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ABSTRACT

Multi-product production systems with sequence-dependent setup times are typical in manufacturing of
semiconductor chips and other electronic products. In such systems, the scheduling policies to coordinate
the production of multiple product types play an important role. In this paper, we study a multi-product
manufacturing system with finite buffers, sequence-dependent setup times and various scheduling policies.
Using continuous time Markov chain models, we evaluate the performance of such systems under seven
scheduling policies, i.e., cyclic, shortest queue, shortest processing time, shortest overall time (including
setup time and processing time), longest queue, longest processing time, and longest overall time. The
impact of these policies on system throughput are compared, and the conditions characterizing the superiority
of each policy are investigated. The results of this work can provide production engineers and supervisors
practical guidance to operate multi-product manufacturing systems with sequence-dependent setups.

1 INTRODUCTION

Flexible manufacturing systems are becoming more and more important in manufacturing industry due
to the increasing trends of customization and market changes. For example, microprocessors products in
semiconductor factories may vary in sizes, functions and memory capacity; LED lights are produced with
different power-specifications; and the final products of LCD monitors may be with various colors and
functional packages to satisfy the needs of different customer groups. To manufacture these products, finite
buffers are typically used and kept at smaller capacities to reduce storage space, work-in-process (WIP),
and production cycle time. In addition, in multiple products environment, setup times usually occur when a
machine is switched from one product type to another. These setup times are typically sequence dependent,
which implies that the duration of setups time depend on both the immediately preceding product type and
the current one. For example, when microprocessors with different package types (e.g., “Ball-package”
or “Pin-package”) are processed, the setup time between two “Ball-package” products can be different
from the changeover time between a “Pin-package” product and a “Ball-package” product. For the latter
case, the temperature in the manufacturing equipment may need to be adapted to a new package type, and
such adaption takes time. Moreover, the products are usually processed in batches, to reduce setup times,
minimize cost, and improve product quality. Thus, the coordination and scheduling of different product
batches become critical. Depending on the specific production environment, many scheduling policies, such
as cyclic policy, longest queue policy, etc., have been implemented on the shop floor. These policies can
have a great impact on the output of production systems. Therefore, studying multi-product systems with
finite buffers, sequence-dependent setup times and different scheduling policies is of significant importance.

During the past decades, substantial research effort has been devoted to the study of multi-product
manufacturing systems (such as monographs Viswanadham and Narahari 1992; Buzacott and Shanthikumar
1993; Tempelmeier and Kuhn 1993; Zhou and Venkatesh 1999; and reviews Suri 1985; Buzacott and Yao
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1986; Sethi and Sethi 1990; Beach et. al 2000; Takagi 2000). In recent years, there is an increasing research
attention on multi-product systems (for instance, Altiok and Shiue 2000; Krieg and Kuhn 2002, 2004; Li
and Huang 2005, 2007; Ryan and Vorasayan 2005; Jang 2007; Satyam 2007; Dasci and Karakul 2008;
Gurgur and Altiok 2008; Satyam and Krishnamurthy 2008; Tubilla and Gershwin 2009; Wang et. al 2010).
However, the issues of either setup times or finite buffers are often ignored. Only a few studies consider the
impact of setup times and finite buffers together (e.g., Altiok and Shiue 2000; Krieg and Kuhn 2004; Dasci
and Karakul 2008), and only very few studies investigate multi-product systems with sequence-dependent
setups (Dasci and Karakul 2008; Tubilla and Gershwin 2009). No analysis and comparison of different
scheduling policies have been addressed in these papers. Therefore, an in-depth study on the performance
analysis of manufacturing systems with sequence-dependent setups, finite buffers, and various scheduling
policies, as well as a comparison among different policies, is necessary and important.

The main contribution of this paper is in studying the scheduling policies in multi-product manufacturing
systems with sequence-dependent setups and finite buffers, using a continuous time Markov chain model.
A comparison study of the performances under seven different scheduling policies is carried out. The
conditions or managerial insights useful for operations of multiple-product systems are obtained.

The remainder of the paper is structured as follows: Section 2 describes the system and formulates the
problem. Performance evaluation is introduced in Section 3. The comparison among different scheduling
policies and the impacts of system design parameters are discussed in Section 4. Finally, conclusions are
given in Section 5.

2 SYSTEM DESCRIPTION AND PROBLEM FORMULATION

In this paper, we study a manufacturing system that processes multiple products (see Figure 1). The following
assumptions define the part arrival, processing, setup times, finite buffers, and scheduling policies in the
system:

Figure 1: A multi-product manufacturing system producing M products.

(i) The manufacturing system can process M types of products, denoted as products 1,2, . . .M.
(ii) The products arrive at the manufacturing facility independently. The arrival rate of product type j

is defined by a Poisson process with parameter l j, j = 1, . . . ,M.
(iii) The processing time for product type j follows exponential distribution with parameter m j, j =

1, . . . ,M.
(iv) The system can only accommodate at most N j parts of type j product at any time period. In

other words, there is a buffer b j for product type j in front of the machine, with capacity N j

(including the one on the machine), j = 1, . . . ,M. Due to its finite capacity, a part may be lost if
the corresponding buffer is full at the time of its arrival.

(v) There is an exponential distributed setup time with mean si j when the facility is switching from
product type i to type j, i, j = 1, . . . ,M, i 6= j.

2056



Feng, Zheng, and Li

(vi) The manufacturing facility will keep processing product i until all parts of type i have been processed
and its buffer bi is empty.

(vii) When a buffer is emptied, the manufacturing facility switches to a non-empty buffer according to
a given scheduling policy defined as follows:

(1) Cyclic policy: The machine processes products with the order of 1,2, . . . ,M. It returns to
process type 1 after type M. If there is no part available in buffer b j when part type j is to
be processed, no setup will be carried out and the facility switches to processing type j+1.

(2) Longest queue (LQ) policy: The machine always switches to a product with the longest
non-empty queue. If there are several longest queues that share the same length, then the
nearest product in the cyclic order is processed.

(3) Shortest queue (SQ) policy: The machine always switches to a product with the shortest
non-empty queue. If there are several shortest queues that share the same length, then the
nearest product in the cyclic order is processed.

(4) Longest processing time (LPT) policy: The machine always switches to a product with the
longest non-zero processing time. The processing time is estimated as the queue length
divided by the processing rate of the corresponding product. If there are several queues that
share the longest processing time, then the nearest one in the cyclic order is processed.

(5) Shortest processing time (SPT) policy: The machine always switches to a product with
the shortest non-zero processing time. If there are several queues that share the shortest
processing time, then the nearest one in the cyclic order is processed.

(6) Longest overall time (LOT) policy: The machine always switches to a non-empty buffer
with the longest overall time (processing time plus setup time). If there are several queues
that share the longest overall time, then the nearest one in the cyclic order is processed.

(7) Shortest overall time (SOT) policy: The machine always switches to a non-empty buffer
with the shortest overall time. If there are several queues that share the shortest overall
time, then the nearest one in the cyclic order is processed.

(viii) When all buffers are empty, the machine will be starved, and it will start setup whenever a new
product arrives (or start processing without setup if the previous type product arrives).

In an appropriately defined state space, system (i)-(viii) is a stationary random process. Let T Pa

be the system throughput, i.e., the average number of parts produced per unit of time, under policy a ,
a ∈ {Cyclic,LPT,LQ,LOT,SPT,SQ,SOT}. Then, T Pa is a function of all system parameters:

T Pa = fa(L,G,N,S), (1)

where

L = [l1, . . . ,lM],

G = [m1, . . . ,mM],

N = [N1, . . . ,NM],

S =









0 s12 . . . s1M

s21 0 . . . s2M

. . . . . . . . . . . .
sM1 sM2 . . . 0









.

The problem addressed in this paper is formulated as follows: Given the multi-product manufacturing
system (i)-(viii), develop a method to estimate system throughput as a function of system parameters, and
investigate the impact of different scheduling policies on system throughput.

Solutions to the problem are presented in Sections 3 and 4 below.
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3 PERFORMANCE EVALUATION

To evaluate system throughput, we introduce a continuous time Markov process model and its state space.
Let (h ,x ,a ,h1, . . . ,hM) define the system state, where h and x take values 1, . . . ,M, denoting the previous
and current product types, respectively; a = 0 or 1 characterizing the machine status, such that a = 1
implies the machine is available, and a = 0 represents the setup state; hi, i = 1, . . . ,M, describing the
occupancy of part type i in the system, and 0 ≤ hi ≤ Ni. When all hi = 0, the machine is starved (idle) for
parts. Then the effective states can be obtained by deleting the unreachable ones that could not exist (Feng
et al. 2011).

Lemma 1 Under assumptions (i)-(viii), there exist K effective states, where

K = (M−1)
M

å
j=1

[

(2N j −1)
M

Õ
i=1,i6= j

Ni

]

. (2)

Next, transition equations are introduced to describe the transitions among all effective states. Then,
a transition matrix Q with dimensions K×K will be constructed. The transition rates li, mi, and 1/si j are
assigned to the matrix elements of Q. Other elements (except Q(i, i)) are assigned to be zero. Finally, by
letting Q(i, i) =−åK

j=1, j 6=i Q(i, j), the transition matrix Q is obtained (see the Appendix for details). Let
pS be the stationary probability associated with state S = (h ,x ,a ,h1,h2, ...,hM), i.e.,

p = [p1,p2, . . . ,pK ].

we obtain,

Theorem 1 Under assumptions (i)-(viii), the throughput of product j can be calculated as:

T Pa
j = Aa

j m j, j = 1, . . . ,M, (3)

where a represents the scheduling policy, a ∈ {Cyclic,LPT,LQ,LOT,SPT,SQ,SOT}, and A j denotes the
probability that the manufacturing facility is processing product j, i.e.,

Aa
j = å

i,h1,...,hM

p(i, j,1,h1,...,h j>0,...,hM), (4)

and p is solved from
p = DF−1, (5)

with
D = [0, . . . ,0,1], (6)

and

F(:, i) =

{

Q(:, i), if i = 1, . . . ,K −1,
1, if i = K.

(7)

The the total throughput of the system is

T Pa =
M

å
j=1

T Pa
j . (8)

Proof: See the Appendix.

4 COMPARISON OF SCHEDULING POLICIES

In this section, the impact of different scheduling policies on system throughput will be investigated. For
simplicity, we assume li = l and Ni = N, i = 1, . . . ,M, throughout the section.
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4.1 Scenarios with Equal Processing Rates

First, we assume all products have equal processing rate, i.e., m j = m , j = 1, . . . ,M. In this case, the LQ
and LPT policies are identical, so are the SQ and SPT policies. Therefore, only five policies, SPT, SOT,
LPT, LOT and Cyclic, will be studied. We will start with three-product case, then extend to more general
scenarios.

4.1.1 Three-product Case

We carry out the investigation numerically by using Theorem 1 under different policies. The numerical
cases are constructed as follows:

• First, the system parameters are selected from a given set, where the parameters are chosen in a
structured way. Specifically, the utilization r = 3l

m is selected from the set {0.6, 0.7, 0.8, 0.9}, and
the buffer sizes from the set {2, 4, 6, 8, 10, 12, 14}. Then the arrival rate l is determined. A total
of 35 different setup matrices are selected, where si j are chosen from {0.5,1,2,4,6} in the unit of
1
m . As a combination of these parameters, 980 different numerical cases are tested.

• Next, randomly selected parameters are used for numerical tests, i.e., N, l and si j are randomly
chosen from 3l

m ∈ [0.6,1), si j ∈ (0,6], and N ∈ [2,14]. More than 1000 numerical tests are carried
out.

As a result, these numerical experiments lead to the following:

Numerical Fact 1 Under assumptions (i)-(viii), assume M = 3, Ni = N, mi = m , li = l , si j = s ji. Then in
terms of total throughput of the system,

(a) T PSOT ≥ T PSPT and T PLPT ≥ T PLOT .
(b) T PSOT ≥ T PLPT when N is small, and there exists a possibility that T PSOT < T PLPT when N is

large.

The rationale behind Numerical Fact 1(a) is that SOT results in selecting products with shorter setup
times than SPT, and LPT leads to shorter setup times than LOT. Since reducing setup times can always lead
to larger throughput (Feng et al. 2011), it is observed that SOT and LPT can lead to higher throughput.

Numerical Fact 1(b) indicates two outcomes of the scheduling policy: one is related to setup times,
the other is on the queue lengths of different products. For the first one, if a policy always chooses shorter
setup times, then it should lead to higher throughput. If a policy always chooses a longer queue, then
the system should also have higher throughput, which is due to that choosing longer queues can reduce
the frequency of setup times, and this leads to the second outcome. Comparing the SOT and LPT policy,
SOT shows advantage in the first one, while LPT could be superior in the second one. Therefore, the
policy comparison depends on which outcome plays a more important role. As buffer capacity grows, it
is expected that the differences between queue lengths will be larger, which results in choosing a longer
queue. Therefore, LPT may lead to higher throughput than SOT.

In addition, we observe that the SOT policy is inferior to LPT if the following cases occur: 1) all
the products have equal setup times (i.e., si j = s); or 2) The setup times are all approaching zero. This
is because under these two scenarios, the impact of shorter setup times can be neglected, and therefore
“longer queue” becomes more critical, which highlights the advantage of LPT policy.

An example of Numerical Fact 1 is illustrated in Figure 2, where

M = 3, N ∈ [2,14], G = [3,3,3], L = [0.9,0.9,0.9],

S =





0 0.67 1.33
0.67 0 2
1.33 2 0



 .
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Figure 2: Throughput comparison in equal processing rates case, M = 3.

As one can see, SOT policy results in best performance when buffer is small and LPT policy becomes
superior with large buffers. Moreover, we observe that the cyclic policy reaches relatively good performance
in many scenarios. Therefore, we obtain:

Numerical Fact 2 Under assumptions (i)-(viii), assume M = 3, Ni = N, mi = m , li = l , si j = s ji. Then in
most cases, the cyclic policy may not lead to the highest nor the lowest system throughput among all the
scheduling policies.

4.1.2 More Than Three-product Case

In the cases of more than three-product, based on extensive numerical studies, we discover that Numerical
Facts 1 and 2 still hold. An example of four-product system is illustrated in Figure 3, where

M = 4, N ∈ [2,7], G = [1,1,1,1], L = [0.1731,0.1731,0.1731,0.1731],

S =









0 1.4531 1.4797 1.1272
1.4531 0 1.666 0.7569
1.4797 1.666 0 2.9059
1.1272 0.7569 2.9059 0









.

Again, SOT and LPT policies lead to best performance when buffers are small or large, respectively,
and cyclic policy always results in relatively good throughput. Therefore, the following hypothesis is
proposed:

Hypothesis 1 Under assumptions (i)-(viii), assume Ni = N, mi = m , li = l , si j = s ji. Then LPT or SOT
policies leads to best performance of the system. In addition, LPT policy is favorable when buffer is
large and SOT is superior for small buffer system. Moreover, cyclic policy often results in relatively good
performance in all scenarios.

4.2 Scenarios with Non-equal Processing Rates

Now we study the case of different processing rates. Since LPT and LQ, SPT and SQ are not identical,
all seven scheduling policies defined in Section 2 need to be addressed.
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Figure 3: Throughput comparison in equal processing rates case, M = 4.

4.2.1 Three-product Case

Again we start with three-product case. Similar approach to Subsection 4.1 is used to construct numerical
experiments, but with the processing rates chosen from [0.3,1.6]. Then, through extensive numerical
experiments, we discover:

Numerical Fact 3 Under assumptions (i)-(viii), assume M = 3, Ni = N, li = l , si j = s ji. Then in terms
of system total throughput, most likely we have

(a) T PLQ ≥ T PLOT and T PLPT ≥ T PLOT .
(b) T PLPT ≤ T PLQ for large buffers, and there exists a possibility that T PLPT > T PLQ when buffers are

small.

It is observed that the conclusion of T PLQ ≥ T PLOT is true in more than 98% of the numerical tests.
Even if T PLQ is not superior to T PLOT , the difference between them is typically less than 1%. Similar
results are observed when LPT and LOT policies are compared.

Remark 1 Numerical Fact 3 not only extends the result of T PLPT ≥ T PLOT in Numerical Fact 1 to
non-equal processing rates scenario, it also shows that the processing time based policy is more favorable
only when buffers are small. The rationale of this is due to that the difference between the queue lengths
is not significant for small buffer case, thus, the processing times, influenced by different processing rates,
will be critical to system throughput. When the difference in queue length becomes more substantial, the
impact of queue-based policy is more dramatic.

An example of Numerical Fact 3 is illustrated in Figure 4, where

M = 3, N ∈ [2,14],

G = [0.3,1,1.6], L = [0.4235,0.4235,0.4235],

S =





0 6 6
6 0 2
6 2 0



 .

As one can see, both LPT and LQ policies are superior to LOT policy, and LQ is more favorable when
buffers are large.

Analogously, when SPT, SQ and SOT policies are compared, we observe:
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Figure 4: Throughput comparison in non-identical processing rates case under LQ, LPT, LOT, and cyclic
policies, M = 3.

Numerical Fact 4 Under assumptions (i)-(viii), assume M = 3,Ni = N,li = l , si j = s ji. Then in terms of
total system throughput, practically we have

(a) T PSOT ≥ T PSQ and T PSOT ≥ T PSPT .
(b) T PSQ ≤ T PSPT when buffers are large, and there exists a possibility that T PSQ > T PSPT for small

buffers.

For Numerical Fact 4, the advantage of SOT policy is due to its capability of reducing setup times.
Note that large buffers are not good for SQ policy, in contrast to LQ policy in Numerical Fact 3. This is
because SQ policy can be viewed as an inverse of LQ policy.

An example of Numerical Fact 4 is illustrated in Figure 5, where

M = 3, N ∈ [2,14],

G = [1.4271,1.3353,1.5518], L = [0.4238,0.4238,0.4238],

S =





0 3.8236 0.2853
3.8236 0 0.4569
0.2853 0.4569 0



 .

Clearly, SOT policy results in better throughput.
Similar to equal processing rates case, the cyclic policy often results in relatively good performance,

in particular, when buffers are large. Thus, we obtain,

Numerical Fact 5 Under assumptions (i)-(viii), assume M = 3, Ni = N, li = l , si j = s ji. Then in most
cases, the cyclic policy may not result in the highest nor the lowest system throughput among all the
scheduling policies.

Thus, in general, the best scheduling policy is among SOT, LPT or LQ. When comparing the SOT
policy with LQ and LPT, we obtain,

Numerical Fact 6 For a multi-product system under assumptions (i)-(viii), assume M = 3, Ni = N, li = l ,
si j = s ji. When buffers ares small, T PSOT ≥ T PLQ and T PSOT ≥ T PLPT ; while, there exist possibilities that
T PSOT < T PLQ and T PSOT < T PLPT for large buffers.

Therefore, LQ tends to be the best policy among LQ, LPT and SOT when buffer capacities are increasing.
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Figure 5: Throughput comparison in non-identical processing rates case under SQ, SPT, SOT, and cyclic
policies, M = 3.

4.2.2 More Than Three-product Case

Similar conclusions in Numerical Fact 3, 4, 5 and 6 are obtained for the cases of more than three-product.
An illustration of four-product case is shown in Figure 6, where

M = 4, N ∈ [2,6], G = [0.6790,0.4445,0.9273,0.9028], L = [0.1317,0.1317,0.1317,0.1317],

S =









0 2.8046 3.6776 3.6066
2.8046 0 5.5128 3.9612
3.6776 5.5128 0 3.1241
3.6066 3.9612 3.1241 0









.
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Figure 6: Throughput comparison in non-identical processing rates case, M = 4.

To summarize, the following hypothesis is proposed:

Hypothesis 2 Under assumptions (i)-(viii), assume Ni = N, mi = m , li = l , si j = s ji, Then, in most cases,
the SOT policy leads to better throughput than SQ and SPT policies, and LQ and LPT policies exceeds
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LOT policy. Moreover, LQ policy is favorable for large buffer case. In addition, the cyclic policy typically
leads to relatively good performance in all scenarios.

5 CONCLUSIONS

In this paper, continuous time Markov chain models are developed for multi-product manufacturing
systems with sequence-dependent setups, finite buffers, and seven scheduling policies. The impacts of each
scheduling policy on system throughput are investigated. It is observed that when all products have equal
processing rates, the best policy is either LPT or SOT, while LPT policy is more favorable in large buffer
scenario. When the products have different processing rates, the best policy is chosen from LQ, LPT or
SOT, and LQ policy is desirable when buffers are large. Moreover, the cyclic policy results in relatively
good performance in all scenarios. Such insights are helpful for shop floor management in multi-product
manufacturing factories.
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APPENDIX

Proof of Theorem 1: Let qS1,S2 denote the transition rate from state S1 to state S2. The transition equations
under cyclic policy has been presented in (Feng et al. 2011). For other scheduling policies, the transition
equations are identical except the following one:

• When the last part in the buffer of type j is being processed, the machine will transit to the setup
state of next product with non-empty buffer with rate

q(i, j,1,h1,...h j=1,...,hM),( j,l,0,h1,...h j=0,...,hM) = m j,

In this equation, the relationship between the two states depends on the scheduling policy:

(1) Cyclic policy: i = 1, . . . ,M, j = i+ 1, . . . ,M + i− 1, l = j + 1, . . . ,M + j − 1, hl = 1, . . . ,Nl − 1,
h j+1 = . . . = hl−1 = 0, and product l has the next non-empty queue after product j in the cyclic
order.

(2) LQ policy: i = 1, . . . ,M, j = i+ 1, . . . ,M + i− 1, l = j+ 1, . . . ,M + j− 1, hl = 1, . . . ,Nl − 1, hl >
hm(m = j+1, . . . , l −1),hl ≥ hk(k = l +1, . . . , j).

(3) LPT policy: i = 1, . . . ,M, j = i + 1, . . . ,M + i − 1, l = j + 1, . . . ,M + j − 1, hl = 1, . . . ,Nl − 1,
hl
ml
> hm

mm
(m = j+1, . . . , l −1), hl

ml
≥ hk

mk
(k = l +1, . . . , j).

(4) LOT policy: i = 1, . . . ,M, j = i+1, . . . ,M+ i−1, l = j+1, . . . ,M+ j−1, hl = 1, . . . ,Nl −1, hm = 0
or hl

ml
+ s jl >

hm
mm

+ s jm(m = j+1, . . . , l −1), hk = 0 or hl
ml
+ s jl ≥

hk
mk
+ skl(k = l +1, . . . , j).

(5) SQ policy: i = 1, . . . ,M, j = i+1, . . . ,M+ i−1, l = j+1, . . . ,M+ j−1, hl = 1, . . . ,Nl −1, hm = 0
or hl < hm(m = j+1, . . . , l −1), hk = 0 or hl ≤ hk(k = l +1, . . . , j).

(6) SPT policy: i = 1, . . . ,M, j = i+1, . . . ,M+ i−1, l = j+1, . . . ,M+ j−1, hl = 1, . . . ,Nl −1, hm = 0
or hl

ml
< hm

mm
(m = j+1, . . . , l −1), hk = 0 or hl

ml
≤ hk

mk
(k = l +1, . . . , j).

(7) SOT policy: i = 1, . . . ,M, j = i+1, . . . ,M+ i−1, l = j+1, . . . ,M+ j−1, hl = 1, . . . ,Nl −1, hm = 0
or hl

ml
+ s jl <

hm
mm

+ s jm(m = j+1, . . . , l −1), hk = 0 or hl
ml
+ s jl ≤

hk
mk
+ skl(k = l +1, . . . , j).

The remaining proof is similar to that of (Feng et al. 2011). Due to space limitation, the details of the
proof are omitted.
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