invest several million
US dollars for automation solutions (Potoradi et al. 2002, Gan et al. 2006). An important issue in this
context is the efficient utilization of resources. The tools used in semiconductor manufacturing can cost up
to US$ 2 million (Scholl and Domaschke 2000). Highly efficient utilization of tools is therefore crucial.
This can be achieved by improving decision making concerned with the operation of the tools. In our
previous work (Aydt et al. 2008) we have already highlighted the need for automation in semiconductor
manufacturing and described an application, based on symbiotic simulation (Fujimoto et al. 2002), which
improves the performance of a group of wet benches (a particular kind of tool used to clean wafers from
residues after certain fabrication steps). In contrast, the work presented in this paper is concerned with
the optimization of an entire semiconductor manufacturing plant (fab). As we will explain later, a fab
consists of several hundred tools (as compared to 8 in our previous work) which makes the problem several
magnitudes more complex.

Symbiotic simulation is a paradigm in which a physical system is closely coupled with a simulation
system by means of sensors and actuators (Fujimoto et al. 2002). The simulation system benefits from
real-time sensor data which can be used to initialize and drive high-fidelity simulations of the physical
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Figure 1: Overview of a symbiotic simulation system for decision support and control. The simulation
system is coupled with the physical system. The optimizer is responsible for creating candidate solutions
which are evaluated by means of simulations.

system. The physical system, on the other hand, may benefit from the ability of the simulation system
to quickly evaluate alternative decision options. Figure 1 illustrates a symbiotic simulation system. The
process of evaluating a number of alternative what-if scenarios (each representing an alternative decision
options) is referred to as the what-if analysis process. However, unless the problem is trivial, there is not
enough time to evaluate all possible what-if scenarios, i.e., an exhaustive search for the optimal decision
option is infeasible. For this reason it is necessary to use an appropriate optimization method that is capable
of identifying solutions without having to evaluate all what-if scenarios. Since symbiotic simulation is
used for short-term decision making there is only a limited amount of time available to solve a problem. In
addition, finding a reasonably good solution just in time is often more important in the context of real-world
problems than finding an optimal solution. These issues have to be taken into consideration when selecting
an appropriate optimization method. As we will explain later in Section 3, we have used an evolutionary
computing approach.

Scheduling of wafer lots to production resources (e.g., tools) is a crucial performance issue in semi-
conductor manufacturing. Various work has been concerned with this issue. For example, a large body of
work is concerned with the evaluation of dispatching policies. These policies decide, according to some
criteria, in which sequence wafer lots are being assigned to production resources. Research in this area
often focuses on a single type of tool, such as stepper tools (Wu et al. 2006) or furnaces (Akçali et al.
2000), for instance. The work by Zhang et al. (Zhang, Jiang, and Guo 2008) is notable as it employs the
same concepts that are essential to symbiotic simulation. They describe a system in which a scheduler is
monitoring and controlling a fab. The scheduler determines when a new rule combination (dispatching
rule + rework strategy) has to be used. Rule optimization is done with the support of a simulator that is
employed by the scheduler to evaluate the performance of a given combination of dispatching rule and
rework strategy. Once the best combination has been identified, it is implemented in the fab. Essentially,
what Zhang et al. describe is a symbiotic simulation decision support and control system.

Dispatching (i.e., assignment of a wafer lot to a tool) is dependent on the current setup of a tool. A
wafer lot can only be dispatched if the setup of a particular tool is compatible with the one needed by the
wafer lot. Changing tool setups can be time consuming. Frequent re-configurations should thus be avoided
in order to reduce inefficient tool utilization. This can be achieved by employing dispatching policies that
explicitly consider setups (Sethi, Chu, and Yan 1999). However, while policies can be used to locally
optimize the performance of parts of the fab, they are not well suited to optimize the entire fab. A fab is
a highly complex system and changes to one part of the system is likely to affect other parts. In order to
evaluate how changes to one part of the system will affect other parts, simulations are required.

Decision making regarding tool configuration is closely related to scheduling as wafers can only be
processed if the required tool is configured to do so. Depending on the product, different wafers may need
different setups. In this paper, we apply our symbiotic simulation-based approach in order to improve fab
throughput by scheduling the change of setups more efficiently. The advantage of our approach is the
ability to predict the effects of setup changes on the overall performance of the fab. Existing work, such
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as the one by Zhang et al., often aims at changing setups of tools only as a result of dispatching wafer
lots to production resources that require a different setup. In contrast, our approach directly decides on
the schedule for changing setups, i.e., it does not rely on alternating between different scheduling policies.
Instead, the problem solver agent has the freedom to change the setup of any tool at any point of time. In
this paper, we show that our approach improves the performance of the physical system in terms of fab
throughput when comparing to common practice decision making.

This paper is structured as follows. In Section 2 we discuss the model of the semiconductor manufacturing
system. In Section 3 we discuss the design of the problem solver agent used for this application. In addition,
we discuss how the what-if analysis process can be specialized, depending on the current operating conditions.
In Section 4 we discuss a number of experiments with focus on the impact of using a problem solver
agent to complement local decision making and the impact of specialization on the performance of the
what-if analysis process. We conclude this paper by discussing the application example and summarize
the contribution of this paper in Section 5 and Section 6, respectively.

2 SEMICONDUCTOR MANUFACTURING MODEL

The model of the semiconductor manufacturing system considered in this paper is based on information
about a real-world fab and has been developed with the support from domain experts. However, the
model does not exactly reflect any particular real fab for proprietary reasons. Some details have not
been available for developing the model. For example, this includes the exact number of tools as well
as precise timings of the various processing steps. The purpose of this application is to demonstrate
the applicability of our approach to decision support in semiconductor manufacturing. In particular, the
advantage of symbiotic simulation-based problem solving in comparison with common practice decision
making is being investigated. For this purpose, it is important to have a model which realistically reflects
the complexity of the semiconductor manufacturing process. It does not necessarily have to reflect an
existing fab exactly with all its proprietary details. Therefore, for creating the model, we have focused on
a realistic degree of complexity rather than the exact representation of one particular real-world fab.

2.1 Manufacturing Process

A fab can produce multiple products concurrently. From the perspective of the manufacturing process,
products are characterized by the different processing steps that are needed to turn the raw wafer into the
finished product. A total of 18 different products is considered in this application. Each product is associated
with a workflow that represents a sequence of processing steps. The workflow indicates the exact order in
which wafers have to be processed, the tool and setup that have to be used for each processing step, as well
as the exact processing times needed to complete a step. The total number of processing steps required by
various products is ranging between 169 and 347. On average, a product has to go through 252 different
steps during its manufacturing process. In this application, we assume that all products are processed
concurrently, i.e., wafers from different workflows are competing for the same production resources.

The time required for a wafer to complete the entire manufacturing process is commonly referred to
as cycle time. We distinguish between the theoretical cycle time, which is the total processing time of all
steps without any delays, and the actual cycle time, which also includes delays caused by transportation
within the fab, for example, or unavailability of processing resources. The average theoretical cycle time
is 9.8 days. The shortest and longest theoretical cycle time is 3.4 days and 14.8 days, respectively. An
overview of the various products is illustrated in Table 1.

Depending on the processing step, wafers are processed either one by one or by the lot. Some tools
also allow batch processing, i.e., to process multiple wafer lots concurrently. Although wafers might be
processed one by one, they are always transported from one tool to another in their cassettes. Loading and
unloading of wafers from their cassette is done fully automatically by the corresponding robotic handlers
in the tool. This reduces the need of human intervention which would otherwise lead to impaired quality
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Table 1: Overview of the various products, including the number of processing steps and the theoretical
cycle time for each product.

Product Id # of Theoretical Product Id # of Theoretical
Steps Cycle Time Steps Cycle Time

P0001 169 7.6 days P0010 239 8.9 days
P0002 240 8.8 days P0011 239 8.9 days
P0003 347 14.8 days P0012 334 14.8 days
P0004 347 14.8 days P0013 233 9.0 days
P0005 345 14.8 days P0014 196 7.4 days
P0006 334 14.8 days P0015 196 7.4 days
P0007 236 10.1 days P0016 233 9.0 days
P0008 345 14.8 days P0017 206 7.8 days
P0009 240 8.8 days P0018 225 3.4 days

due to improper handling. In the simulation model, we do not explicitly represent wafers. Instead, the
smallest entity are wafer lots and for the remainder of this chapter, we will use wafer lots (with exactly 25
wafers) as the unit for denoting workload and throughput.

Various kinds of tools are used in the semiconductor manufacturing process. This includes tools such
as furnaces, lithography tools, cluster tools, wet benches, and a number of other tools. The fab model has
a total number of 286 stations, each of which is equipped with a single tool. They are organized into 65
station families. Each station family has a storage capacity for temporarily keeping wafer lots until a tool
becomes available for processing waiting lots. Depending on the tool, processing is done either by lots
or batches of lots. In case a tool is capable of processing wafer lots in batches, corresponding batching
policies are used that determine how batches are composed. An overview of the various tool types used
in this application is illustrated in Table 2.

Tools can be operated with different setups. However, although a tool may technically be capable
of operating under a certain setup, it may not be certified for this purpose. Certification is an important
measure to maintain the required quality of wafers. The certification procedure can last several weeks and
is thus not subject to operational decision making which is usually in terms of hours and days. Therefore,
from this application’s perspective, certifications cannot be changed. The number of setups supported by a
certain tool varies greatly. While some tools are certified to support up to 27 different setups, other tools
support only a single setup. The average number of certified setups per tool is 6. Changing the setup of
a tool often requires downtime (i.e., setup time) during which the tool is not available for processing any
wafers.

Not all tools require setup times. For example, in case of wet benches, a “setup” refers to a particular
recipe according to which wafers are treated. Wet benches are tools that are used to clean the wafer after
certain fabrication steps to remove residues which would otherwise affect the quality of the wafer. This
cleaning process requires wafers to be processed in a number of chemical liquids for a precisely specified
time period. A recipe is thus a unique sequence of chemicals and specific processing times. Different
wafers can be processed according to different recipes (i.e., different chemical sequences and timings).
However, a wet bench is equipped with a fixed set of chemical baths. Although the liquids have to be
replaced from time to time (maintenance), they are not changed (i.e., replaced by a different chemical).
Therefore, there is no downtime (i.e., setup time) required when processing wafers according to a different
recipe.

In contrast, furnace tools may operate at different temperatures (in this case “setup” refers to a
temperature setting). Wafers have to be processed at a certain temperature for a certain period of time. To
assure quality, it is important that the temperature is not fluctuating. Therefore, if wafers require different
processing temperatures (i.e., different setups), a furnace needs to change its operating temperature. The
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Table 2: Overview of the various tool types, number of station families, total number of tools in the fab
model, the maximum batch size in terms of wafer lots (if the tool supports batching), and the setup time
in minutes (if applicable to that tool). Actual setup times are assumed to follow a normal distribution.
Therefore, corresponding mean setup times and standard deviations are given.

Tool Type # of Families # of Tools Batching Setup Time
Mean (Std.Dev.)

Backside Clean 1 2 N/A 15 (5)
Cluster tool 23 108 N/A 15 (5)
CMP tool 3 5 N/A N/A
DNS Clean 3 3 N/A 15 (5)
Lithography 1 5 N/A 20 (3)
Furnace 10 33 6 lots 35 (8)
Hardbake 1 2 6 lots 15 (5)
Hotplate 1 2 6 lots 15 (5)
I-Line 1 15 N/A 20 (3)
Implanter 3 21 N/A N/A
Laser Marker 1 2 N/A N/A
Metrology 6 52 N/A N/A
Wet bench 11 36 2 lots N/A

heating up/cooling down process takes some time (i.e., the setup time) during which no wafers can be
processed. An overview of the various setup times of all tool types (if applicable) is illustrated in Table 2.

Despite efforts towards automated operations, operational decisions regarding configuration of tools is
made by human operators. The model reflects this fact: each station family is assigned an operator who
is responsible for changing the setups of the various supervised tools. Figure 2 illustrates an example of a
station family with three tools, each of which is equipped for different setups.

2.2 Common Practice Decision Making

Common practice decision making is distributed (i.e., operators make decisions regarding the tools under
their supervision) and involves local optimization (i.e., each operator tries to optimize the performance locally
in terms of throughput, for example). Although operators of different station families can communicate
with each other and coordinate their actions, they cannot fully anticipate how local decision making is going

Figure 2: Example of a station family with three tools, each of which is certified for different setups.
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to affect different parts of the fab. This is due to the complexity of the manufacturing process. Simulations
are required to see how local decision making affects other parts of the fab. Therefore, centralized decision
making, using full knowledge about the state of the fab, is beyond the capabilities of human operators.

The common practice decision making approach, used in our model, is based on information provided
by the industry and meant to emulate decision making by human operators in a fab. Operators generally
distinguish between priority and non-priority tools. Priority tools are the ones that are more critical to
the manufacturing process. This includes cluster tools, lithography tools, furnaces, implanters, and wet
benches. Operators watch priority tools more closely and act faster upon changing operation conditions
as compared to non-priority tools. The setup of non-priority tools is changed only once every working
shift (i.e., once every 8 hours). In contrast, priority tools may be re-configured every hour if the situation
requires. Operators analyze the setup demand of the waiting lots in the queues of the station families
supervised by them. For our model we assume that the goal of the operator is to match setup demand
and supply of a station family f by re-configuring as many tools as necessary in order to minimize the
discrepancy δDS( f ) between the setup demand and supply.

We assume that operators are free in their choice of selecting tools within a station family for re-
configuration. Therefore, every time an operator checks the current operating situation of a station family,
multiple tools may be selected for re-configuration in order to match demand and supply. Human operators
often apply a “fire fighting” approach. We model operator behavior as follows:

1. Determine the critical setup for each station family, i.e., the setup which is highest in demand
compared to its supply.

2. Identify all tools within the station family that are certified for this setup but currently use a different
setup.

3. Select one of the identified tools and consider the resulting demand/supply discrepancy. If changing
the setup would result in an improvement, then apply the changes.

This process is repeated until no further improvements in terms of demand/supply discrepancy are possible.
In the remainder of this section, we explain more formally how setup demand and supply is determined
in our model.

A simple way of calculating the demand of a setup would be to count the number of lots in the queue
that require this particular setup for their next processing step. However, this measure does not take into
account the processing time required by this step. The processing time depends on the processing step
and varies among different products and their specific process flows. The lot count does not accurately
reflect the demand situation as many lots with short processing time would outweigh few lots with long
processing times. Demand in terms of number of lots is thus misleading. Hence, we consider demand in
terms of the waiting processing time. The waiting processing time wpt f ,s for a particular setup s is the
accumulated processing time of all lots in the queue of a station family f that require this setup. The
total waiting processing time WPT ( f ) is thus the accumulated waiting processing time for all setups that
are provided by the various tools of station family f . In order to match demand and supply, we further
consider the demand ratio DR( f ,s) and the supply ratio SR( f ,s) which represent the setup demand/supply
relative to the total demand/supply, respectively. The demand ratio DR( f ,s) is calculated as follows:

DR( f ,s) =
wpt f ,s

WPT ( f )
(1)

While setup demand is measured in waiting processing time, setup supply is measured in number of
tools nt f ,s in a station family f that are configured for setup s. Based on the total number of tools NT ( f ),
the supply ratio SR( f ,s) can be calculated as follows:

SR( f ,s) =
nt f ,s

NT ( f )
(2)
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Figure 3: Design of the problem solver agent, based on a symbiotic simulation system, for control of
semiconductor manufacturing equipment.

In order to match demand and supply, the objective of the operator is to minimize the discrepancy
between demand and supply, which is defined as:

δDS( f ) = ∑
s∈C( f )

|DR( f ,s)−SR( f ,s)| (3)

where C( f ) is the set of all setups that are provided by the various tools of station family f .

3 PROBLEM SOLVER AGENT

The disadvantage of the common practice decision approach, described in the previous section, is the lack
of complete knowledge and the ability to anticipate how decisions regarding one part of the system affect
other parts. Without the use of simulation, operations are limited to local optimization based on local
knowledge about the situation within a single station family. In case of human operators, these limitations
are not necessarily that severe. For example, human operators have knowledge about the system and are
thus capable of anticipating, to a certain extent, the likely outcome of their actions. This is particularly
true for operators who can make use of experience with similar situations and problems in the past. In
addition, operators can communicate with each other and coordinate their actions. Nevertheless, due to
the complexity of the system, it can be assumed that operators have always only partial knowledge about
the system. In contrast, a symbiotic simulation-based problem solver agent has the advantage of being
able to exploit a detailed model of the physical system to make fully informed decisions using complete
knowledge about the state of the physical system.

The purpose of the problem solver agent is not to completely replace distributed, local decision making.
Instead, the problem solver agent overrides local decisions, whenever necessary, to improve the efficiency
of the manufacturing process. Therefore, even when using the symbiotic simulation-based approach, local
decisions are made according to the common practice approach explained above. In this application, we
consider the case where the problem solver agent is concerned with continuously improving the overall
performance of the manufacturing process. Figure 3 illustrates the design of the problem solver agent for
the semiconductor manufacturing application.

The sensor component (S-C) and the actuator component (A-C) represent the link between the problem
solver agent and the physical system. In practice, a fab is equipped with an information management systems
that keeps track of the whereabouts and progress of the various wafer lots in the fab. This information is
reflected by the state St of the physical system at time t. The workflow controller component (WORC-C)
observes the state of the physical system and is responsible for triggering the what-if analysis. In this
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application, what-if analyses are performed pro-actively every 12 hours and concerned with a time period
that covers the next 24 hours. The nature of the problem that is addressed by the problem solver agent may
differ for each what-if analysis. Therefore, it is necessary to analyze the current operating situation and
to specify the current problem in terms of 1) problem-specific information Γ and 2) objectives Ω. Since
our application is concerned with setup scheduling, Γ represents information about station families that are
causing problems (i.e., station families that have a high waiting processing time). In addition, Ω represents
the objectives for the problem solver with respect to the current problem (e.g., minimize waiting processing
time of a certain station family). For example, one what-if analysis might be concerned with solving a
problem concerned with a cluster tools while another what-if analysis is concerned with improving the
performance of lithography tools. In addition, the focus of the problem solver agent may be multiple tools
at the same time, i.e., a what-if analysis can be concerned with more than one tool.

The information provided by Γ and Ω is exploited by the scenario management component (SCEM-C)
which is responsible for creating what-if scenarios (each representing an alternative schedule for changing
setups). In addition, an appropriate model of the physical system is required to create a what-if scenario.
Here, we assume that a reference model MR is always available. In practice, it might be necessary to
re-calibrate or re-validate a model during runtime to adequately reflect the physical system. The purpose of
the SCEM-C is to generate promising what-if scenarios while ignoring less promising ones. It is therefore
important that the optimization engine (which is at the core of the SCEM-C) makes use of Γ to create only
scenarios that suit the current problem. We use an evolutionary algorithm as optimization engine due to
their various advantages in solving real-world problems (Fogel 2000, Bonissone et al. 2006). In particular,
we make use of the evolutionary computing modeling language (ECML) (Aydt et al. 2011) to dynamically
incorporate problem-specific information (represented by Γ) into the problem solving process.

More specifically, Γ represents information about which stations are performing sub-optimal and require
optimization. This information is used by the evolutionary algorithm to construct genotypes that encode
the schedules for the various problematic stations mentioned indicated by Γ. In our application, a genotype
encodes the schedule for setup changes with a resolution of one hour. For example, consider the following
genotype: (−−−− 3−−−−− 1−−−−−−−−2−−−). Each element (i = 1,2,3, . . . ,23) of this
genotype indicates whether a setup change is scheduled or not at time t + i, where t is the time when the
what-if analysis has been triggered. A setup change is indicated by the setup id while a dash indicates
that the setup is not changed. In this example, a total of three setup changes are scheduled 5 hours, 11
hours, and 20 hours from the time when the what-if analysis has been triggered. Note that we take into
account the time needed by the problem solver agent to find a solution. Here, we assume that the what-if
analysis process takes at most one hour. Therefore, the earliest time a setup change can be scheduled is at
t +1 hours. In this simple example we considered the schedule for a single station only. Depending on the
operating conditions of the physical system, the problem solver agent may have to optimize the schedule
of many stations at the same time.

The framework used to realize the problem solver agent as well as the optimization engine are designed
to be generally applicable (Aydt 2011), i.e., Γ and Ω are generally not limited to information regarding
stations and setups or minimization of waiting processing time. Instead, Γ and Ω may represent a large
variety of problem-specific information and objectives as required by the corresponding application. In our
application, problem-specific information Γ is concerned with information that allows the problem solver
to create solutions that focus on problematic stations. Similarly, the objectives Ω in our application are
concerned with the minimization of the waiting processing time of problematic station families as well as
the maximization of the overall throughput of the fab.

The simulation management component (SIMM-C) is responsible for evaluating what-if scenarios by
means of simulation. For this purpose, it has to initialize simulations with the current state of the physical
system (provided by S-C). For each what-if scenario wi a corresponding performance indicator PIi is
created. The optimization engine can use the PI values of the various what-if scenarios and interpret them
with respect to objectives Ω in order to decide which scenarios can be discarded. The remaining what-if
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scenarios are processed (by standard evolutionary algorithm variation operators) in order to obtain another
set of what-if scenarios which can be evaluated by the SIMM-C. This iterative optimization process is
performed until a given computing budget has been exhausted. The set Wo of optimal what-if scenarios
is forwarded to the action management component (ACTM-C) which is responsible for selecting a final
‘winner’ which is then propagated to the A-C and implemented in the physical system.

4 EXPERIMENTS

We compare the performance of the physical system when using the common practice approach for decision
making (i.e., no symbiotic simulation) and the symbiotic simulation-based approach using the problem
solver agent. The purpose of this comparison is to determine the maximum load the physical system can
handle depending on the decision making approach used. As explained earlier in Section 3, a what-if
analysis process is triggered every 12 hours and simulations of the various what-if scenarios cover the
next 24 hours. Each what-if analysis is given a computing budget of 48000 simulations. In addition, each
what-if scenario is evaluated using 3 simulation replications. With the given computing budget this results
in a maximum of 16000 what-if scenarios that can be evaluated by each what-if analysis.

For practical reasons, experiments were not performed with a real physical system. Instead, we used
a paced simulation of the fab to emulate the physical system. This enabled us to perform experiments,
reflecting a period of several months, within a few weeks. We also used a mechanism to create snapshots
of the complete state of the emulator at any time. These snapshots have been used as initial state for the
simulation of what-if scenarios. The simulation model is deterministic with the only exception being the
setup times. In practice, the exact setup times are not known a priori. Therefore, all simulations performed
by the what-if analysis process use different random number generator seeds to produce different values
for the various setup times according to a normal distributions (see Table 2 for details regarding the setup
times). Both, the emulator as well as the simulations of the what-if scenarios use the model discussed in
Section 2.

For evaluation purposes, we consider the work in progress (WIP) and the average throughput of the
physical system. The WIP is used to determine whether the decision making approach is capable of
handling a certain amount work load. More specifically, we consider work loads between 1600 and 1900
lots per month for common practice decision making and 1800 and 1900 lots per month for the problem
solver agent. A set of five experiments is performed for each load and decision making approach. The
results presented below represent the corresponding averages (for WIP and throughput) over these five
replications. As for the conduct of experiments, for each experiment the emulator has been started from
scratch, i.e., the semiconductor manufacturing system is empty with no WIP. Wafer lots are released daily
according to the corresponding work load. Figure 4 shows the performance of the physical system when
using the common practice approach and when using the problem solver agent. The problem solver agent
is only activated at day 360. In addition, both figures only show the performance starting from day 300.
The period before this day is considered the warm-up period and is thus not illustrated.

When using the common practice approach, the maximum load that can be handled by the physical
system is approximately 1600 lots per month. At higher loads, the physical system cannot keep up which
results in a steadily increasing WIP (see Figure 4a). The upper work load limit is also indicated by the
throughput which is approximately between 1500 and 1600 lots per month regardless the load (see Figure
4b). In order to handle a given work load, the physical system needs to be able to maintain a throughput
which equals the load. Clearly, this is not the case for work loads above 1600 lots per month when using
the common practice approach. In contrast, when using the problem solver agent, work loads up to 1800
lots per month can be handled. This is indicated by a WIP that does not significantly increase or decrease
(see Figure 4c). In addition, the problem solver agent can maintain a throughput of up to 1800 lots per
month (see Figure 4d).

Initially, after activating the problem solver agent, throughput increases sharply and even exceeds the
load. For example, in Figure 4d, throughput reaches almost 2000 lots per month around day 400 which
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Figure 4: Performance of the semiconductor manufacturing system in terms of WIP (left column) and
throughput (right column) when using common practice decision making only (CP, top row) and in direct
comparison with the problem solver agent (PSA, bottom row).

is significantly higher than the load of 1800 or 1900 lots per month used for these experiments. This is
due to the fact that, before the problem solver agent was activated, only common practice decision making
has been used. Since the common practice approach cannot handle work loads of 1800 and 1900 lots
per month, excess WIP has been accumulating in the queues of the physical system. This excess WIP is
eventually processed when the problem solver agent is activated. As a result, when using a load of 1800
lots per month, the throughput converges to approximately the same level. However, even the problem
solver agent cannot handle a load of 1900 lots per month and throughput remains significantly below this
level (see Figure 4d) which explains the increasing WIP (see Figure 4c).

5 DISCUSSION

Although the problem solver agent is (in theory) capable of making decisions autonomously, it can be
expected that in a real-world application scenario, the problem solver agent is not directly instructing
operators but rather a senior operations manager who will take the suggestions by the problem solving
agent and (if found to be appropriate) forward them to the corresponding operators. This may lead to
sub-optimal decision making because the operations manager may not immediately see the advantage
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of implementing changes suggested by the problem solver agent. In addition, operators do not always
accurately follow their instructions. The simulation model assumes that instructions by the problem solver
agent are strictly followed, i.e., human operator are assumed to always follow their instructions. Although
problems with human interference are an important issue, they are beyond the scope of this work and
thus not further discussed. Nevertheless for a real-world application of the problem solver agent, issues of
human interference need careful consideration and have to be dealt with accordingly.

The focus of this application has been an automated approach: a problem solver agent observes the
physical system and triggers a what-if analysis every 12 hours. Upon triggering, the problem solver agent
analyses the current situation, identifies a problem (in terms of Γ and Ω), and solves it. However, an
approach in which the problem solver agent is autonomous may not be desirable in practice for various
reasons. The semiconductor manufacturing process is a delicate issue and has significant impact on the
profitability of the fab. A manufacturer may not be willing to leave decision making entirely up to a
software system. A semi-automated approach may thus be preferred. An advantage of our approach is
the availability of possible intervention points at which a user can intervene and interact with the problem
solver agent. For example, a user may manually specify Γ and Ω (i.e., the problem solver agent would
only be responsible for creating and evaluating the various what-if scenarios).

6 CONCLUSIONS

The problem considered in this application is concerned with decision making regarding a schedule for
changing setups of tools. In contrast to our previous work (Aydt et al. 2008), we have demonstrated that
symbiotic simulation can be used to optimize an entire fab rather than just a single station family. In
contrast to other work in the literature, our work is not aiming at alternating different policies (e.g., such
as the work by Zhang et al. (Zhang, Jiang, and Guo 2008)). Instead, we aim at an approach that allows
making fine grained changes to the operations of the fab in order to improve the performance. With our
approach there is no need to define specific policies for different situations. Instead, the problem solver
agent is capable of scheduling setup changes directly without the need to rely on a particular scheduling
rule or human intervention.
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